MATH 2415 Final Exam Name:
Solve five of the six test problems. To indicate which you want graded, circle five of these numbers: $1 \begin{array}{llllll}1 & 2 & 4 & 5 & 6 .\end{array}$

1. Let H and K be the planes $x+y+z=2$ and $5 x=y+z$. Find a vector \vec{w} that is parallel to both planes.
2. Consider the helix $\vec{r}(t)=\langle\cos (4 t), 3 t, \sin (4 t)\rangle$. Find the unit normal vector at time $t=\pi / 12$.
3. Suppose that $z=f(x, y), x=g(t), y=h(t)$, and, at time $t=0$, we have $x=0, y=0, \frac{d x}{d t}=1$, $\frac{d y}{d t}=2$, and $\frac{d z}{d t}=3$, and, at position $(x, y)=(0,0)$, we have $\frac{\partial f}{\partial x}=4$. At position $(x, y)=(0,0)$, what is $\frac{\partial f}{\partial y}$?
4. Find the center of mass of $\{(x, y): 0 \leq r \leq 1$ and $\pi / 4 \leq \theta \leq \pi / 3\}$. Assume density $d m / d A=1$.
5. What fraction of the night sky can be seen from Laredo? To answer this question, find $A /(4 \pi)$ where 4π is the surface area of the unit sphere and A is the surface area of

$$
S=\left\{(x, y, z): \rho=1 \text { and } 0 \leq \phi \leq 152.5^{\circ}\right\} .
$$

6. What is the flux of $\vec{F}=\left\langle x^{2}, y^{2}, x y z\right\rangle$ through the disk

$$
S=\left\{(x, y, z): x=1 \text { and }(y-1)^{2}+(z-1)^{2} \leq 1^{2}\right\} ?
$$

Assume orientation $\vec{n}=\langle 1,0,0\rangle$.

