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For this document, we fix an ambient metric space, the complex plane C with its standard
metric d(z, w) = |z − w|. All points are assumed to in C; all sets of points are assumed to
be subsets of C.

1. Sequences and convergence.

Definition 1.1.

(1) A subsequence of a sequence (zn)∞n=0 is a sequence of the form (znk
)∞k=0 where

n0 < n1 < n2 < · · · .
(2) A tail of a sequence (z)∞n=0 is a subsequence of the form (zN+n)∞n=0 (which may also

be denoted by (zn)∞n=N).
(3) A sequence (zn)∞n=0 is ε-stable if d(zm, zn) < ε for all m,n ≥ 0.
(4) A sequence (zn)∞n=0 is ε-close to a point L if d(zn, L) < ε for all n ≥ 0.
(5) A sequence (zn)∞n=0 is Cauchy if, for every ε > 0, it has an ε-stable tail.
(6) A sequence (zn)∞n=0 converges to L, which we often abbreviate as zn → L, if for

every ε > 0, (zn)∞n=0 has a tail that is ε-close to L.

Theorem 1.2. A sequence is Cauchy if and only if it converges to some point.

Proof. If zn → L, then, for every ε > 0, (zn)∞n=0 has a tail that is ε
2
-close to L. Such a tail is

ε-stable because d(zm, zn) ≤ d(zm, L) + d(L, zn) for all m,n. Thus, convergence implies the
Cauchy property.

To prove the converse, suppose that (zn)∞n=0 is Cauchy. Suppose we can prove that
Re(zn) → A and Im(zn) → Bi for some reals A and B. Then, for every ε > 0, (Re(zn))∞n=0

and (Im(zn))∞n=0 will have tails (Re(zk))∞k=M and (Im(zk))∞k=N that are ε
2
-close to A and B,

respectively. Since |z−w| ≤ |Re(z−w)|+ |Im(z−w)| = |Re(z)−Re(w)|+ |Im(z)− Im(w)|
for all points z and w, it follows that, taking P to be larger of M and N , the tail (zk)∞k=P is
ε-close to A + Bi.

Therefore, setting xn = Re(zn) and yn = Im(zn), it is sufficient to prove that the sequences
(xn)∞n=0 and (yn)∞n=0 converge to reals. Since |Re(z)−Re(w)| = |Re(z−w)| ≤ |z−w| for all
points z and w the sequence (xn)∞n=0 is Cauchy. Likwise, (yn)∞n=0 is Cauchy. By symmetry,
it is enough to prove that the Cauchy sequence of reals (xn)∞n=0 converges to a real.

For each of k = 0, 1, 2, 3, . . ., let xn,k be xn rounded down to the nearest integer multiple
of 10−k. If (xn,k)∞n=0 is eventually constant, then let uk denote its final value. For each k ≥ 1
for which uk is defined, let dk be the kth digit after the decimal place of uk. First, suppose
we are in the case where uk is defined for all k. Set u = u0.d1d2d3 . . .. Given ε > 0, choose
k > 0 such that 10−k < ε. Choose N large enough that we have xn,j = uj for all n ≥ N
and j = 0, 1, . . . , k. Therefore, u0.d1d2 . . . dk ≤ xn < u0.d1d2 . . . dk + 10−k for all n ≥ N , and
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u0.d1d2 . . . dk ≤ u ≤ u0.d1d2 . . . dk + 10−k. Hence, |xn − u| ≤ 10−k < ε for all n ≥ N . Thus,
for every ε > 0, (xn)∞n=0 is ε-close to u on a tail. Thus, xn → u.

Now suppose we are in the other case, that uk is not defined for all k. Let k be least such
that uk is undefined. Suppose we are in the subcase where k > 0. Then

u0.d1d2d2 . . . dk−1 ≤ xn < u0.d1d2d2 . . . dk−1 + 10k−1

is eventually always true, but there are at least two values a in {0, . . . 9} such that

u0.d1d2d2 . . . dk−1a ≤ xn < u0.d1d2d2 . . . dk−1a + 10−k

for infinitely many n. Let v = u0.d1d2d2 . . . dk−1c where c is the larger of two values for a.
There are then infinitely many n such that xn < v and infinitely many n such that v ≤ xn.
Given ε > 0, choose m > 0 such that m ≥ k and 10−m ≤ ε. Choose M large enough that we
have xn,j = uj for all n ≥ M and j = 0, 1, . . . , k − 1, and such that (xp)

∞
p=M is 10−m-stable.

