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Algebraically speaking, a circle in the plane is the set of solutions (x, y) to an equation of the
form

(x− a)2 + (y − b)2 = r2

where a, b, and r are constants and r > 0. (Note that x, y, a, b, and r all have dimensions [L],
meaning they are all lengths.) Using trigonometry, especially the identity cos2 θ + sin2 θ = 1, one
can show that the solution set is exactly the set of points (x, y) that can be written as

(x, y) = (a+ r cos θ, b+ r sin θ)

for some real number θ.
Geometrically, (a, b) is the center of our circle, and r is the radius. θ is the angular position.

More precisely, let C = (a, b) be the center of our circle, let P be the rightmost point (a+ r, b) on
our circle, and let Q be the point (a+ r cos θ, b+ r sin θ). The angle ∠PCQ corresponds to θ in the
following sense. If θ is positve and we rotate the line segment CP counterclockwise by θ radians
about the center C, then we obtain the line segment CQ. If θ is negative and we rotate the line
segment CP clockwise by −θ radians about the center C, then we obtain the line segment CQ. If
θ = 0, then P = Q, so CP = CQ. Therefore, if θ is less than 2π in magnitude, then ∠PCQ = ±θ.
On the other hand, if θ can be greater than 2π in magnitude, then we have to subtract multiples
of 2π from ±θ in to obtain ∠PCQ. This is because, for example, rotating something 27◦ produces
the same orientation at rotating that something 387◦.

Now suppose that a particle is moving along our circle. Let (x(t), y(t)) be its position at time t.
There then exists a function θ(t) such that

(x(t), y(t)) = (a+ r cos θ(t), b+ r sin θ(t)).

Thinking of (x(t), y(t)) as position relative to (0, 0), let us use vector notation: (x(t), y(t)) =
x(t)̂i + y(t)ĵ. Differentiating x(t)̂i + y(t)ĵ with respect to t, we find that the velocity is

~v = −rdθ
dt

(sin θ(t))̂i + r
dθ

dt
(cos θ(t))ĵ.

Therefore, the speed is

v =

√(
−rdθ

dt
sin θ(t)

)2

+
(
r
dθ

dt
cos θ(t))

)2

=

√(
r
dθ

dt

)2 (
sin2 θ(t) + cos2 θ(t)

)
=

√(
r
dθ

dt

)2

= r

∣∣∣∣dθdt
∣∣∣∣ .

r is a constant, but dθ
dt is general not a constant. Therefore, speed is generally not constant in

circular motion. However, it is better to start with a simple model before generalizing to a more
complictation model. Therefore, let us restrict our attention to uniform circular motion, which
is circular motion with constant speed. The only way the speed r

∣∣dθ
dt

∣∣ can be constant is if dθ
dt is

constant.
Following tradition, let us define ω = dθ

dt . (There is also a term for dθ
dt : angular velocity.)

This abbreviation allows us to more compactly express the speed as r|ω| and the velocity as
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−rω(sin θ(t))̂i + rω(cos θ(t))ĵ. Differentiating velocity with respect to time, we find that the accel-
eration is

~a = −rωdθ
dt

(cos θ(t))̂i− rωdθ
dt

(sin θ(t))ĵ = −rω2(cos θ(t))̂i− rω2(sin θ(t))ĵ.

Therefore, the magnitude of accelaration is

a =
√

(−rω2 cos θ(t))2 + (−rω2 sin θ(t))2 =
√

(−rω2)2
(
cos2 θ(t) + sin2 θ(t)

)
=
√

(−rω2)2 = rω2.

Since the speed is v = r|ω|, we have ω = ±v/r. Therefore,

a = rω2 = r
(
±v
r

)2
=
v2

r
.

Moreover, ~a and ~v are perpendicular. Physically, this must be true: if acceleration is not
perpendicular to velocity, then the speed either increases or decreases, in contradiction with as-
sumption of uniform circular motion, i.e., constant speed. Algebraically, the vectors ~v and ~a are
perpendicular if their slopes sv and sa are reciprocal opposites, i.e., sv = −1/sa. The slope sa of
the acceleration vector is given by dividing its y-component by its x-component:

sa =
−rω2 sin θ(t)
−rω2 cos θ(t)

=
sin θ(t)
cos θ(t)

.

Likewise,

sv =
rω cos θ(t)
−rω sin θ(t)

= −cos θ(t)
sin θ(t)

= − 1
sa
.

Geometrically, ~a is an arrow that we can slide such that it points from (x(t), y(t)) towards the center
(a, b) of the circle. (One can check this algebraically: (âi + bĵ) − (x(t)̂i + y(t)ĵ) = −r cos θ(t)̂i −
r sin θ(t)ĵ = 1

ω2~a.) in other words, ~a points inward along a radius. On the other hand, ~v is an arrow
that, if we slide it to start at (x(t), y(t)), must point tangent to the circle. (That ~v points tangent
to the circle at position (x(t), y(t)) can proven mathematically from the definition of derivative,
or can be argued physically by considering how nontangential velocity would cause our particle to
go either inside or outside our circle.) Finally, as has been known since (at least) the time of the
ancient Greeks, whenever a tangent to a circle and a radius of that circle intersect at a point on
that circle, they intersect at a right angle. Thus, ~a and ~v are perpendicular.
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