PHYS 2325: 2D COLLISION

DAVID MILOVICH

Question. Imagine discs sliding on a flat sheet of ice. Disc A, with mass $m_{A}=0.35 \mathrm{~kg}$ and initial velocity $\overrightarrow{\boldsymbol{v}}_{A}=0.75 \hat{\boldsymbol{i}}(\mathrm{~m} / \mathrm{s})$, hits disc B, which has mass $m_{B}=0.95 \mathrm{~kg}$ and initial speed $v_{B}=0.00 \mathrm{~m} / \mathrm{s}$. After the collision, disc B has final velocity $\overrightarrow{\boldsymbol{v}}_{B}^{*}$ directed $\theta=42^{\circ}$ clockwise from $\hat{\boldsymbol{j}}$. For simplicity, assume that the collision is elastic and that friction (and all other external forces) and spin are negligible. What are the final velocities $\overrightarrow{\boldsymbol{v}}_{A}^{*}$ and $\overrightarrow{\boldsymbol{v}}_{B}^{*}$?

Answer. By definition of elastic collision, the total kinetic energy is conserved:

$$
\frac{1}{2} m_{A}\left(v_{A}^{*}\right)^{2}+\frac{1}{2} m_{B}\left(v_{B}^{*}\right)^{2}=K_{A}^{*}+K_{B}^{*}=K_{A}+K_{B}=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}
$$

Since all external forces are negligible, the total momentum is conserved:

$$
m_{A} \overrightarrow{\boldsymbol{v}}_{A}^{*}+m_{B} \overrightarrow{\boldsymbol{v}}_{B}^{*}=\overrightarrow{\boldsymbol{p}}_{A}^{*}+\overrightarrow{\boldsymbol{p}}_{B}^{*}=\overrightarrow{\boldsymbol{p}}_{A}+\overrightarrow{\boldsymbol{p}}_{B}=m_{A} \overrightarrow{\boldsymbol{v}}_{A}+m_{B} \overrightarrow{\boldsymbol{v}}_{B} .
$$

Break up this vector equation into x and y components.

$$
\left\{\begin{array}{l}
m_{A} v_{A x}^{*}+m_{B} v_{B x}^{*}=p_{A x}^{*}+p_{B x}^{*}=p_{A x}+p_{B x}=m_{A} v_{A x}+m_{B} v_{B x} \\
m_{A} v_{A y}^{*}+m_{B} v_{B y}^{*}=p_{A x}^{*}+p_{B x}^{*}=p_{A x}+p_{B x}=m_{A} v_{A y}+m_{B} v_{B y}
\end{array}\right.
$$

Thus, we have three equations and apparently six unknowns, $v_{A}^{*}, v_{A x}^{*}, v_{A y}^{*}, v_{B}^{*}, v_{B x}^{*}, v_{B y}^{*}$. However, we can use θ and a little geometry get the remaining equations we need. By elementary trigonometry, $v_{B x}^{*}=v_{B}^{*} \sin \theta$ and $v_{B y}^{*}=v_{B}^{*} \cos \theta$. Also, note that $v_{A x}=v_{A}, v_{A y}=0$, and $v_{B x}=v_{B y}=v_{B}=0$. Our three equations now simplify:

$$
\left\{\begin{aligned}
\frac{1}{2} m_{A}\left(v_{A}^{*}\right)^{2}+\frac{1}{2} m_{B}\left(v_{B}^{*}\right)^{2} & =\frac{1}{2} m_{A} v_{A}^{2} \\
m_{A} v_{A x}^{*}+m_{B} v_{B}^{*} \sin \theta & =m_{A} v_{A} \\
m_{A} v_{A y}^{*}+m_{B} v_{B}^{*} \cos \theta & =0
\end{aligned}\right.
$$

Solve the last two equations for $v_{A x}^{*}$ and $v_{A y}^{*}$:

$$
\left\{\begin{array}{l}
v_{A x}^{*}=v_{A}-m_{A}^{-1} m_{B} v_{B}^{*} \sin \theta \\
v_{A y}^{*}=-m_{A}^{-1} m_{B} v_{B}^{*} \cos \theta
\end{array}\right.
$$

