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22 Find the derivative of f(x) = 2x? at the point x = 3.

23 Find the slope of the curve f(x) = \/x — 1 at the point x = 5.

24 An object moves according to the equation y = 1/(t + 2),¢ > 0. Find the velocity as a
function of ¢.

25 A particle moves according to the equation y = t*. Find the velocity as a function of t.

26 Suppose the population of a town grows according to the equation y = 100t + ¢2. Find
the rate of growth at time ¢t = 100 years.

27 Suppose a company makes a total profit of 1000x — x? dollars on x items. Find the
marginal profit in dollars per item when x = 200, x = 500, and x = 1000,

28 Find the derivative of the function f(x) = |x + 1].

29 Find the derivative of the function f(x) = |x3|.

30 Find the slope of the parabola y = ax* + bx + ¢ where a, b, ¢ are constants.

2.2 DIFFERENTIALS AND TANGENT LINES

Suppose we are given a curve y = f(x) and at a point (a, b) on the curve the slope
['(a) is defined. Then the tangent line to the curve at the point (g, b), illustrated in
Figure 2.2.1, is defined to be the straight line which passes through the point (a, b)
and has the same slope as the curve at x = a. Thus the tangent line is given by the
equation

Ix) = b =f'(a)(x — a),
or I(x) =f"(a)(x — a) + b.

I(x)
{a, b)

y
7 (a, b) 10

Figure 2.2.1 Tangent lines.

EXAMPLE 1 For the curve y = x>, find the tangent lines at the points (0, 0), (1, 1),
and (—3%, —1) (Figure 2.2.2).

The slope is given by f’(x) = 3x2. At x = 0, f(0) = 3+0? = 0. The tangent
line has the equation

y=0x—-0)+0, or y=0.
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Ln

_ 3 |
Y=irty y=3x-2

Figure 2.2.2

At x =1, f'(1) = 3, whence the tangent line is
y=3x-1)+1, or y=3x-—2
Atx = =%, f'(=% = 3+(—%)* = 2, so the tangent line is
y=2x— (=) + (-8, or y=ix+1i
Given a curve y = f(x), suppose that x starts out with the value a and then

changes by an infinitesimal amount Ax. What happens to y? Along the curve, y will
change by the amount

fla + Ax) — f(a) = Ay.
But along the tangent line y will change by the amount

lla + Ax)y — lla) = [f'(@)(@a + Ax — a) + b] — [f"(a)(a — a) + b]
= {"(a) Ax.

When x changes from a to a + Ax, we see that:

change in y along curve = f(a + Ax) — f{a),
change in y along tangent line = f’(a) Ax.

In the last section we introduced the dependent variable Ay, the increment
of y, with the equation

Ay = f(x + Ax) — f(x).

Ay is equal to the change in y along the curve as x changes to x + Ax.
The following theorem gives a simple but useful formula for the increment Ay,

INCREMENT THEOREM

Let y = f(x). Suppose f'(x) exists at a certain point x, and Ax is infinitesimal.
Then Ay is infinitesimal, and
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Ay = f'(x) Ax + s Ax

for some infinitesimal &, which depends on x and Ax.

PROOF
Case 1 Ax = 0. In this case, Ay = f'(x) Ax = 0, and we put ¢ = Q.
Case 2 Ax # 0. Then

Ax ~ [(x);

Ay
X
so for some infinitesimal ¢,

Ay _ .,
-A—x—f(x)+a.

Multiplying both sides by Ax,
Ay = f'(x) Ax + ¢ Ax.

EXAMPLE 2 Let y = x3, so that y' = 3x2. According to the Increment Theorem,
Ay = 3x? Ax + e Ax
for some infinitesimal ¢. Find ¢ in terms of x and Ax when Ax # 0. We have
Ay = 3x? Ax + e Ax,
Ay

7 = 3x2

Ax x" + e,
Ay

g =— — 3x2,
Ax 3x

We must still eliminate Ay. From Example 1 in Section 2.1,
Ay = (x + Ax)® — x3,

A
3y 3xAx 4 (Ax)>.
Ax

Substituting, g = (3x? + 3x Ax + (Ax)?) — 3x2%.
Since 3x? cancels,

g = 3x Ax + (Ax)2

We shall now introduce a new dependent variable dy, called the differential
of y, with the equation

dy = f'(x) Ax.

dy is equal to the change in y along the tangent line as x changes to x + Ax. In Figure
2.2.3 we see dy and Ay under the microscope.
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Ay = change in y along curve
dy = change in y along tangent line

Figure 2.2.3

To keep our notation uniform we also introduce the symbol dx as another
name for Ax. For an independent variable x, Ax and dx are the same, but for a
dependent variable y, Ay and dy are different.

