Focus on understanding what I'm saying and doing. If you must take notes, then focus on recording what I say but don't write down.

Classroom expectations. Bring your calculator, book, paper, and pen/pencil. I'm not just going to talk for 50 minutes. I will ask the class questions, and sometimes I will ask you to do a short computation. Pay attention to what I say, not just what I write.

I encourage questions. Just ask; you don't need to raise your hand. However, if you do not have a question, then do not interfere with your fellow students' learning. Do not talk to other students while I am talking. Do not let your phone/laptop/etc. distract your neighbors.

Approximate Schedule of Topics

		Schedule of Topics
Date	Day	Topic
25-Aug	R	syllabus; derivatives: approximating small changes
30-Aug	T	product rule; derivatives of polynomials
1-Sep	R	derivatives as slopes
6-Sep	T	higher derivatives and concavity
8-Sep	R	maxima and minima
13-Sep	T	curve sketching
15-Sep	R	Exam I
20-Sep	T	optimization
22-Sep	R	optimization
27-Sep	T	derivatives of logarithms and exponentials
29-Sep	R	chain rule
4-Oct	T	chain rule
6-Oct	R	related rates
11-Oct	T	related rates
13-Oct	R	Exam II
18-Oct	T	from sums to integrals (video lecture)
20-Oct	R	(fall break)
25-Oct	T	integrals of polynomials
27-Oct	R	area between polynomial curves
1-Nov	T	consumer surplus
3-Nov	R	deadweight loss
8-Nov	T	integration by substitution
10-Nov	R	integration by parts
15-Nov	T	Exam III
17-Nov	R	partial derivatives
22-Nov	T	partial derivatives
24-Nov	R	(Thanksgiving break)
29-Nov	T	two-variable maxima and minima
1-Dec	R	iterated integration
6-Dec	T	volumes of solids
. 8-Dec	R	Final Exam, 11AM

Total changes: If y=x2, then the total change Δy from x=1 to x=2is 22-12 (easy). If dy = x2dx, then the total change of y from x=1 to x=2 is $\int_{x=1}^{x=2} dy = \int_{1}^{2} x^{2} dx$ [Compare to #65 (14-3)] L = 350ln(t+1)dtIf x = 5 when x = 1 and dy = x2dx, then y=5+f, x2dx when x=2

Averages: average value of x^2 from x = 1 to x = 2 is $\int_{1}^{2} x^2 dx = \int_{1}^{2} x^2 dx$ [Compare to #71 (14-3)] $\int_{1}^{2} dx = 2-1$

47.

A average height y

from x=1 to x=21.5 [1.5 2

$$\int e^{x} dx = e^{x} + c$$

$$\int e^{x^{2}} x dx = \frac{1}{2} \int e^{x^{2}} d(x^{2}) = \frac{1}{2} e^{x^{2}} + c$$

$$x dx = \frac{1}{2} d(x^{2})$$

$$d(x^{2}) = 2 \times d \times$$

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c \int (if n \neq -1)$$

$$\int \frac{x dx}{(x^{2}+1)^{3}} = \frac{1}{2} \int \frac{d(x^{2}+1)}{(x^{2}+1)^{3}} = \frac{1}{2} \int (x^{2}+1)^{-3} d(x^{2}+1)$$

$$d(x^{2}+1) = 2x dx \qquad b = \frac{1}{2} \cdot \frac{(x^{2}+1)^{-2}}{-2} + c$$

$$\frac{1}{2} d(x^{2}+1) = x dx$$

$$\int \frac{dx}{x} = \ln|x| + c = \begin{cases} \ln x + c & \text{if } x > 0 \\ \ln x + c & \text{if } x < 0 \end{cases}$$

$$\int \frac{x dx}{x^{2}+1} = \frac{1}{2} \int \frac{d(x^{2}+1)}{x^{2}+1} = \frac{1}{2} \ln|x^{2}+1| + c$$

$$k \text{ constant } \Rightarrow \int k df = k \int df$$

$$\int 5x dx = \int \int x dx = \int x dx = \int \int x dx = \int \int x dx = \int x dx = \int \int x dx = \int$$

S (df tdg) = Sdf t Sdg $\int (x - x^2 + x^3) dx = \int x dx - \int x^2 dx + \int x^3 dx$ $= \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} + c$ $\left[\int f dy = fy - \int g df\right] \quad (I.B.P.)$ $\int x e^{x} dx = x e^{x} - \int e^{x} dx = x e^{x} - e^{x} + c,$ $\int \frac{dy}{dy} = \int \frac{dy}{dy} = \int \frac{dx}{dy} = \frac{x e^{x} - e^{x} + c}{(x-1)e^{x} + c}$ dg $df = dx \quad g = \int dg = \int e^{x} dx = e^{x} \quad (pick)$ c = 0 $\int_{-\infty}^{\infty} \frac{x \, dx}{x \, dx} = \int_{-\infty}^{\infty} \frac{x \, dx}{y} = \int_{-\infty}^{\infty} \frac{y \, dx}{y} = \int_{-\infty}^{\infty}$

Deadweight loss: $P = D(x) DWL = \int_{x=q}^{x=q} (D-S) dx$ equilibrium linear demand Simplest case linear supply Given two date points for each, you can find the line & $y-y_1=m(x-x_1)$ (x_1, y_1) $M = \frac{\Delta x}{\Delta x} = \frac{x_2 - x_1}{x_2 - x_1}$

P(x) = S(x)Eguilibrium: Solve For X to get equilibrium quantity X. Plug in $X = \overline{X}$ to get $\overline{p} = D(\overline{X}) = S(\overline{X})$. De If there's a tax, say, 4%, then solve D(x) = 1.045(x) to get Parafter-tax equilibrium quantity q. $DWL = \int_{Qq}^{\infty} (D-S)dx$ $CS = \int_{0}^{x} (D - \bar{p}) dx$ $PS = \int_{0}^{\infty} (\bar{p} - S) dx$ $CS = \int_{0}^{q} (D(x) - D(q)) dx < post - tex.$ $D DWL PS = \int_{0}^{q} (S(q) - S(x)) dx$ Tax revenue $S(q) PS = S (D(q) - S(q)) \overline{p}$ $= 0.04 \overline{p} S(q)$

$$dA = A(t) = -0.9e$$

$$dA = A'(t) dt$$

$$dA = -0.9e^{-0.1t} dt$$

$$small changes$$

$$in even sin time

Find total change $\triangle A$

$$from t = 0 to t = 5$$

$$\triangle A = \int_{t=0}^{t=5} dA = \int_{0}^{5} -0.9e^{-0.1t} dt$$

$$A = (-9)\int_{0}^{5} e^{-0.1t} (-10 d(-.1t))$$

$$\triangle A = 9\int_{0}^{5} e^{-0.1t} d(-.1t)$$$$

$$\triangle A = 9(e^{-.4t}) = 9(e^{-.5} - e^{0})$$

$$\approx -3.54 \text{ cm}^{2}$$

For the second question,
$$\Delta A = \int_{5=\pm}^{10=\pm} dA = 9(e^{-.4\pm})|_{5}^{10}$$

$$= 9(e^{-1} - e^{-.5})$$

$$\approx -2.15 \text{ cm}^{2}$$

11/-1 (21) - 5