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1. [20 points] Let A = [1, 2) and B = {3−10−n : n ∈ Z+}. (You don’t need to prove anything
for this exercise; just answer correctly.)

(a) What is the closure of A ∪B in R?
(b) What is the closure of A×B in R× [2, 3)?
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2. [20 points] Define a sequence (xn)n∈Z+ in Rω by xn(m) = 1
n −

1
m , that is,

xn = (
1

n
− 1

1
,

1

n
− 1

2
,

1

n
− 1

3
, . . .).

(You don’t need to prove anything for this exercise; just answer correctly.)

(a) Does (xn)n∈Z+ converge in Rω with the product topology? If it does converge, then what
does it converge to?

(b) Does (xn)n∈Z+ converge in Rω with the uniform topology? If it does converge, then what
does it converge to?

(c) Does (xn)n∈Z+ converge in Rω with the box product topology? If it does converge, then
what does it converge to?
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3. [20 points] Let X be a Hausdorff space and let C1 ⊃ C2 ⊃ C3 ⊃ C4 ⊃ · · · be a descending
chain of compact connected subspaces of X. Prove that the subspace C =

⋂
n∈Z+

Cn is connected.
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4. [20 points] Let (X, TX) and (Y, TY ) be T3 spaces and assume X and Y are disoint sets.
Give X ∪ Y the topology {U ∪ V : U ∈ TX and V ∈ TY }. Prove that X ∪ Y is T3.
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5. [20 points] Let X = [0, 1]ω, the set of all functions from Z+ to [0, 1]. Prove that X with
the uniform metric is complete but not compact.
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