Apply the Pythagorean Theorem to $\overrightarrow{\boldsymbol{v}}_{A}^{*}$:

$$
\begin{aligned}
\left(v_{A}^{*}\right)^{2} & =\left(v_{A x}^{*}\right)^{2}+\left(v_{A y}^{*}\right)^{2} \\
& =\left(v_{A}-m_{A}^{-1} m_{B} v_{B}^{*} \sin \theta\right)^{2}+\left(-m_{A}^{-1} m_{B} v_{B}^{*} \cos \theta\right)^{2} \\
& =v_{A}^{2}-2 v_{A} m_{A}^{-1} m_{B} v_{B}^{*} \sin \theta+m_{A}^{-2} m_{B}^{2}\left(v_{B}^{*}\right)^{2} \sin ^{2} \theta+m_{A}^{-2} m_{B}^{2}\left(v_{B}^{*}\right)^{2} \cos ^{2} \theta \\
& =v_{A}^{2}-2 v_{A} m_{A}^{-1} m_{B} v_{B}^{*} \sin \theta+m_{A}^{-2} m_{B}^{2}\left(v_{B}^{*}\right)^{2}
\end{aligned}
$$

Substitute this formula for $\left(v_{A}^{*}\right)^{2}$ into our simplified equation for the conservation of kinetic energy and solve for v_{B}^{*} :

$$
\begin{aligned}
\frac{1}{2} m_{A} v_{A}^{2} & =\frac{1}{2} m_{A}\left(v_{A}^{*}\right)^{2}+\frac{1}{2} m_{B}\left(v_{B}^{*}\right)^{2} \\
\frac{1}{2} m_{A} v_{A}^{2} & =\frac{1}{2} m_{A}\left(v_{A}^{2}-2 v_{A} m_{A}^{-1} m_{B} v_{B}^{*} \sin \theta+m_{A}^{-2} m_{B}^{2}\left(v_{B}^{*}\right)^{2}\right)+\frac{1}{2} m_{B}\left(v_{B}^{*}\right)^{2} \\
m_{A} v_{A}^{2} & =m_{A}\left(v_{A}^{2}-2 v_{A} m_{A}^{-1} m_{B} v_{B}^{*} \sin \theta+m_{A}^{-2} m_{B}^{2}\left(v_{B}^{*}\right)^{2}\right)+m_{B}\left(v_{B}^{*}\right)^{2} \\
m_{A} v_{A}^{2} & =m_{A} v_{A}^{2}-2 v_{A} m_{B} v_{B}^{*} \sin \theta+m_{A}^{-1} m_{B}^{2}\left(v_{B}^{*}\right)^{2}+m_{B}\left(v_{B}^{*}\right)^{2} \\
0 & =-2 v_{A} m_{B} v_{B}^{*} \sin \theta+m_{A}^{-1} m_{B}^{2}\left(v_{B}^{*}\right)^{2}+m_{B}\left(v_{B}^{*}\right)^{2} \\
0 & =v_{B}^{*}\left(-2 v_{A} m_{B} \sin \theta+m_{A}^{-1} m_{B}^{2} v_{B}^{*}+m_{B} v_{B}^{*}\right)
\end{aligned}
$$

The product of two quantities is zero exactly when one (or both) of the factors is zero. The first possibility, $v_{B}^{*}=0$, corresponds to the physical situation in which disc A merely passes by disc B without hitting it. By assumption, disc A actually hits disc B , so $v_{B}^{*} \neq 0$ and the other factor is zero:

$$
\begin{aligned}
0 & =-2 v_{A} m_{B} \sin \theta+m_{A}^{-1} m_{B}^{2} v_{B}^{*}+m_{B} v_{B}^{*} \\
0 & =-2 v_{A} m_{B} \sin \theta+\left(m_{A}^{-1} m_{B}^{2}+m_{B}\right) v_{B}^{*} \\
2 v_{A} m_{B} \sin \theta & =\left(m_{A}^{-1} m_{B}^{2}+m_{B}\right) v_{B}^{*} \\
2 v_{A} m_{A} m_{B} \sin \theta & =\left(m_{B}^{2}+m_{A} m_{B}\right) v_{B}^{*} \\
\frac{2 v_{A} m_{A} m_{B} \sin \theta}{m_{B}^{2}+m_{A} m_{B}} & =v_{B}^{*} \\
\frac{2 v_{A} m_{A} \sin \theta}{m_{B}+m_{A}} & =v_{B}^{*}
\end{aligned}
$$

Now plug our solution for v_{B}^{*} into $v_{A x}^{*}, v_{A y}^{*}, v_{B x}^{*}$, and $v_{B y}^{*}$. As an optional step, we can simplify using the double-angle formulas $\cos 2 \theta=1-2 \sin ^{2} \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$.

