MATH 5365 FINAL

INSTRUCTOR: DAVID MILOVICH

Name:

Please sign to certify that:

- My answers to this exam are my own work.
- I may have consulted pre-existing textual and/or electronic resources, but,
- between the time I received this exam and the time I submitted my answers to my instructor, I have not directly nor indirectly asked other humans questions relevant to this exam.

Signature:

[^0]| Exercise | Point Possible | Score |
| ---: | ---: | :--- |
| 1 | 20 | |
| 2 | 20 | |
| 3 | 20 | |
| 4 | 20 | |
| 5 | 20 | |
| Total | 100 | |

1. [20 points] Let $A=[1,2)$ and $B=\left\{3-10^{-n}: n \in \mathbb{Z}_{+}\right\}$. (You don't need to prove anything for this exercise; just answer correctly.)
(a) What is the closure of $A \cup B$ in \mathbb{R} ?
(b) What is the closure of $A \times B$ in $\mathbb{R} \times[2,3)$?
2. [20 points] Define a sequence $\left(x_{n}\right)_{n \in \mathbb{Z}_{+}}$in \mathbb{R}^{ω} by $x_{n}(m)=\frac{1}{n}-\frac{1}{m}$, that is,

$$
x_{n}=\left(\frac{1}{n}-\frac{1}{1}, \frac{1}{n}-\frac{1}{2}, \frac{1}{n}-\frac{1}{3}, \ldots\right) .
$$

(You don't need to prove anything for this exercise; just answer correctly.)
(a) Does $\left(x_{n}\right)_{n \in \mathbb{Z}_{+}}$converge in \mathbb{R}^{ω} with the product topology? If it does converge, then what does it converge to?
(b) Does $\left(x_{n}\right)_{n \in \mathbb{Z}_{+}}$converge in \mathbb{R}^{ω} with the uniform topology? If it does converge, then what does it converge to?
(c) Does $\left(x_{n}\right)_{n \in \mathbb{Z}_{+}}$converge in \mathbb{R}^{ω} with the box product topology? If it does converge, then what does it converge to?
3. [20 points] Let X be a Hausdorff space and let $C_{1} \supset C_{2} \supset C_{3} \supset C_{4} \supset \cdots$ be a descending chain of compact connected subspaces of X. Prove that the subspace $C=\bigcap_{n \in \mathbb{Z}_{+}} C_{n}$ is connected.
4. [20 points] Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be T_{3} spaces and assume X and Y are disoint sets. Give $X \cup Y$ the topology $\left\{U \cup V: U \in \mathcal{T}_{X}\right.$ and $\left.V \in \mathcal{T}_{Y}\right\}$. Prove that $X \cup Y$ is T_{3}.
5. [20 points] Let $X=[0,1]^{\omega}$, the set of all functions from \mathbb{Z}_{+}to $[0,1]$. Prove that X with the uniform metric is complete but not compact.

[^0]: Date: May 9, 2012.

