MATH 2415 TEST 7

Name:

| Exercise | Point Possible | Score |
| ---: | ---: | :--- |
| 1 | 35 |  |
| 2 | 40 |  |
| 3 | 25 |  |
| Total | 100 |  |

1. [35 points] Consider the vector field $\langle P, Q\rangle=\langle y, x-y\rangle$. Find a solution $f$ to $\vec{\nabla} f=\langle P, Q\rangle$, if one exists. If there is no solution, then explain why not.
2. [40 points] A thin wire is bent into the shape of a semicircle $x^{2}+y^{2}=4, x \geq 0$. If the linear density is a constant $k$, find the $x$-coordinate of the center of mass of the wire.
3. [25 points] Consider the following parametric curve $C$.

$$
\begin{gathered}
x(t)=\cos (\pi t) \\
y(t)=t-t^{3} \\
-1 \leq t \leq 1 .
\end{gathered}
$$

The curve $C$ is a loop (see next page) and it parametrizes the positively oriented boundary of the region $D$ it encloses. Write a single integral equal to the area of $D$. You do not need to evaluate the integral, but you do need to eliminate all variables except $t$, so that a computer could evaulate the integral. (For example, if you believe $\int_{C} y^{4} d x$ equals the area of D , then your answer should be $\int_{-1}^{1}-\pi\left(t-t^{3}\right)^{4} \sin (\pi t) d t$.)