DEFINITION

Suppose y depends on x,y = f(x).

(i) The differential of x is the independent variable dx = Ax.
(i) The differential of y is the dependent variable dy given by

dy = f'(x)dx.

When dx # 0, the equation above may be rewritten as

dy

=0
Compare this equation with

Ay

v (%)

The quotient dy/dx is a very convenient alternative symbol for the derivative f'(x).
In fact we shall write the derivative in the form dy/dx most of the time.

The differential dy depends on two independent variables x and dx. In
functional notation,

dy = df (x, dx)
where df'is the real function of two variables defined by

Af (x, dx) = f'(x) dx.
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When dx is substituted for Ax and dy for f'(x) dx, the Increment Theorem takes the
short form

Ay = dy + gdx.

The Increment Theorem can be explained graphically using an infinitesimal micro-
scope. Under an infinitesimal microscope, a line of length Ax is magnified to a line
of unit length, but a line of length ¢ Ax is only magnified to an infinitesimal length e.
Thus the Increment Theorem shows that when f'(x) exists:

(1) The differential dy and the increment Ay = dy + ¢dx are so close to
each other that they cannot be distinguished under an infinitesimal
microscope.

(2) The curve y = f(x) and the tangent line at (x, y) are so close to each
other that they cannot be distinguished under an infinitesimal micro-
scope; both look like a straight line of slope f'(x).

Figure 2.2.3 is not really accurate. The curvature had to be exaggerated
in order to distinguish the curve and tangent line under the microscope. To give an
accurate picture, we need a more complicated figure like Figure 2.2.4, which has a
second infinitesimal microscope trained on the point (a + Ax, b + Ay) in the field
of view of the original microscope. This second microscope magnifies ¢dx to a
unit length and magnifies Ax to an infinite length.

(a+Ax,b+Ay)

(a+Ax, b+Ay)

Figure 2.2.4

57
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EXAMPLE 3 Whenever a derivative f'(x) is known, we can find the differential
dy at once by simply multiplying the derivative by dx, using the formula
dy = f'(x) dx. The examples in the last section give the following differentials.

(a) y = x3 dy = 3x?dx.
(b) y=1x dy = Ec: where x > 0.
2/ x
() y = 1/x, dy = —dx/x* when x # 0.
dx when x > 0,

(d) y = |x, dy ={ —dx when x < 0,

undefined when x = 0.
(e) y=bt — 16¢2, dy=(b— 32)dt

The differential notation may also be used when we are given a system of
formulas in which two or more dependent variables depend on an independent
variable. For example if y and z are functions of x,

y=Jx), z=gx),
then Ay, Az, dy, dz are determined by

Ay = flx + Ax) — f(x), Az = g(x + Ax) — g(x),
dy = f'(x)dx, dz = g'(x) dx.

EXAMPLE 4 Given y = 4x,z = x?, with x as the independent variable, then
Ay =3(x + Ax) —ix = L Ax,
Az = 3x? Ax + 3x(Ax)? + (Ax)?,
dy =31dx, dz=3x%dx.
The meaning of the symbols for increment and differential in this example

will be different if we take y as the independent variable. Then x and z are
functions of y.

x = 2y, z = 8y’

Now Ay = dy is just an independent variable, while

I

Ax =2y + Ay) — 2y = 2 Ay,
Az = B(y + Ay)® — 8)3
= 8[3y% Ay + 3y(Ay)* + (Ay)*]
= 24y% Ay + 24y(Ay)? + 8(Ay)°.
Moreover, dx =2dy, dz =24y dy.

We may also apply the differential notation to terms. If 7(x) is a term with the
variable x, then 7(x) determines a function f,

(%) = f(x).
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and the differential d(z(x)) has the meaning

d(t(x)) = f'(x) dx.

EXAMPLE 5
(a) d(x3) = 3x? dx.