Choose r, s ≥M such that xr < v ≤ xs. For any n ≥M , we have

xn = xr + xn − xr ≤ xr + |xn − xr| < xr + 10−m < v + 10−m < v + ε;

xn = xs + xn − xs ≥ xs − |xn − xs| > xs − 10−m ≥ v − 10−m ≥ v − ε.

Thus, (xp)
∞
p=M is ε-close to v. Thus, for any ε > 0, (xn)∞n=0 has a tail ε-close to v. Thus,

xn → v.
The last subcase, where k = 0, is handled like the previous subcase. There are at least

two adjacent integer values a such that xn < a for infinitely many n and a ≤ xn < a + 1
for infinitely many n. Letting q denote the greater of two such values, we have xn < q for
infinitely many n and q ≤ xn for infinitely many n. Given ε > 0, choose m ≥ 0 such that
10−m ≤ ε and M large enough that (xp)

∞
p=M is 10−m-stable. Arguing just as in the previous

paragraph, we find that (xp)
∞
p=M is ε-close to q. Thus, xn → q. �

Theorem 1.3 (Limit Laws).

(1) If an → L and bn →M , then an + bn → L + M and anbn → LM .
(2) If an → L and bn →M 6= 0, then some tail of (an/bn)∞n=0 converges to L/M .

2. Sets of points and convergence.

Definition 2.1.

(1) A set (of points) S is closed if, for every convergent sequence zn → L, if every zn is
in S, then L is in S too.

(2) A set S is complete if, for every Cauchy sequence (zn)∞n=0, if every zn is in S, then
(zn)∞n=0 converges to some L in S.

(3) A set is compact if, for every sequence (zn)∞n=0, if every zn is in S, then (zn)∞n=0 has
a subsequence that converges to some L in S.

(4) A set is bounded if there exists some R such that d(p, q) ≤ R for all p, q in S.
(5) A set S is open if, for every sequence convergent sequence zn → L, if L is in S, then

a tail of (zn)∞n=0 consists only of points in S.

Lemma 2.2.

(1) If zn → P and zn → Q, then P = Q.
(2) If zn → P and (znk

)∞k=0 is a subsequence of (zn)∞n=0, then znk
→ P .

(3) If (znk
)∞k=0 is a subsequence of (zn)∞n=0, then nk ≥ k for all k.
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Theorem 2.3.

(1) A set is complete if and only if it is closed.
(2) A set is compact if and only if it is closed and bounded.
(3) A set is closed if and only if its complement is open.

Proof.

(1) If S is closed and (zn)∞n=0 is a Cauchy sequence of points in S, then zn → L for some
L; by definition of “closed,” that L is in S. Thus, if S is closed, then every Cauchy
sequence in S converges to a point in S. In other words, if S is closed, then it is
complete. Conversely, if S is complete, zn is in S for all n, and zn → P , then, since
(zn)∞n=0 is convergent, it is also Cauchy; since S is complete, zn → Q for some Q
in S; since also zn → P , we have P = Q ∈ S. Thus, if S is complete, then every
convergent sequence of points in S converges to a point in S. Thus, if S is complete,
then S is closed.

(2) Suppose S is compact. If S were not bounded, then there would be a sequence (zn)∞n=0

of points in S such that |zn| ≥ n for all n. But such a sequence has no 1-stable tail
(zk)∞k=N because, given N , |zN+k − ZN | ≥ |zN+k| − |zN | ≥ N + k − |zN | ≥ 1 if k is
chosen to be sufficiently large. Therefore, a sequence (zn)∞n=0 as above has no Cauchy,
and, hence, no convergent, subsequence. Since S is compact, there can be no such
sequence. Hence S is bounded.

