SOME BASIC ANALYSIS THEOREMS FROM A SEQUENTIAL
VIEWPOINT

DAVID MILOVICH

For this document, we fix an ambient metric space, the complex plane C with its standard

metric d(z,w) = |z — w|. All points are assumed to in C; all sets of points are assumed to
be subsets of C.

1. SEQUENCES AND CONVERGENCE.

Definition 1.1.

(1) A subsequence of a sequence (z,),, is a sequence of the form (z,,);—, where
Ng<mng <mng < ---.

(2) A tail of a sequence (z),-, is a subsequence of the form (zy1n), ., (which may also
be denoted by (z,)," v )-

(3) A sequence (z,),-, is e-stable if d(z,, z,) < € for all m,n > 0.

(4) A sequence (z,),, is e-close to a point L if d(z,,L) < € for all n > 0.

(5) A sequence (z,),., is Cauchy if, for every ¢ > 0, it has an e-stable tail.

(6) A sequence (z,),-, converges to L, which we often abbreviate as z, — L, if for
every € > 0, (2,),_, has a tail that is e-close to L.

Theorem 1.2. A sequence is Cauchy if and only if it converges to some point.

Proof. 1f z, — L, then, for every € > 0, (2,),_, has a tail that is -close to L. Such a tail is
e-stable because d(z,, z,) < d(zm, L) + d(L, z,) for all m,n. Thus, convergence implies the
Cauchy property.

To prove the converse, suppose that (zn)f;o is Cauchy. Suppose we can prove that
Re(z,) — A and Im(z,) — Bi for some reals A and B. Then, for every ¢ > 0, (Re(z,)),—,
and (Im(zy,)),~, will have tails (Re(z)),—,, and (Im(z)),—, that are 5-close to A and B,
respectively. Since |z —w| < |Re(z — w)|+ |Im(z — w)| = |Re(z) — Re(w)| + [Im(2) — Im(w)|
for all points z and w, it follows that, taking P to be larger of M and N, the tail (2;),p is
e-close to A + Bi.

Therefore, setting z, = Re(z,) and y, = Im(z,), it is sufficient to prove that the sequences
(z5,)7— and (yy),—, converge to reals. Since |Re(z) — Re(w)| = |[Re(z —w)| < |z — w| for all
points z and w the sequence ()., is Cauchy. Likwise, (y,),_, is Cauchy. By symmetry,
it is enough to prove that the Cauchy sequence of reals (z,) -, converges to a real.

For each of £ =0,1,2,3,..., let 2, be x, rounded down to the nearest integer multiple
of 107%. If (:cn,k)zozo is eventually constant, then let u; denote its final value. For each k > 1
for which wy is defined, let d; be the kth digit after the decimal place of uy. First, suppose
we are in the case where uy, is defined for all k. Set u = ug.didads . ... Given £ > 0, choose
k > 0 such that 107 < e. Choose N large enough that we have z,,; = u; for all n > N

and j =0,1,...,k. Therefore, uy.dids...dy < x, < ug.dids...d +107F for all n > N, and
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ug.dydy ... dy, < u < ug.didy...dp+107%. Hence, |z, — u| < 107% < ¢ for all n > N. Thus,
for every € > 0, (z,),_, is e-close to u on a tail. Thus, z,, — u.

Now suppose we are in the other case, that wu; is not defined for all k. Let k be least such
that uy is undefined. Suppose we are in the subcase where £ > 0. Then

Uo.dldgdg . dk:—l <z, < UO.dldng R, dk:—l + 10k_1
is eventually always true, but there are at least two values a in {0,...9} such that
ug.didady . .. dp_1a < x, < ug.didads . ..dp_1a + 107]C

for infinitely many n. Let v = wug.dydads . .. dp_1c where c is the larger of two values for a.
There are then infinitely many n such that x,, < v and infinitely many n such that v < z,,.
Given € > 0, choose m > 0 such that m > k and 107 < e. Choose M large enough that we
have z,, ; = u; for all n > M and j = 0,1,...,k — 1, and such that (%);O:M is 10~™-stable.
Choose r,s > M such that z, < v < z,. For any n > M, we have

T =Tp+ Ty — 2, <zp+ |x, — 2] <2, + 107" <04+ 107" < v +¢;
Ty =Xs+ Xy — Ts > Ts— |Tp — 2] >, — 107" >0 —107" > v — €.

Thus, (2,),,, is e-close to v. Thus, for any € > 0, (7,,),-, has a tail e-close to v. Thus,
Ty —> V.