(b) a5 = 2_‘1"\/_; x>0,

d
© d(1/x) = —x—f, x # 0.
dx when x > 0,
(d) d(|x) =< —dx when x < 0,

undefined when x = 0.
(¢) Letu = btand w = —16t% Then
u+w=bt — 162, du + w) = (b — 32t)dt.

PROBLEMS FOR SECTION 2.2

In Problems 1-8, express Ay and dy as functions of x and Ax, and for Ax infinitesimal find an
infinitesimal & such that Ay = dy + ¢ Ax.

1 y=x? 2 y = —5x?

3 y=2/x 4 y=x*

5 y=1/x 6 y=x?

7 y=x—1/x 8 y = dx + x°

9 If y = 2x? and z = x?, find Ay, Az, dy, and dz.

10 Ify = 1/(x + 1) and z = 1/(x + 2), find Ay, Az, dy, and dz.
11 Find d(2x + 1) 12 Find d(x? — 3x)
13 Find d(,/x + 1) 14 Find d(,/2x + 1)
15 Find d(ax + b) 16 Find d(ax?)
17 Find d3 + 2/x) 18 Find d(x,/x)
19 Find d(1/,/x) 20 Find d(x* — x?)
21 Let y = \/x,z = 3x. Find d(y + 2) and d(y/z).
22 Let y = x~ ! and z = x3. Find d(y + z) and d(yz).

In Problems 23-30 below, find the equation of the line tangent to the given curve at the given
point.

23 y=x% (2,9 24 y=2x?; (—12)

25 y=—x2; (0,0) 26 y=+/x (L1
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27 y=3x—4 (1,-1) 28 y=Jt—1; (52

29 y=x* (=2,16) 30 y=x3—x; (0,0

31 Find the equation of the line tangent to the parabola y = x? at the point (x,, x2).

32 Find all points P(x,, x3) on the parabola y = x? such that the tangent line at P passes

through the point (0, —4).

33 Prove that the line tangent to the parabola y = x* at P(x,,x5) does not meet the
parabola at any point except P.

DERIVATIVES OF RATIONAL FUNCTIONS
A term of the form
a1X + Qg

where a,, a, are real numbers, is called a linear term in x; if a; # 0, it is also called
polynomial of degree one in x. A term of the form

a)x* + ax +ag, a; #0
is called a polynomial of degree two in x, and, in general, a term of the form
ax" + a,_ X"+ 4 ax + ag, a, # 0

is called a polynomial of degree n in x.

A rational term in x is any term which is built up from the variable x and real
numbers using the operations of addition, multiplication, subtraction, and division.
For example every polynomial is a rational term and so are the terms

(3x* — 5)(x +2)° (1 4 1/x)°
5x — 11 ’ 312 - x)

A linear function, polynomial function, or rational function is a function which
is given by a linear term, polynomial, or rational term, respectively. In this section we
shall establish a set of rules which enable us to quickly differentiate any rational
function. The rules will also be useful later on in differentiating other functions.

THEOREM 1

The derivative of a linear function is equal to the coefficient of x. That is,

d(bx + ¢)

= b, dbx + ¢) = bdx.
dx

PROOF Let y = bx + ¢, and let Ax # 0 be infinitesimal. Then

y+Ay=b(X +AX) + ¢,
Ay = (b(x + Ax) + ¢) — (bx + ¢) = b Ax,

Ay bAx b
Ax T Ax
dv

Therefore Y — sub) = b.

dx
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Multiplying through by dx, we obtain at once

dy = bdx.

If in Theorem 1 we put b = 1, ¢ = 0, we see that the derivative of the identity
function f(x) = xis f'(x) = 1; i.e,

dx
—— = = d .
ix 1, dx X

On the other hand, if we put b = 0 in Theorem 1 then the term bx + ¢ is just
the constant ¢, and we find that the derivative of the constant function f(x) = ¢ is
f(x) =0;ie,

dc
— =0 de = 0.
dx ’ ¢

THEOREM 2 (Sum Rule)

Suppose u and v depend on the independent variable x. Then for any value of x
where du/dx and dv/dx exist,

du +v) du dv

I N A du + v) = du + do.

In other words, the derivative of the sum is the sum of the derivatives.