Moreover, S is closed because if (wn)∞n=0 is a sequence of points in S and wn → P ,
then P is in S because, letting (vn)∞n=0 be one of the subsequences of (wn)∞n=0 that
converges to some Q in S, then we have wn → P = Q.

Conversely, suppose S is closed and bounded. To show that S is compact, we need
to show that, given a zn in S for all n, there exist L in S and n0 < n1 < n2 < n3 < · · ·
such that znk

→ L. Assume (zn)∞n=0 is as above. Since S is closed and, therefore,
complete, it suffices to find n0 < n1 < n2 < n3 < · · · such that (znk

)∞k=0 is Cauchy. For
future notational uniformity, let n0,k = k for all k. Since S is bounded, S is contained
in a closed (solid) square T0 of some finite diameter D. Divide this square into four
congruent closed subsquares, each necessarily with diamater D/2. Since every zn0,k

is
in it at least one of the four subsquares and four finite sets cannot have infinite union,
we may choose T1 from among the four subsquares such that infinitely many k are
such that zn0,k

∈ T1. Hence,
(
zn0,k

)∞
k=0

has a subsequence
(
zn1,k

)∞
k=0

consisting only of
points in T1. More generally, given m ≥ 0, a closed square Tm with diameter D/2m,
and a sequence

(
znm,k

)∞
k=0

of points in Tm, we may choose a closed subsquare Tm+1 of

diamater D/2m+1 and a subsequence
(
znm+1,k

)∞
k=0

consisting only of points from Tm+1.

Finally, we define a “diagonal” sequence (znm)∞m=0 by nm = nm,m. This sequence is a
subsequence of (zn)∞n=0 because, for all m, nm+1 > nm because nm+1,m+1 > nm+1,m ≥
nm,m because

(
znm+1,k

)∞
k=0

is a subsequence of
(
znm,k

)∞
k=0

. Moreover, for each m,

(znk
)∞k=m is (D/2m)-stable because it is a subsequence of

(
znm,k

)∞
k=0

Hence, for every

ε, there is an m large enough that (znk
)∞k=m is an ε-stable tail of

(
znj

)∞
j=0

. Thus,

(zn)∞n=0 indeed has a Cauchy subsequence.
(3) Suppose S is closed. To show that its complement is open, we need to show that,

given a point w not in S and zn → w, (zn)∞n=0 has a tail of points not in S. Given
(zn)∞n=0 and w as above, if there were no such tail, then zn would be in S for infinitely
many n, in which case, (zn)∞n=0 would have a subsequence (wk)∞k=0 of points in S;
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such a subsequence would necessarily converge to w. However, because S is closed,
no sequence of points in S can converge a point not in S, such as w. Therefore, there
is no such subsequence (wk)∞k=0. Therefore, (zn)∞n=0 must have a tail of points not in
S, as desired.

Conversely, suppose S is the complement of an open set U . To show that S is
closed, we need to show that, given zn → w and zn in S for all n, we have w in S.
Given (zn)∞n=0 and w as above, if w were not in S, then w would be in U , so a tail of
(zn)∞n=0 would be in U , which is impossible because every zn is in S.

�

Theorem 2.4.

(1) Every union of open sets is open.
(2) Every intersection of closed sets is closed.
(3) Every closed subset of a compact set is compact.
(4) Every intersection of finitely many open sets is open.
(5) Every union of finitely many closed sets is closed.
(6) Every union of finitely many bounded sets is bounded.
(7) Every union of finitely many compact sets is compact.
(8) If K0 ⊇ K1 ⊇ K2 ⊇ K3 ⊇ · · · and every Kn is compact and nonempty, then

⋂∞
n=1Kn

is nonemtpy.

Proof.

(1) Suppose zn → w ∈ U =
⋃

j∈J Uj and each Uj is open. It is enough to show that

(zn)∞n=0 has a tail in U . Then w ∈ Uk for some k ∈ J , so a tail of (zn)∞n=0 is in Uk, so
that tail is in U . Thus, U is open.

(2) Suppose zn → w, zn ∈ C =
⋂

j∈J Cj for all n, and each Cj is closed. It is sufficient
to show that w ∈ C. For each j ∈ J , we have zn ∈ Cj for all n, so w ∈ Cj. Since w
is in every Cj, w is in C as desired.