$$
\left\{\begin{array}{l}
v_{A x}^{*}=v_{A}-m_{A}^{-1} m_{B} v_{B}^{*} \sin \theta=v_{A}-\frac{2 v_{A} m_{B} \sin ^{2} \theta}{m_{B}+m_{A}}=\frac{v_{A}\left(m_{B}+m_{A}\right)}{m_{B}+m_{A}}-\frac{2 v_{A} m_{B} \sin ^{2} \theta}{m_{B}+m_{A}}=\frac{v_{A}\left(m_{A}+m_{B} \cos 2 \theta\right)}{m_{A}+m_{B}} \\
v_{A y}^{*}=-m_{A}^{-1} m_{B} v_{B}^{*} \cos \theta=-\frac{2 v_{A} m_{B} \sin \theta \cos \theta}{m_{B}+m_{A}}=-\frac{v_{A} m_{B} \sin 2 \theta}{m_{A}+m_{B}} \\
v_{B x}^{*}=v_{B}^{*} \sin \theta=\frac{2 v_{A} m_{A} \sin ^{2} \theta}{m_{A}+m_{B}}=\frac{v_{A} m_{A}(1-\cos 2 \theta)}{m_{A}+m_{B}} \\
v_{B y}^{*}=v_{B}^{*} \cos \theta=\frac{2 v_{A} m_{A} \sin \theta \cos \theta}{m_{B}+m_{A}}=\frac{v_{A} m_{A} \sin 2 \theta}{m_{A}+m_{B}}
\end{array}\right.
$$

Plugging in our given values for $m_{A}, m_{B}, v_{A}, \theta$ into our above solutions, we get:

$$
\begin{aligned}
\overrightarrow{\boldsymbol{v}}_{A}^{*}=v_{A x}^{*} \hat{\boldsymbol{i}}+v_{A y}^{*} \hat{\boldsymbol{j}} & =(0.259213 \hat{\boldsymbol{i}}-0.545075 \hat{\boldsymbol{j}})(\mathrm{m} / \mathrm{s}) \\
\overrightarrow{\boldsymbol{v}}_{B}^{*}=v_{B x}^{*}{ }_{\mathrm{i}}^{\boldsymbol{i}}+v_{B y}^{*} \hat{\boldsymbol{j}} & =(0.180816 \hat{\boldsymbol{i}}+0.200817 \hat{\boldsymbol{j}})(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

Rounding to 2 significant figures, our final answers are $\overrightarrow{\boldsymbol{v}}_{A}^{*}=(0.26 \hat{\boldsymbol{i}}-0.55 \hat{\boldsymbol{j}})(\mathrm{m} / \mathrm{s})$ and $\overrightarrow{\boldsymbol{v}}_{B}^{*}=$ $(0.18 \hat{\boldsymbol{i}}+0.20 \hat{\boldsymbol{j}})(\mathrm{m} / \mathrm{s})$.

Confirmation. Let us numerically test our answers. The momenta below are in meters per second; the kinetic energies are in Joules.

$$
\begin{aligned}
m_{A} v_{A x}+m_{B} v_{B x} & =(0.35)(0.75)+(0.95)(0)=0.2625 \\
m_{A} v_{A x}^{*}+m_{B} v_{B x}^{*} & =(0.35)(0.259213)+(0.95)(0.180816)=0.262500 \\
m_{A} v_{A y}+m_{B} v_{B y} & =(0.35)(0)+(0.95)(0)=0 \\
m_{A} v_{A y}^{*}+m_{B} v_{B y}^{*} & =(0.35)(-0.545075)+(0.95)(0.200817)=0.000000 \\
\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2} & =(0.5)(0.35)(0.5626)+(0.5)(0.95)(0)=0.0984375 \\
\frac{1}{2} m_{A}\left(v_{A}^{*}\right)^{2}+\frac{1}{2} m_{B}\left(v_{B}^{*}\right)^{2} & =\frac{1}{2} m_{A}\left(\left(v_{A x}^{*}\right)^{2}+\left(v_{A y}^{*}\right)^{2}\right)+\frac{1}{2} m_{B}\left(\left(v_{B x}^{*}\right)^{2}+\left(v_{B y}^{*}\right)^{2}\right) \\
& =(0.5)(0.35)(0.0671912+0.297106)+(0.5)(0.95)(0.0326946+0.0403274) \\
& =0.0984375
\end{aligned}
$$