PROOF Let y = u + v, and let Ax # 0 be infinitesimal. Then
y+ Ay = (u + Au) + (v 4+ Av),
Ay =[(u + Au) + (v + Av)] — [u + v] = Au + Ao,
H _Aut+ Av & + &
Ax Ax Ax  Ax’
Taking standard parts,

Y TP [P Lol Y
Axl ~ C\Aax T Aax] T Ylax \ax)
dy du dv

Thus E ——(z; +¢§

By using the Sum Rule n — 1 times, we see that
M=£++ u”, or d(u1+...+un):dul+...+dun.

dx dx dx

THEOREM 3 (Constant Rule)

Suppose u depends on x, and ¢ is a real number. Then for any value of x where
du/dx exists,

d(cu)  du _
ke CE’ d(cu) = ¢ du.
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PROOF Let y = cu, and let Ax # 0 be infinitesimal. Then
Yy + Ay = c(u + Au),
Ay =clu + Au) — cu = c Au,
Ay ¢ Au Au
Ax  Ax  CAx

‘Taking standard parts,

tAy = st Au —cstéﬂ
SAx =3 ch_ Ax

h dy cdu
n = =c—.
whence Ix I

The Constant Rule shows that in computing derivatives, a constant factor
may be moved “outside” the derivative. It can only be used when ¢ is a constant. For

products of two functions of x, we have:

THEOREM 4 (Product Rule)

Suppose u and v depend on x. Then for any value of x where dufdx and dv/dx
exist,

d(uu) dv du
+ v

dx d\ e d(uv) = udv + vdu.

PROOF Let y = uv, and let Ax # 0 be infinitesimal.

y+ Ay =+ Au)(v + Av),
Ay =+ Auw)(v + At) — uv = uAv + v Au + Au Ao,

Ay  ulv +vAu + Au v Av Au Y
= =7 1—

Ax Ax B qu v Ax
Au is infinitesimal by the Increment Theorem, whence
Ay Av Au Av
Ax) = St IE + UE + Au E
t + vest Au + OQ-st av
=Yss
l v Ax Ax|
dy dv du
So d_,\ = lld—x + Ua.

The Constant Rule is really the special case of the Product Rule where v is
a constant function of x, v = ¢. To check this we let v be the constant ¢ and see what

the Product Rule gives us:

d(u-c) dc @ 0 ﬂ _du
dx dY + ‘ax ¢ + “ax T Cdx

This is the Constant Rule.
The Product Rule can also be used to find the derivative of a power of u.
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THEOREM 5 (Power Rule)

Let u depend on x and let n be a positive integer. For any value of x where
dufdx exists,
du

d(un) _ n—1 ny __ n—1
i nu = dw") = nu"~ " du.

PROOF To see what is going on we first prove the Power Ruleforn = 1,2,3, 4.
n=1: Wehaveu" = uand u® = 1, whence

dw”) du a0 du

dx  dx dx’
n =2: We use the Product Rule,
dw?  du-u) du du , du
dx  dx _uﬁ+u?x—2.u.dx'

n=23: Wewrite 4> = u+u? use the Product Rule again, and then use the
result for n = 2.

d(u®) _ d(u + u?) _ ud(uz) L du

dx dx dx dx
du ,du ,du

=U- 2u— + u dx = 3u a

n = 4: Using the Product Rule and then the result for n = 3,

dw®)  du-v’) ud(us) N u3@
dx ~  dx = dx dx

du du du

— .32 K B PYE S

u+3du . +u i u .

We can continue this process indefinitely and prove the theorem for every
positive integer n. To see this, assume that we have proved the theorem for m.
That is, assume that

d(u™)

du
1 — m—l_'
M dx i dx

We then show that it is also true for m + 1. Using the Product Rule and the
Equation 1,

n

dwny _dew) _ dw) o du

dx  dx dx dx
=u mu"‘”@ + u"'@ =(m + Du™
B dx ax dx’
dw™* ) du
Th = Dy
us dx (m + Du dx

This shows that the theorem holds for m + 1.
We have shown the theorem is true for 1, 2, 3, 4. Set m = 4; then the theorem
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holds for m + 1 = 5. Set m = 5; then it holds for m + 1 = 6. And so on.
Hence the theorem is true for all positive integers n.

