MATH 2415 Test 3 Name:

1. Suppose that temperature as a function of position (x, y, z) in a tank of fluid is modeled by $T(x, y, z)=3 x^{-9} y^{4} z^{-2}$.
(i) What is the temperature T_{0} at $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1)$?
(ii) At $(x, y, z)=(1,1,1)$, in what direction is the temperature increasing fastest?
(iii) Give an equation for the plane tangent to $T(x, y, z)=T_{0}$ at $(1,1,1)$.
(iv) If a temperature probe is moving through $(1,1,1)$ with velocity $\langle 9,4,-5\rangle$, then what is the rate of change of its temperature?
2. $f(x, y)=9 x^{3}+6 x y+5 y^{2}+17$ has two critical points.
(i) Find formulas for f_{x} and f_{y}.
(ii) Find formulas for $f_{x x}, f_{x y}$, and $f_{y y}$.
(iii) Classify the critical point $(0,0)$ as a saddle point, location of a local maximum, or location of a local minimum.
(iv) Find the other critical point and classify it.