(3) If C ⊆ K, C is closed, and K is compact, then K is bounded; hence, C is also
bounded; hence, C is compact.

(4) Suppose zn → w ∈ U = U0 ∩ U1 ∩ · · · ∩ Um−1 and each Uk is open. It is enough to
show that (zn)∞n=0 has a tail in U . For each k < m, since w ∈ Uk, there exists Nk

such that zn ∈ Uk for all n ≥ Nk; hence, taking N = max{Nk : k < m}, we have
zn ∈ U0 ∩ U1 ∩ · · · ∩ Um−1 for all n ≥ N . Thus, U is open.

(5) Suppose zn → w, zn ∈ C = C0 ∪ C1 ∪ · · · ∪ Cm−1 for all n, and each Cj is closed. It
is sufficient to show that w ∈ C. Since m finite sets cannot have infinite union, there
must be some j < m such that zn ∈ Cj for infinitely many n. Hence, (zn)∞n=0 has a
subsequence (wn)∞n=0 of points in Cj. Since wn → w and Cj is closed, w ∈ Cj. Hence,
w ∈ C. Thus, C is closed.

(6) Suppose B = B0∪B1∪· · ·∪Bn−1 and each Bk is bounded. For each k, choose Mk such
that d(p, q) ≤ Mk for all p, q ∈ Bk. Let M = max{Mk : k < n}. For each k, choose
zk ∈ Bk. Set N = max{d(za, zb) : a, b < n}. Then, for p, q ∈ B, we have, for some
a, b < n, p ∈ Ba and q ∈ Bb, which implies d(p, q) ≤ d(p, za) + d(za, zb) + d(zb, q) ≤
M + N + M . Thus, B is bounded.

(7) This immediately follows from (5) and (6).
(8) Let zn ∈ Kn for each n. By compactness of K0, for some point p and some sub-

sequence (znk
)∞k=0 of (zn)∞n=0, we have znk

→ p. For each m = 0, 1, 2, 3, . . ., the tail
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(znk
)∞k=m also converges to p and lies entirely in Km because for all k ≥ m we have

znk
∈ Knk

⊆ Kk ⊆ Km because nk ≥ k ≥ m. Since Km is closed, p ∈ Km. Thus,
p ∈

⋂∞
m=0 Km.

�

3. Functions, continuity, and sequences of functions.

In this section, “a function on S” is our abbreviation for “a complex-valued function f
whose domain contains S.”

Definition 3.1.

(1) A function is continuous on a set S if, for every convergent sequence zn → L, if L
is in S and every zn is in S, then f(zn)→ f(L).

(2) A function is uniformly continuous on a set S if, for every pair of sequences (zn)∞n=0,
(wn)∞n=0 of points in S, if d(zn, wn)→ 0, then d(f(zn), f(wn))→ 0.

(3) A sequence of functions (fn)∞n=0 converges pointwise to a function f on a set S if,
for every z in S, fn(z)→ f(z).

(4) A sequence of functions (fn)∞n=0 converges uniformly to a function f on a set S if,
for every sequence (zn)∞n=0 of points in S, d(fn(zn), f(zn))→ 0.

Lemma 3.2 (Subsubsequence Lemma). Given a sequence (zn)∞n=0 and a point L, if every
subsequence (znk

)∞k=0 has a subsequence
(
znkm

)∞
m=0

that converges to L, then zn → L.

Proof. We will prove the contrapositive, namely that if zn 6→ L, then there is a subsequence
(znk

)∞k=0 such that all of its subsequences also
(
znkm

)∞
m=0

fail to converge to L. Assume
zn 6→ L. Then, for some ε > 0, there is no tail of (zn)∞n=0 that is ε-close to L. Choose such
an ε. If only finitely many n were such that d(zn, L) ≥ ε, then taking N to be greater than
all such n, we would have a tail (zk)∞k=N that is ε-close to L. Since there is no such tail,
there must be an infinitely many n as above. Therefore, we may list them as a sequence
n0 < n1 < n2 < · · · such that d(znk

, L) ≥ ε for all k. Thus, there is subsequence (znk
)∞k=0

of (zn)∞n=0 such that d(znk
, L) ≥ ε for all k. For any subsequence

(
znkm

)∞
m=0

of (znk
)∞k=0, we

have d(znkm
, L) ≥ ε for all m, which implies znkm

6→ L. �

Lemma 3.3.

