MATH 5365 FINAL EXAM

INSTRUCTOR: DAVID MILOVICH

Name:

Date: December 10, 2013.

1. [25 points] Use a connectedness argument to prove that \mathbb{R} is not homeomorphic to \mathbb{R}^2 .

2. [30 points] Let $X = \prod_{n=1}^{\infty} \mathbb{R}$ with the product topology. Let $A = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \pi_m^{-1}(\{0\})$, the set of all $p \in X$ such that p(n) is eventually 0. Prove or disprove: A is dense in X.

3. [45 points] Suppose that (X, d) is a compact metric space and $f: X \to X$ is an isometric function (i.e., d(f(x), f(y)) = d(x, y) for all points $x, y \in X$).

- (a) Prove that f is surjective. (Hint: Starting from a supposed point in X f(X), apply f repeatedly.)
- (b) Give an example of a non-compact metric space Y and a non-surjective isometric function $g: Y \to Y$.