The last subcase, where k£ = 0, is handled like the previous subcase. There are at least
two adjacent integer values a such that z,, < a for infinitely many n and a < x, < a + 1
for infinitely many n. Letting ¢ denote the greater of two such values, we have x,, < ¢ for
infinitely many n and ¢ < z,, for infinitely many n. Given € > 0, choose m > 0 such that
107™ < ¢ and M large enough that (xp) _ s is 107™-stable. Argulng just as in the previous

paragraph, we find that (ZL‘p) oy s e- Close to ¢q. Thus, x, — q. U

Theorem 1.3 (Limit Laws).

(1) If a,, —» L and b, - M, then a, + b, — L+ M and a,b, — LM.
(2) If a, — L and b, — M;ﬁ 0, then some tail of (a,/by),—, converges to L/M.

2. SETS OF POINTS AND CONVERGENCE.

Definition 2.1.

(1) A set (of points) S is closed if, for every convergent sequence z, — L, if every z, is
in S, then L is in S too.

(2) A set S is complete if, for every Cauchy sequence (z,)""
(Zn) oo _ converges to some Lin S.

(3) A set is compact if, for every sequence (zn)n 0
a subsequence that converges to some L in S.

(4) A set is bounded if there exists some R such that d(p,q) < R for all p,q in S.

(5) A set S is open if, for every sequence convergent sequence z, — L, if L is in S, then
a tail of (z,),-, consists only of points in S.

neo» if every z, is in S, then

if every z, is in S, then (z,),_, has

Lemma 2.2.
(1) If z, —» P and z, — Q, then P = Q.
(2) If 2z, — P and (2,5, is a subsequence of (2,),—,, then z,, — P.
(3) If (2ny )5 s @ subsequence of ()., then ny >k for all k.
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Theorem 2.3.

(1)
(2)
(3)
Proof.
(1)

A set is complete if and only if it is closed.
A set is compact if and only if it is closed and bounded.
A set is closed if and only if its complement is open.

If S is closed and (z,).-, is a Cauchy sequence of points in S, then z, — L for some
L; by definition of “closed,” that L is in S. Thus, if S is closed, then every Cauchy
sequence in S converges to a point in S. In other words, if S is closed, then it is
complete. Conversely, if S is complete, z, is in S for all n, and z, — P, then, since
(2n)7 1s convergent, it is also Cauchy; since S is complete, z, — @ for some @
in S; since also z, — P, we have P = () € S. Thus, if S is complete, then every
convergent sequence of points in S converges to a point in S. Thus, if S is complete,
then S is closed.

Suppose S is compact. If S were not bounded, then there would be a sequence (z,),—,
of points in S such that |z,| > n for all n. But such a sequence has no 1-stable tail
(z) ey because, given N, |znik — Zn| > |znix] — |on] > N +k—|zn| > 1if k is
chosen to be sufficiently large. Therefore, a sequence (2,),-, as above has no Cauchy,
and, hence, no convergent, subsequence. Since S is compact, there can be no such
sequence. Hence S is bounded.

Moreover, S is closed because if (w,),, is a sequence of points in S and w,, — P,
then P is in S because, letting (v,),—, be one of the subsequences of (w,),~, that
converges to some () in S, then we have w,, - P = Q.

Conversely, suppose S is closed and bounded. To show that S is compact, we need
to show that, given a z, in .S for all n, there exist L in S and ng < n; < ny < nz < -
such that z,, — L. Assume (z,),_, is as above. Since S is closed and, therefore
complete, it suffices to find ng < n; < ny < nz < --- such that (an) 018 Cauchy For
future notational uniformity, let ny, = & for all k:. Since S is bounded S'is contained
in a closed (solid) square Ty of some finite diameter D. Divide this square into four
congruent closed subsquares, each necessarily with diamater D /2. Since every zy,, is
in it at least one of the four subsquares and four finite sets cannot have infinite union,
we may choose T from among the four subsquares such that inﬁnitely many k are
such that z,,, € T1. Hence, (zp, k) Lo has a subsequence (20, ,c) r—o consisting only of
points in 77. More generally, given m > 0, a closed square T,, with diameter D /2™,
and a sequence (an,k);io of points in 7},,, we may choose a closed subsquare 7,1 of
diamater D /2™ and a subsequence (an . k):o , consisting only of points from T, 1.
Finally, we define a “diagonal” sequence (zy,,) _y by T = Ny . This sequence is a
subsequence of (zn) o because, for all m, n,,,4 > Ny, because Ny 1m41 > Nnt1m >
Nm,m because (zn,, +1,k)20:o is a subsequence of (an,k)Zozo' Moreover, for each m,
(Zng )y, 18 (D/2™)-stable because it is a subsequence of (znm’k)?:o Hence, for every
e, there is an m large enough that (z,,),_, is an e-stable tail of (znj)]o.io. Thus,

(21), indeed has a Cauchy subsequence.

