MATH 5365 MIDTERM

INSTRUCTOR: DAVID MILOVICH

Name:

1. Let $X=\mathbb{R}$ and let $Y=[1,3) \cup(4,6]$ with the subspace topology. Let $A=[2,3) \cup(5,6]$.
(a) What is the closure of A in X ?
(b) What is the interior of A in X ?
(c) What is the closure of A in Y ?
(d) What is the interior of A in Y ?
(No proofs required.)
2. Let $X=\{1,2,3\}$ with the topology generated by the base $\mathcal{B}_{X}=\{\{1,2\},\{3\}\}$. Let $Y=$ $\{4,5,6,7\}$ with the topology generated by the base $\mathcal{B}_{Y}=\{\{4\},\{5\},\{5,6,7\}\}$. Y has four 3point subspaces, namely, the sets $\{4,5,6\},\{4,5,7\},\{4,6,7\}$, and $\{5,6,7\}$ with the corresponding subspace topologies.
(a) Is there a continuous bijection from X to any of these subspaces? If yes, then to which ones?
(b) Is there a homeomorphism from X to any of these subspaces? If yes, then to which ones? (No proofs required.)
3. Let (X, d) be a metric space and let \mathcal{T} be the topology induced by d. Let \mathcal{U} be the corresponding product topology on $X \times X$. Prove that d is a continuous function from $(X \times X, \mathcal{U})$ to \mathbb{R}. You may assume the fact that if $d(y, z)<\varepsilon$, then $|d(x, y)-d(x, z)|<\varepsilon$. (You can also prove this fact for extra credit.)
