
[University Physics I (2325)] ROCKETRY

DAVID MILOVICH

Question. An amateur rocket has mass 1.00kg at launch, 0.90kg of which is fuel. The rocket flies
straight up, burning its fuel at a constant rate. The burn time in 1.50s; during the burn, the velocity
of the exhaust gas relative to the rocket is constantly 35m/s straight down. Ignore air resistance and
assume that gravitional acceleration is constantly −9.80m/s2. (The latter assumption is justified
provided the rocket doesn’t get too high.)

(1) What is the velocity of the rocket at the end of the burn?
(2) What is the height of the rocket at the end of the burn?
(3) What is the maximum height attained by the rocket?

Answer. As argued in lecture (and in section 9.10 of the textbook), if the velocity of the rocket
is ~v and its mass is M , then

(1) M
d~v

dt
=
∑

~F ext +
dM

dt
~u = M~g +

dM

dt
~u.

where
∑

~F ext = M~g is the net external force—just gravity—and ~u is the relative velocity of the
exhaust gas.

Let the positive y-direction be up, making ~g = −9.80ĵ(m/s2) and ~u = −35ĵ(m/s). We first
need to find the change in ~v over the burn time. Multiply equation (1) by dt

M :

(2) d~v = ~g dt + ~u
dM

M
.

Let time 0 be the start of the burn. Let ~v1 = ~0 and M1 = 1.00kg denote the initial velocity and
mass at time t1 = 0. Let ~v2 and M2 = 0.10kg denote the velocity and mass at time t2 = 1.50s
Integrating (2), we have

~v2∫
~v1

d~v = ~g

t2∫
t1

dt + ~u

M2∫
M1

dM

M

~v2 − ~v1 = ~g(t2 − t1) + ~u ln
M2

M1

~v2 −~0 = −9.80(m/s2)ĵ(1.50s)− 35(m/s)ĵ ln
0.10kg

1.00kg

~v2 = 65.890478(m/s)ĵ = 66(m/s)ĵ

Next, we must find the change in position of the rocket over the burn time.
To do this, we will need a more specific expression of how M changes with time. Let b = dM

dt .
Since the instantaneous burn rate b is constant, b equals to the average burn rate ∆M

∆t = −.90kg
1.50s =

−.60kg/s. Therefore, M = M1 + bt.
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If ~r is the rocket’s position vector, and ~r1 = ~0 and ~r2 are the positions at times t1 and t2, then
we can find ∆~r = ~r2 − ~r1 by integrating (2) twice:

~v∫
~v1

d~v = ~g

t∫
t1

dt + ~u

M∫
M1

dM

M

~v − ~v1 = ~g(t− t1) + ~u ln
M

M1

d~r

dt
= ~v = ~gt + ~u ln

M1 + bt

M1

d~r = ~gt dt + ~u ln
M1 + bt

M1
dt

~r2∫
~r1

d~r = ~g

t2∫
t1

t dt + ~u

t2∫
t1

ln
(

1 +
bt

M1

)
dt

For the last integral, make the substitution w = 1 + bt
M1

(so dw = b
M1

dt):

~r2 − ~r1 =
1
2
~g(t2

2 − t2
1) + ~u

w2∫
w1

(ln w)
(

M1

b
dw

)

~r2 −~0 =
1
2
~g(t2

2 − 02) +
M1~u

b

w2∫
w1

ln w dw

where w1 = 1 + bt1
M1

= 1 and w2 = 1 + bt2
M1

= 0.10. Using integration by parts, one can prove that∫
ln w dw = w(ln w − 1) + c. Use f(w) = ln w and g′(w) = 1:∫

ln w dw =
∫

fg′ dw = fg −
∫

gf ′ dw

= (ln w)w −
∫

w

(
1
w

)
dw

= w ln w −
∫

dw

= w ln w − w + c

= w(ln w − 1) + c

Therefore:

~r2 −~0 =
1
2
~g(t2

2 − 02) +
M1~u

b
(w(ln w − 1))

∣∣∣w2

w1

~r2 =
1
2
~gt2

2 +
M1~u

b
(w2(ln w2 − 1)− w1(ln w1 − 1))

~r2 =
1
2

(−9.80m/s2)ĵ(1.50s)2 +
1.00kg(−35m/s)ĵ

−0.60kg/s
(0.1(ln 0.1− 1)− 1(ln 1− 1))

~r2 = −(4.90m)ĵ(2.25) +
35m

0.60
(0.1(−2.3025851− 1)− 1(0− 1))ĵ

~r2 = (28.043254m)ĵ

So, the rocket has height 28m at the end of the burn.
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Immediately after the burn, the rocket has upward velocity, and so it will continue to rise until
some later time t3 when the velocity ~v3 is ~0. Between times t2 and t3, the change in kinetic energy
is

∆K =
1
2
M2(v2

3 − v2
2) = −1

2
M2v

2
2.

Ignoring air resistance, total energy E = K +U is conserved, so ∆U = −∆K where ∆U = M2g∆ry

is the change in potential energy. Hence,
1
2
M2v

2
2 = −∆K = ∆U = M2g∆ry

v2
2

2g
= ∆ry

221.50791m = ∆ry

249.55117m = r2y + ∆ry = r3y

So, the maximum height of the rocket is 250m.
Space launches. For a rocket going into space, it is no longer a good approximation to assume

that gravitational acceleration is constant. One should replace the gravitational force M~g with
−GMmE r̂/r2 where G is the universal gravitational constant, mE is Earth’s mass, r̂ is the unit
vector pointing from the center of the earth to the rocket, and r is the distance from the center of
the earth to the rocket. This change to equation (1) makes it much more difficult to solve.

Besides non-constant gravitational acceleration, one must also take into account the spinning of
Earth, as well as air resistance, making for a truly three-dimensional vector problem. (The reason
NASA launches from Texas and Florida is that Earth spins faster there than in more northerly
states.)
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