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We begin by defining compactness using the standard closed-set characteri-
zation, which is equivalent to the usual definition in terms of open covers.1

Definition 1.

• A set A of sets has the finite intersection property (FIP) if
⋂
F 6= ∅ for

all nonempty finite F ⊂ A.

• A topological space X is compact if
⋂
A 6= ∅ for every nonempty set A of

closed subsets of X with the FIP.

Next we define “chain compactness,” which more obviously matches the
informal notion that a compact space is a space with no holes.

Definition 2.

• A set E of sets is a chain if, for each A and B in E , we have A ⊂ B or
B ⊂ A.

• A topological space X is chain compact if
⋂
C 6= ∅ for every nonempty

chain C of nonempty closed subsets of X.

It is not hard (see proof below) to see that every chain has the FIP. So,
compact implies chain compact. But the converse, that chain compact implies
compact, might look doubtful because there are many examples of sets of with
the FIP that are not chains, like {[a, a+ 2] | 0 < a < 2}, a set of intervals each
of length 2 with common element 2. But on second thought, 0 < a < 2 if and
only if a = 1± b for some 0 ≤ b < 1; hence,⋂
0<a<2

[a, a+2] =
⋂

0≤b<1

(
[1−b, (1−b)+2]∩ [1+b, (1+b)+2]

)
=

⋂
0≤b<1

[1+b, 3−b]

and {[1 + b, 3 − b] | 0 ≤ b < 1} is a chain. Maybe behind every set with the
FIP hides a chain in way that allows us to deduce compactness from mere chain
compactness? Assuming the Axiom of Choice, the proof below demonstrates
exactly this.

1See, for example, Theorem 26.9 in Munkres’ textbook for a proof of this equivalence.
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Theorem 3. A space X is compact if and only if it is chain compact.

While the proof below might be new, I strongly doubt the above theorem
has never been proved before. For experts in order theory, the above theorem
is an easy corollary of an old theorem2 that a poset with a minimum element is
chain-complete if and only if it is directed-complete. In contrast, the proof below
is relatively elementary, using a well-ordering but not not requiring knowledge
of ordinals, posets, or Zorn’s Lemma.

Proof. First, given X compact, we will prove that X is chain compact. Suppose
C is a nonempty chain of nonempty closed subsets ofX. We will show that

⋂
C 6=

∅. We start by showing that C has the FIP. Suppose that C1, . . . , Cn ∈ C. Since
C is a chain, for some permutation σ of {1, . . . , n}, Cσ(1) ⊃ Cσ(2) ⊃ · · · ⊃ Cσ(n).
Therefore,

⋂n
i=1 Ci = Cσ(n), which is nonempty because Cσ(n) ∈ C. Thus, C has

the FIP. Hence, since X is compact,
⋂
C 6= ∅. Thus, X is chain compact.

Second, given Y chain compact, we will prove that Y is compact. Suppose
that A is a nonempty set of closed subsets of Y with the FIP. We will show
that

⋂
A 6= ∅. By Zermelo’s Theorem, A has a well-ordering. (We assume

the Axiom of Choice.) Let < be such an ordering. Since A is nonempty, it
has a minimum element A0 with respect to our well-ordering. If A does not
also have a maximum, then replace < with <′ where A <′ A0 for all instances
of A0 < A, and A <′ B for all instances of A0 < A < B. The new < will
still be a well-ordering and will have a maximum. For each A ∈ A, define
I1(A) =

⋂
B≤AB. This makes I1(max(A)) =

⋂
A; hence, it is enough to prove

that I1(max(A) 6= ∅. Seeking a contradiction, assume I1(max(A)) = ∅.
It is not hard to see that {I1(A) | A < max(A)} is a chain. And

I1(max(A)) = ∅ makes this chain a bad chain, by which I mean that the
chain looks like it might be a counterexample to Y ’s chain compactness. How-
ever, to find an actual counterexample, we will need to work harder, essentially
shrinking our bad chain to a minimal bad chain.

Suppose that n ∈ N and we have defined In(A) for all A ∈ A such that
In(max(A)) = ∅ just as I1(max(A)) = ∅. Define In+1(A) for each A ∈ A as
follows. The set Bn = {B ∈ A | In(B) = ∅} is nonempty because it contains
max(A). Because < is a well-ordering, Bn has a minimum which we will call
Mn. Define In+1(A) = In(A) ∩Mn for all A ∈ A. This definition makes

In+1(max(A)) = ∅ ∩Mn = ∅

just as In(max(A)) = ∅. Therefore, by induction, our above definition scheme,
applied to every n ∈ N, produces a well-defined sequence (In(A))n∈N for each
A ∈ A.

Claim. There exists n ∈ N such that Mn = Mn+1.

Proof. Because < is a well-ordering, {Mn | n ∈ N} has a minimum, say, Ms.
In particular, Ms ≤ Ms+1. We will show that Ms+1 ≤ Ms also. We have

2This theorem is in, for example, P.M. Cohn’s 1965 textbook Universal Algebra.
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Is(Ms) = ∅ because Ms ∈ Bs. We also have Ms ∈ Bs+1 because

Is+1(Ms) = Is(Ms) ∩Ms = ∅ ∩Ms = ∅.

Therefore, Ms+1 = min(Bs+1) ≤Ms.

Choose k such that Mk = Mk+1. Let C = {Ik+1(A) | A < Mk+1}. Since
Y is chain compact, to reach a contradiction it is enough to prove that C is a
nonempty chain of nonempty closed sets such that

⋂
C = ∅. First, by definition

of Mk+1, each C ∈ C is nonempty.
Second, let us that prove that C 6= ∅. For each A ∈ A, since I1(A) =⋂

B≤AB and In+1(A) = In(A) ∩Mn for each n, we have

Ij+1(A) =

 ⋂
B≤A

B

 ∩M1 ∩M2 ∩M3 ∩ · · · ∩Mj (1)

for all j ∈ N. The set C is empty only if there is no A < Mk+1. But if Mk+1 is
indeed the minimum of A, then (1) implies

Ik+1(Mk+1) = Mk+1 ∩M1 ∩ · · · ∩Mk. (2)

The left side of (2) is empty because Mk+1 ∈ Bk+1. The right side of (2) is
nonempty because A has the FIP. Thus, (2) is false. So, C 6= ∅.

Third, each C ∈ C is closed because (1) implies that each Ik+1(A) is the
intersection of closed sets, namely, M1, . . . ,Mk and all B ≤ A, which are closed
because they are in A.

Fourth, let us show that C is a chain. For this it is enough to show that
Ik+1(E) ⊂ Ik+1(F ) whenever F < E. Suppose F < E. If p ∈ B for all B ≤ E,
then p ∈ B for all B ≤ F . Therefore, I1(E) ⊂ I1(F ). Intersecting both sides of
I1(E) ⊂ I1(F ) with M1 ∩ · · · ∩Mk, we obtain Ik+1(E) ⊂ Ik+1(F ).

Fifth and finally, we prove
⋂
C = ∅. Using (1) and Mk = Mk+1, we obtain⋂

C =
⋂

A<Mk+1

Ik+1(A)

=
⋂

A<Mk

 ⋂
B≤A

B

 ∩ k⋂
i=1

Mi


=

( ⋂
B<Mk

B

)
∩

k⋂
i=1

Mi

=

 ⋂
B≤Mk

B

 ∩ k−1⋂
i=1

Mi

= Ik(Mk)

= ∅.
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