In the proof of the Power Rule, we used the following principle:

PRINCIPLE OF INDUCTION

Suppose a statement P(n) about an arbitrary integer n is true when n = 1.
Suppose further that for any positive integer m such that P(m) is true, P(m + 1)
is also true. Then the statement P(n) is true of every positive integer n,

In the previous proof, P(n) was the Power Rule,

d(u")_ "_1@
dx dx’

The Principle of Induction can be made plausible in the following way. Let
a positive integer n be given. Set m = 1;since P(1) is true, P(2) is true. Now set m = 2;
since P(2) is true, P(3) is true. We continue reasoning in this way for n steps and con-
clude that P(n) is true.

The Power Rule also holds for n = 0 because when v # 0,u° =1 and
dljdx = Q.

Using the Sum, Constant, and Power rules, we can compute the derivative
of a polynomial function very easily. We have

d(X") — \,n—l
dx . ’
dlex") ey
T = e
and thus
dla,x" + a,_,x""" + 4+ a;x + ag) et ,
dx =yt hx +a,_(n—=Dx""" 4+ -+ ay.
1.5
EXAMPLE 1 A=3x7) = —3.5x% = — 15x%,
dx
6x* —2x3 + x — 1
EXAMPLE 2 d(6x XX ) = 24x3 — 6x% 4+ 1.

dx

Two useful facts can be stated as corollaries.
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COROLLARY 1

The derivative of a polynomial of degree n > O is a polynomial of degree n — 1.
(A nonzero constant is counted as a polynomial of degree zero.)

COROLLARY 2
du +c) du

If u depends on x, then o o

whenever du/dx exists. That is, adding a constant to a function does not change
its derivative.

In Figure 2.3.1 we see that the effect of adding a constant is to move the curve
up or down the y-axis without changing the slope.
For the last two rules in this section we need the formula for the derivative

of 1/v.
u
|
| u+c
|
N\ I
]
1
u
!
N\
x
du _ d(u+tc)
Figure 2.3.1 dx dx
LEMMA

Suppose v depends on x. Then for any value of x where v # 0 and dv/dx exists,

d(1/v) _ 1 dv d(l) _ —v—lzdl’-

dx v? dx’ v

PROOF Let y = 1/v and let Ax # 0 be infinitesimal.

v+ Ay =

v+ AV
1 1

Ay = v+ Av v
Ay  1f(v + Av) — 1/jv
Ax Ax

v— (v + Av)

- Axv(v + Av)
1 Av

T (v + Av) Ax
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Taking standard parts,

st ) —g oL A
Ax| v(v + Av) Ax

Y PR P
- u(v+Av)SZ;

1 Av
= —Fst Kx- .
Therefore Q = —i éﬁ
dx v? dx

THEOREM 6 (Quotient Rule)

Suppose u, v depend on x. Then for any value of x where dujdx, dv/dx exist and
v #0,

d(ufv) vdufdx — udv/dx u vdu — udo
= ) s A=
dx v v v

PROOF We combine the Product Rule and the formula for d(1/v). Let y = u/v. We
write y in the form

1 1
Then dy = d(—u) = du + ud(l)
v v v

THEOREM 7 (Power Rule for Negative Exponents)

Suppose u depends on x and n is a negative integer. Then for any value of x
where duf/dx exists and u # 0, d(u")/dx exists and

d(u™ _ du

T nu"'la, A"y = nu"~ ! du.
PROOF Since n is negative, n = —m where m is positive. Let y = v = u~™ Then
y = 1/u™. By the Lemma and the Power Rule,
dy 1 du™)
dx — (u™? dx
|

m—1""

dx

= —u—ﬁ,-mu
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du
_ (_ —2m, m—1
(—mu™*"u o
du du
— ( _ —m—1 — n—1
= (—mu i nu I

The Quotient Rule together with the Constant, Sum, Product, and Power
Rules make it easy to differentiate any rational function.

EXAMPLE 3 Find dy when

1

y=x2—3x+1'

Introduce the new variable u with the equation
u=x%-3x+1.