Suppose S is closed. To show that its complement is open, we need to show that,
given a point w not in S and z, — w, (2,),—, has a tail of points not in S. leen
(2n)7—, and w as above, if there were no such tall then z, would be in S for infinitely
many n, in which case, (z,),—, would have a subsequence (wy)pe of points in S;
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such a subsequence would necessarily converge to w. However, because S is closed,
no sequence of points in S can converge a point not in S, such as w. Therefore, there
is no such subsequence (wy);—,. Therefore, (z,),~, must have a tail of points not in
S, as desired.

Conversely, suppose S is the complement of an open set U. To show that S is
closed, we need to show that, given z, — w and z, in S for all n, we have w in S.
Given (z,).~, and w as above, if w were not in S, then w would be in U, so a tail of
(2n)yo would be in U, which is impossible because every z, is in S.

O

Theorem 2.4.

(1) Every union of open sets is open.

) Every intersection of closed sets is closed.

) Every closed subset of a compact set is compact.

) Every intersection of finitely many open sets is open.

) Every union of finitely many closed sets is closed.

) Every union of finitely many bounded sets is bounded.

) Every union of finitely many compact sets is compact.

) If Ko D K1 O Ky D K3 D -+ and every K, is compact and nonempty, then () _; K
18 monemipy.

(2
(
(
(
(
(
(

Proof.

(1) Suppose z, = w € U = |J;c;U; and each Uj is open. It is enough to show that
(21)7 has a tail in U. Then w € Uy, for some k € J, so a tail of (z,),_, is in Uy, so
that tail is in U. Thus, U is open.

(2) Suppose z, = w, 2z, € C = mjeJ C; for all n, and each C; is closed. It is sufficient
to show that w € C. For each j € J, we have z, € C; for all n, so w € C;. Since w
is in every C}, w is in C as desired.

(3) If C C K, C is closed, and K is compact, then K is bounded; hence, C' is also
bounded; hence, C' is compact.

(4) Suppose z, - w € U =UyNU; N---NUp,_1 and each Uy is open. It is enough to
show that (z,),-, has a tail in U. For each k < m, since w € Uy, there exists Ny
such that z, € Uy for all n > Ny; hence, taking N = max{Ny : k < m}, we have
zn €UgNULN---NU,y_1 for all n > N. Thus, U is open.

(5) Suppose z, = w, z, € C =CoUCLU---UC,,_; for all n, and each C; is closed. It
is sufficient to show that w € C. Since m finite sets cannot have infinite union, there
must be some j < m such that z, € C; for infinitely many n. Hence, (z,),_, has a
subsequence (w,,),~, of points in Cj. Slnce w, — w and C} is closed, w € Cj. Hence
w € C. Thus, C' is closed.

(6) Suppose B = ByUB;U---UB,,_; and each By, is bounded. For each k, choose M}, such
that d(p,q) < My, for all p,q € Bg. Let M = max{M;, : k < n}. For each k, choose
2k, € B. Set N = max{d(z,, 2) : a,b < n}. Then, for p,q € B, we have, for some
a,b < n, p€ B, and q € By, which implies d(p,q) < d(p, za) + d(2a, 2) + d(2,q) <
M + N + M. Thus, B is bounded.

(7) This immediately follows from (5) and (6).

(8) Let z, € K, for each n. By compactness of Ky, for some point p and some sub-
sequence (2, )p—q of (2n),—, We have z,, — p. For each m = 0,1,2,3,..., the tail
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(Zny ) e, 8lso converges to p and lies entirely in K, because for all & > m we have
Zn, € Ky, € K C K,,, because ni, > k > m. Since K, is closed, p € K,,. Thus,
P € Moo K-

O

3. FUNCTIONS, CONTINUITY, AND SEQUENCES OF FUNCTIONS.

In this section, “a function on S” is our abbreviation for “a complex-valued function f
whose domain contains S.”

Definition 3.1.

(1) A function is continuous on a set S if, for every convergent sequence z, — L, if L
is in S and every z, is in S, then f(z,) — f(L).

(2) A function is uniformly continuous on a set S if, for every pair of sequences (z,),~,
(wp).—, of points in S, if d(z,, w,) — 0, then d(f(z,), f(w,)) — 0.

(3) A sequence of functions (f,) -, converges pointwise to a function f on a set S if,
for every z in S, f.(2) = f(2).

