Name:

1. Show the incompleteness of $(a, b),(a, b]$, and $[a, b)$ by exhibiting Cauchy sequences that do not converge.
2. Given K compact, $p \in Y$, and an open $U \subset K \times Y$ such that $K \times\{p\} \subset U$, prove that there exists an open $V \subset Y$ such that $p \in V$ and $K \times V \subset U$.
3. Prove that if M is a connected metric space with at least two points, then M is uncountable.
4. Prove that if X and Y are compact Hausdorff spaces and f is a continuous surjection from X to Y, then f is a quotient map.
5. Let (X, d) be a metric space with nonempty subset A. Show that $f(x)=d(x, A)$ defines a continuous function from X to \mathbb{R}.
