MATH 5365 MIDTERM

INSTRUCTOR:		NATE OF	TOTE
TINS LIBERT LUBY	1) A V II)	- WIII (C) Y	/ I (. H

Name:

- 1. Let $X = \mathbb{R}$ and let $Y = [1,3) \cup (4,6]$ with the subspace topology. Let $A = [2,3) \cup (5,6]$.
- (a) What is the closure of A in X?
- (b) What is the interior of A in X?
- (c) What is the closure of A in Y?
- (d) What is the interior of A in Y?

(No proofs required.)

- **2.** Let $X = \{1, 2, 3\}$ with the topology generated by the base $\mathcal{B}_X = \{\{1, 2\}, \{3\}\}$. Let $Y = \{4, 5, 6, 7\}$ with the topology generated by the base $\mathcal{B}_Y = \{\{4\}, \{5\}, \{5, 6, 7\}\}$. Y has four 3-point subspaces, namely, the sets $\{4, 5, 6\}, \{4, 5, 7\}, \{4, 6, 7\}$, and $\{5, 6, 7\}$ with the corresponding subspace topologies.
 - (a) Is there a continuous bijection from X to any of these subspaces? If yes, then to which ones?
- (b) Is there a homeomorphism from X to any of these subspaces? If yes, then to which ones? (No proofs required.)

3. Let (X,d) be a metric space and let \mathcal{T} be the topology induced by d. Let \mathcal{U} be the corresponding product topology on $X\times X$. Prove that d is a continuous function from $(X\times X,\ \mathcal{U})$ to \mathbb{R} . You may assume the fact that if $d(y,z)<\varepsilon$, then $|d(x,y)-d(x,z)|<\varepsilon$. (You can also prove this fact for extra credit.)