(4) A sequence of functions (f,) -, converges uniformly to a function f on a set S if,
for every sequence (z,).-, of points in S, d(f.(z,), f(zn)) — 0.

Lemma 3.2 (Subsubsequence Lemma). Given a sequence (z,),_, and a point L, if every
subsequence (2, )p, has a subsequence (znkm);ozo that converges to L, then z, — L.

Proof. We will prove the contrapositive, namely that if z, /4 L, then there is a subsequence
(Zny ) peo Such that all of its subsequences also (znkm):zo fail to converge to L. Assume
Zn #» L. Then, for some ¢ > 0, there is no tail of (z,),_, that is e-close to L. Choose such
an e. If only finitely many n were such that d(z,, L) > ¢, then taking N to be greater than
all such n, we would have a tail (zj),., that is e-close to L. Since there is no such tail,
there must be an infinitely many n as above. Therefore, we may list them as a sequence
np < ny < ng < --- such that d(z,,, L) > ¢ for all k. Thus, there is subsequence (2,,),,
of (zn),—, such that d(z,,, L) > ¢ for all k. For any subsequence (znkm)::o of (2n, )peq, WE
have d(zy, ,L) > ¢ for all m, which implies 2,, / L. O

Lemma 3.3.
(1) If z, — L and d(zn,w,) — 0, then w, — L.
(2) If z, = L and w, — L, then d(z,,w,) — 0.
(3) If d(an,b,) — 0 and d(b,,c,) — 0, then d(ay,c,) — 0.

Theorem 3.4.

(1) If S is compact and f is continuous on S, then f is uniformly continuous on S.
(2) If (fn),—y converges uniformly to f on S and every f, is continuous on S, then f is
continuous on S.

Proof.

(1) Let S be compact and let f be continuous on S. To show uniformly continuity,

we need to show that, given sequences (z,) —,, (wn),—, of points in S such that
d(zn,w,) — 0, we have d(f(z,), f(w,)) — 0. Assume (z,),_, and (w,) -, are
as above. By the Subsubsequence Lemma, it suffices to show that, given ny <

ny < ng < ---, there exist kg < k1 < kp < --- such that d(zy, ,w,, ) — 0. Let
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ng < ny < ng < ---. By compactness, we may choose L in S and a subsequence
(anm)::() of (2, )peo such that z,, —~— L. Since d(zn,wyn) = 0, d(2n, s, ) — 0

too. Hence, wy,, ~— L. By continuity, f(z,, )— f(L)and f(wy, )— f(L). Hence,
d(zn,, > Wn, ) — 0 as desired.

(2) Assume (f,), -, converges uniformly to f on S and every f, is continuous on S. To
show that f is also continuous on S, we need to show that, given a sequence (z,),_, of
points in S that converges to a point L in S, f(z,) — f(L). Let (z,).—, be as above
and ng < ny < ny < ---. By the Subsubsequence Lemma, it is enough to find kg <
ki < kg <--- such that f(z,, )— f(L). For each m =0,1,2,..., f,, is continuous,
8O fin(2n,) = fm(L), so some tail (fu(2n,)),ey,, is 27"-close to f,,(L). Recursively
define a sequence kg < k1 < ko < -+ by kg = Ny and ky, 1 = max{k,, + 1, Npi1}
Hence, 0 < d(fin(L), fm(2n, ) <27 for all m. Hence, d(fm(L), fm(2n,, )) — 0. By
uniform convergence, d( fm(2n,, ), f(2n, )) — 0 also. Hence, d(fn(L), f(2n,,. )) — 0.
Again by uniform convergence, d(fm(L), f(L)) — 0. Hence, d(f(L), f(zn,, )) — 0;
hence, f(zn, ) — f(L).

0

Theorem 3.5. If S is compact and f is continuous on S, then f(S) is compact.

Proof. Let z, € f(S) for all n. We need to show that (z,) -, has a subsequence converging
to some point in f(S). For each n, choose w, € S such that f(w,) = z,. By compactness
of S, there is a point w € S and a subsequence w,, — w. By continuity, z,, — f(w) and
f(w) € f(S), as desired. O

Theorem 3.6.

(1) If f is continuous on S and g is continuous on f(S), then go f is continuous on S.
(2) If f and g are continuous on S, then f+ g and fg are continuous on S.
(3) If f and g are continuous on S and g # 0 on S, then f/g is continuous on S.

Proof.
(1) If z, - w € S and z, € S for all n, then f(z,) = f(w) € f(S) and f(z,) € f(S) for
all n, which in turn implies that g(f(z,)) — g(f(w)).
(2) This is an immediate consequence of the Limit Laws.
(3) This is an immediate consequence of the Limit Laws.



