MATH 2415 Test 5 Name:
Solve two of the three test problems. To indicate which you want graded, circle two of these numbers: 123.

1. Find the mass of $\{(x, y, z): 0 \leq \rho \leq 9$ and $0 \leq \phi \leq \pi / 5\}$ assuming density $d m / d V=z$.
2. Let C be the curve $\langle x, y\rangle=\langle 9 \cos t, 9 \sin t\rangle$ for $t \in[0,2 \pi]$. Let $\langle P, Q\rangle=\left\langle x^{2} y^{4}, x^{6} y^{6}\right\rangle$. Use Green's Theorem to express $\int_{C}(P d x+Q d y)$ as an iterated double integral ($\left.\int_{\square}^{\square} \int_{\square}^{\square} \square d \square\right)$. Only two variables should appear in your final answer: x and y if you choose Cartesian coordinates; r and θ if you choose polar coordinates. (You do not need to evaluate your double integral.)
3. Let D be the half plane $\{(x, y): 3 x+8 y+1>0\}$. (Note that D contains the point $(0,0)$.) Let

$$
\vec{F}=\left\langle(8 y+1)(3 x+8 y+1)^{-2},-8 x(3 x+8 y+1)^{-2}\right\rangle .
$$

Find g such that $\vec{F}=\nabla g$ on D. (You don't need to check that curl $\vec{F}=0$; trust me that it does.)

