MATH 2415 Test 3 Name:

1. Suppose that temperature as a function of position (x, y, z) in a tank of fluid is modeled by $T(x, y, z) = 3x^{-9}y^4z^{-2}$.

- (i) What is the temperature T_0 at $(x_0, y_0, z_0) = (1, 1, 1)$?
- (ii) At (x, y, z) = (1, 1, 1), in what direction is the temperature increasing fastest?
- (iii) Give an equation for the plane tangent to $T(x, y, z) = T_0$ at (1, 1, 1).
- (iv) If a temperature probe is moving through (1, 1, 1) with velocity $\langle 9, 4, -5 \rangle$, then what is the rate of change of its temperature?

- **2.** $f(x,y) = 9x^3 + 6xy + 5y^2 + 17$ has two critical points.

 - (i) Find formulas for f_x and f_y.
 (ii) Find formulas for f_{xx}, f_{xy}, and f_{yy}.
 (iii) Classify the critical point (0,0) as a saddle point, location of a local maximum, or location of a local minimum.
 - (iv) Find the other critical point and classify it.