MATH 4360 MIDTERM II

INSTRUCTOR: DAVID MILOVICH

Name:

Exercise	Point Possible	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

1. [25 points] Let $X=\mathbb{R}$ and let $Y=[0,2)\cup(3,5]$ with the subspace topology. Let $A=[1,2)\cup(4,5]$.

- (a) What is the closure of A in X?
- (b) What is the interior of A in X?
- (c) What is the closure of A in Y?
- (d) What is the interior of A in Y?

2. [25 points]

- (a) Giving the set \mathbb{Q} of all rational numbers the subspace topology inherited from \mathbb{R} , is \mathbb{Q} a Hausdorff (i.e., T_2) space?
- (b) Give an example of a different topology on $\mathbb Q$ that is finer than the subspace topology inherited from $\mathbb R$.

3. [25 points] Let $X = \{1, 2, 3\}$ with the topology generated by the base $\mathcal{B}_X = \{\{1, 2\}, \{3\}\}$. Let $Y = \{4, 5, 6, 7\}$ with the topology generated by the base $\mathcal{B}_Y = \{\{4\}, \{5\}, \{5, 6, 7\}\}$. Give an example of a continuous injection (*i.e.*, one-to-one) from X to Y.

4. [25 points] Consider $X = \prod_{n \in \mathbb{Z}_+} [0,1]$ (with the product topology). Also consider the sequence $(x_n)_{n \in \mathbb{Z}_+}$ in X where $x_n(m) = 1$ if m = n and $x_n(m) = 1/m$ if $m \neq n$. E.g., $x_1 = (1, 1/2, 1/3, 1/4, 1/5, \ldots), \ x_2 = (1, 1, 1/3, 1/4, 1/5, \ldots), \ x_3 = (1, 1/2, 1, 1/4, 1/5, \ldots), \ x_4 = (1, 1/2, 1/3, 1, 1/5, \ldots), \ldots$

- (a) What is the unique element of X that $(x_n)_{n\in\mathbb{Z}_+}$ converges to?
- (b) Prove that $(x_n)_{n\in\mathbb{Z}_+}$ does not converge to any point in X with the uniform topology induced by the standard metric d(x,y) = |x-y| on [0,1].

5. [25 Extra Credit points] Prove that $X = \prod_{n \in \mathbb{Z}_+} [0,1]$ with the uniform topology is not first countable.