MATH 4360 MIDTERM I

INSTRUCTOR: DAVID MILOVICH

Name:

Exercise	Point Possible	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

1. [20 points] For each of the following four statements S, is S true or false?
(a) $A \cap(C \cup(A \cap B))=A \cap(B \cup C)$
(b) $A-C \subset A-B \Rightarrow B \subset C$
(c) $B \subset C \Rightarrow A-C \subset A-B$
(d) $(A \times C) \cap(B \times A)=(A \cap B) \times(A \cap C)$

2. [20 points]

$$
E=\{(1,1),(2,2)\} \cup\left\{(x, y) \in \mathbb{Z}_{+} \mid x, y \geq 3\right\}
$$

Give a precise description of each E-equivalence class.
3. [20 points] Give an example of a pair of nonempty subsets A, B of \mathbb{Q} (where \mathbb{Q} is the set of all rational numbers) for which the following three statements are all simultaneously true of A and B.

- A and B both have an upper bound in \mathbb{Q}.
- A has a least upper bound in \mathbb{Q}.
- B does not have a least upper bound in \mathbb{Q}.

4. [20 points] Give an example of nonempty sets A, B_{1}, B_{2} and a function $f: A \rightarrow B_{1} \times B_{2}$ such that f is not surjective, but both $\pi_{1} \circ f$ and $\pi_{2} \circ f$ are surjective.

Here, π_{1} and π_{2} are functions $\pi_{1}: B_{1} \times B_{2} \rightarrow B_{1}$ and $\pi_{2}: B_{1} \times B_{2} \rightarrow B_{2}$ defined by $\pi_{1}\left(b_{1}, b_{2}\right)=b_{1}$ and $\pi_{2}\left(b_{1}, b_{2}\right)=b_{2}$.
5. [20 points] Prove the following theorem by induction.

Theorem. If $n \in \mathbb{Z}_{+}$, the sets $A_{1}, A_{2}, \ldots, A_{n+1}$ are nonempty, and, for all $i \in\{1, \ldots, n\}$, there is an injection from A_{i} to A_{i+1}, then there is a surjection from A_{n+1} to A_{1}.

