	Continuity 3.4 Monday, October 11, 2010	
	F(x) is continues at C" meaning $x \approx c \Rightarrow f(x) \approx f(c)$ 2)	G. $F(t) = t^2$ is continuous at 5 0 ≠ e ≈ 0 => st((5+e)^2) = (5+0)^2 = 5^2 = f(5)
	Equivalent definitions 1) lim f(x)=f(c)	
	2) $0 \neq e$ but $\approx 0 \Rightarrow$ St(f(c+e))=f(c) 3) $0 \neq \Delta X$ but $\approx 0 \Rightarrow$ st(f(c+ ΔX))=f(c) 4) $0 \neq e \approx 0 \Rightarrow$ f(c+ $e \approx f(c)$	
		$\lim_{x \to \infty} f(x) = ct[(1+c)^2 + 1]/(1+c + 1) = ct (2c+c)^2/c$
	There are 3 ways $f(x)$ can fail to be continuous at c	$Lini 1(x) = st((1+e)^{-1})/(1+e^{-1}) = st(2e+e)^{-}/e$ x->1
	 f(c*) is Undefined DNE Lim f(x) DNE x>c 	=st(2+e)= 2+0 =2 But f(1) = (1 ² -1)/1-1 = 0/0
	3) $\lim_{x\to\infty} f(c)$ x->c	1) $F(x) = (x^2-1)/(x-1)$ 2) $F(x) = 1/(x-3)$
	3) EX $F(x) = X+2 : x \neq 4$ 5 : x = 4	Continues Continuous functions are nice for limits Lim f(x) = f(c) x->c
	Lim f(x) = st(f(4+e)) = st(4+e+2) = 4+0+2 =6 ≠ 5 = f(4) x->4	So which functions are continuous and which x-values?
	Fact: If f'(c) exists, then f is continuous at c. Why? Let $0 \neq \Delta X \approx 0$ By definition St [(f(c+ ΔX)-f(c)]/ $\Delta X = f'(c)$ St(ΔX)st(f(c+ ΔX)-f(c)/ $\Delta X = f'(c)$ st (ΔX)	Lim sin(x) = sin($\pi/3$) = $\sqrt{3}/2$ x-> $\pi/3$ Sine is differentiable at $\pi/3$ (and everywhere else), so sine is continuous at $\pi/3$ (and everywhere else).
	0 0	Lim 1/x-3 DNE
	$St(\Delta X * f(x+\Delta X)-f(c)/\Delta X = 0$	$x \rightarrow 3$ $(1/x-3)^2 = -1/(x-3)^2$ Not
	$St(f(c+\Delta X)-f(c) = 0$ $St(f(c+\Delta X) - St(f(c)) = 0$ $St(f(c)+\Delta X) - f(c) = 0$	$(-1/x^{-3})^{-1/x^{-3}}$ defined at x=3
	$St(f(c)+\Delta X) = f(c)$	x->5
	Lim f(x) = f(c) x->c	(1/x-3)' exists at 5 = x, so 1/x-3 is continuous there
		vX is not continuous at 0 because lim vX DNE
		x->0 v0+e is not defined for 0>e≈0, so st(vx+e) is not defined so lim vX DNE
		x->0
Use If f i	ful rule for limits: is continuous, at L and lim g(x) = L then Lim f(g(x)) = f(lim g(x)) = f(L)	Lim cos(1/lnx) = cos (lim 1/lnx) x->0 x->0
San	ne for x->c+ and x->c-	Cos exists everywhere so Cos is continuous everywhere.
		Assuming lim 1/lnx x->0+
		Exists 1/ln0.01 = -0.217 1/ln0.00001 = 0.108
	One Sided Continuity Continuity on closed intervals	

F is continuous at C is and only if x is infinitely close to C X \approx C=> F(x) \approx f(c) <=> Lim (x->c) f(x) = f(c)	
F is continuous from the right at c <=> lim (x->c)+ f(x) = f(c)	
F is continuous from the left at c <=> c>= x \approx f(x) \approx f(c) <=> lim(x->c)- f(x) = f(c)	
	u <e eapproxu<="" th=""></e>
v(6-3x) is continuous from the left at 2	Check that $st(f(2-e)) = 0$ for all positive infinitesimals e: st(f(2-e)) = st(y(6-2(2-e))) = st(y(6-6+e)) = st(y(e)) = y(st(e))
Why? Let $f(x) = v(6-3x)$. Check that $\lim(x->2)-f(x)=f(2)$ Let epsilon be a positive infinitesimal, then $\lim(x->2)-f(x)=st(f(2-e)) \& f(2) = 0$	$s(v(2^{-e})) - s(v(0^{-s}(2^{-e}))) - s(v(0^{-o+e})) - s(v(e)) - v(s(e))$ = $v(0) = 0$
IF the limit exists	
	5
Continuous From From left right	
ingrit	
F is continuous on {a,b}	
Meaning f is continuous at c for all x in (a,b) and f is continuous from the right at A and f is continuous from the left at B.	
₩ <u>j</u>	
continuous from both sides in the middle	
pencil,marker,pen,ect. From the paper	This is continuous on $\{1,2\}$ because $\lim_{x\to2}(x-22) - f(x) = f(c)$
<i>d</i>	two sided Continuity
Not continuous	Check
T' AB'	If c<2 & 0≠3 =e≈0 then St(f(c+e))=st(\forall (6-3(c+e)) = \forall (st(6-3(c+e)) = \forall 6-3(c+0) = f(c) = \forall (6-3c)
	So $\lim_{x \to c^2} (x - x) = f(c)$
	For all a<2, f(x) is continuous on [a,2]
If g(x) is built from +, *, -, /, e ^x , Inx, sinx, cosx,x ⁿ , ⁿ √(x) then g(x) is continuous on a closed interval from [a,b] if for all c in	
[a,b], g(c) does not involve In(0), In(negative), or ^{even} V(negative).	
⁴√(cos(2x)) is continuous on	[-π/4. π/4]
Watch out for hidden divisions and hidden logarithms. $-\pi/4 \le x \le \pi/4 = -\pi/2 \le 2x \le \pi/2$ Tanz=siny/cosy coty=cosy/ciny seyr=1/cosy cos = 1/ciny v=cos0 we avoid	=>cos2x≥0 d ⁴√(negative)
$Log_{b}a = lna/lnb \qquad x^{y} = e^{(lnx)y}$	
$\begin{array}{c} e.g. 2^{\pi} = e^{(\ln 2)\pi} \\ (-2)^{\pi} = e^{(\ln - 2)\pi} \end{array}$	
$2^{(3/5)} = 5_{1/2} (2^{3/3} - 5_{1/2} (8))$	
$-z \cdot \cdot \cdot - v (-z)^{-} = -v (-\delta)$	
1/5-x is not continuous on [1,5]: x=5: 1/5-5 = 1/0 is undefined and 5 is in [1,5] 1<=5<=5	

1<=5<=5
Ln(x ²⁺¹) is continuous on every [a,b]
Is $\sqrt{5-x^2}$ continuous on [-2,2]? $5-x^2 \ge 0 \le 5 \ge x^2 = \langle x \rangle^2$
2=V(4), so -2≤x≤2 <=> -V4≤x≤V4 => -V5≤x≤V5
Actually, V5-x ² is continuous on the bigger interval [-V5, V5] -V5 V5