Then y = 1/u, and du = (2x — 3)dx, so

1 —2x-3)
dy= —S5du=-—S—"—""_dx
Y w2 (x2—3x+1)2d/\
4 2 3
EXAMPLE 4 Lety = (x——) and find dy.
Sx —1
Let u = (x*—2)3, v=>5x — 1.
Th _u P du — udv
en y= U, y = 02
Also, du=3+(x* — 22 dx3dx = 12(x* — 2)? - x3 dx,
dv = 5dx.
_(5x — DI2(x* — 2’x dx — (x* — 2)*5dx
Therefore dy = Gx 1)
B (x* — 2)[12(5x — Dx3 — 5(x* — 2)] ix
h (5x — 1)? '
EXAMPLE 5 Lety = 1/x3 + 3/x% + 4/x + 5.
3 6 4
dy=|--5 ——5— —\d
Then y Pl x2) X
EXAMPLE § Find dy where
2
y= (x2 Tx 7 1) '
This problem can be worked by means of a double substitution. Let

1
u=x%+x, v=;+1.

67
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Then y = v2

We find dy, dv, and du,
dy = 2vdv,
dv = —u~?du,
du = (2x + 1)dx.
Substituting, we get dy in terms of x and dx,
dy = 20(—u~"?du)
= —2ou"2(2x + 1)dx

-2 u"?(2x + 1)dx

1
—+1
u

_2(x2 g + 1)(3{2 + x)7%2x + 1)dx.

EXAMPLE 7 Assume that ¥ and v depend on x. Given y = (uv)”2, find dy/dx in
terms of du/dx and dv/dx.

Let s = uv, whence y = s~2, We have

dy = —2s 3 ds,

ds = udv + vdu.
Substituting, dy = —2(uv) (udv + vdu),

dy _af dv du
and T — 2(uv) (ME + vdx)'

The six rules for differentiation which we have proved in this section are so
useful that they should be memorized. We list them all together.

Table 2.3.1 Rules for Differentiation

ay Wxra_, d(bx + ¢) = b dx.
dx
du +v) du  dv _
(2) T—E‘Fdx d(u+v)—-du+dv
d(cu)  du _
(3) e ca. d(cu) = ¢ du.
d(uv) dv du
4) pak ua + va. duv) = udv + vdu.
(5 dw) = nu”_‘@. dw") = nu" ' du (nis any integer).
dx dx
d(ufv)  vdujdx — udv/dx vdu — udv

dx v? dufo) = v?
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An easy way to remember the way the signs are in the Quotient Rule 6 is to
put u = 1 and use the Power Rule S5 withn = —1,
—1dv

d1fo) = d™) = —1-0 2 do = .

PROBLEMS FOR SECTION 2.3

In Problems 1-42 below, find the derivative.

1 SOy =3x*+5x— 4 2 s=43+42 +1t
3 y=(x+ 8> 4 z=2+ 3x)*
5 J&y=@- 6 g(x) = 32 — 5x)°
7 y=(x2+5)>3 8 u=(6+ 2x%H?3
9 u=(6—2x?3 10 w=(1+ 4x3)72
11 w=(l—-4x%"? 12 y=1+x"1+x"24 x3
13 fx)=5x+1-1/x) 14 =2+ 3x+ 1)
15 p=42x —x+3)? 16 y=—02x+ 3+ 4x !
1 1
17 Y= 18 L N
-3
19 S= T w1 20 s= (2t + 1}(3t — 2)
21 h(x) = Hx* + 1)(5 — 2x) 22 y=02x3+ 42 —-3x+1)
23 v = (32 + 1)(2t — 4 24 = (=2x+4+3x Yx+1-5x7Y
x+1 2 — 3x
25 y_x—l 26 w—1+2x
x2 -1 x
27 e 28 U= 2
_-DE-2 ot
» R 30 Y= 11
2l —x72
31 )’———3)(,1_4)‘_2 32 y=4x -5
33 y= 6 34 y= 2X(3_\' — 1)(4 - 2X)
35 y = 3(x* + D2x? — 1)(2x + 3) 36 p=(@x + 37 4 (x — 42
_ 1 — (2 -1 -2
37 Z_(2x+1)(x—3) 38 y=x*+1)""3x - 1)
39 y=[2x+ 1)1+ 317! 40 s=[2 + 1P+
2 4
41 y=Qx + P + 1)? 42 y= (x - x—3)

In Problems 43-48, assume u and v depend on x and find dy/dx in terms of du/dx and dv/dx.

43 y=u—v 44 y:uzp
45 y =4du + v? 46 y=1/u + v)
47 y = 1ljup 48 y=(u+ v)2u —v)

49 Find the line tangent to the curve y = 1 + x 4+ x? + x? at the point (1, 4).