(1) If zn → L and d(zn, wn)→ 0, then wn → L.
(2) If zn → L and wn → L, then d(zn, wn)→ 0.
(3) If d(an, bn)→ 0 and d(bn, cn)→ 0, then d(an, cn)→ 0.

Theorem 3.4.

(1) If S is compact and f is continuous on S, then f is uniformly continuous on S.
(2) If (fn)∞n=0 converges uniformly to f on S and every fn is continuous on S, then f is

continuous on S.

Proof.

(1) Let S be compact and let f be continuous on S. To show uniformly continuity,
we need to show that, given sequences (zn)∞n=0, (wn)∞n=0 of points in S such that
d(zn, wn) → 0, we have d(f(zn), f(wn)) → 0. Assume (zn)∞n=0 and (wn)∞n=0 are
as above. By the Subsubsequence Lemma, it suffices to show that, given n0 <
n1 < n2 < · · · , there exist k0 < k1 < k2 < · · · such that d(znkm

, wnkm
) → 0. Let
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n0 < n1 < n2 < · · · . By compactness, we may choose L in S and a subsequence(
znkm

)∞
m=0

of (znk
)∞k=0 such that znkm

→ L. Since d(zn, wn) → 0, d(znkm
, wnkm

) → 0
too. Hence, wnkm

→ L. By continuity, f(znkm
)→ f(L) and f(wnkm

)→ f(L). Hence,
d(znkm

, wnkm
)→ 0 as desired.

(2) Assume (fn)∞n=0 converges uniformly to f on S and every fn is continuous on S. To
show that f is also continuous on S, we need to show that, given a sequence (zn)∞n=0 of
points in S that converges to a point L in S, f(zn)→ f(L). Let (zn)∞n=0 be as above
and n0 < n1 < n2 < · · · . By the Subsubsequence Lemma, it is enough to find k0 <
k1 < k2 < · · · such that f(znkm

)→ f(L). For each m = 0, 1, 2, . . ., fm is continuous,
so fm(znk

) → fm(L), so some tail (fm(znk
))∞k=Nm

is 2−m-close to fm(L). Recursively
define a sequence k0 < k1 < k2 < · · · by k0 = N0 and km+1 = max{km + 1, Nm+1}.
Hence, 0 ≤ d(fm(L), fm(znkm

)) < 2−m for all m. Hence, d(fm(L), fm(znkm
))→ 0. By

uniform convergence, d(fm(znkm
), f(znkm

))→ 0 also. Hence, d(fm(L), f(znkm
))→ 0.

Again by uniform convergence, d(fm(L), f(L)) → 0. Hence, d(f(L), f(znkm
)) → 0;

hence, f(znkm
)→ f(L).

�

Theorem 3.5. If S is compact and f is continuous on S, then f(S) is compact.

Proof. Let zn ∈ f(S) for all n. We need to show that (zn)∞n=0 has a subsequence converging
to some point in f(S). For each n, choose wn ∈ S such that f(wn) = zn. By compactness
of S, there is a point w ∈ S and a subsequence wnk

→ w. By continuity, znk
→ f(w) and

f(w) ∈ f(S), as desired. �

Theorem 3.6.

(1) If f is continuous on S and g is continuous on f(S), then g ◦ f is continuous on S.
(2) If f and g are continuous on S, then f + g and fg are continuous on S.
(3) If f and g are continuous on S and g 6= 0 on S, then f/g is continuous on S.

Proof.

(1) If zn → w ∈ S and zn ∈ S for all n, then f(zn)→ f(w) ∈ f(S) and f(zn) ∈ f(S) for
all n, which in turn implies that g(f(zn))→ g(f(w)).

(2) This is an immediate consequence of the Limit Laws.
(3) This is an immediate consequence of the Limit Laws.

�


