ESTIMATING SUMS WITH INTEGRALS

Suppose you want to estimate $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\frac{1}{5^{3}}+\cdots$. From the integral test,

$$
\int_{1}^{\infty} \frac{d x}{x^{3}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{3}} \leq \int_{1}^{\infty} \frac{d x}{x^{3}}+\frac{1}{1^{3}}
$$

We evaluate the above improper integral and see that it converges to $1 / 2$:

$$
\int_{1}^{\infty} x^{-3} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x^{-3} d x=\lim _{t \rightarrow \infty}\left(\left.\frac{x^{-2}}{-2}\right|_{1} ^{t}\right)=\lim _{t \rightarrow \infty}\left(\frac{t^{-2}}{-2}-\frac{1^{-2}}{-2}\right)=\lim _{t \rightarrow \infty}\left(-\frac{1}{2 t^{2}}+\frac{1}{2}\right)=\frac{1}{2} .
$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges, and it converges to something between $\frac{1}{2}$ and $\frac{1}{2}+\frac{1}{1^{3}}=\frac{3}{2}$.
We can get a much better estimate as follows. First, evaluate part of $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$, say, the sum of the first 9 terms, $\sum_{n=1}^{9} \frac{1}{n^{3}}$, by simply adding them together:

$$
\sum_{n=1}^{9} \frac{1}{n^{3}}=\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\frac{1}{5^{3}}+\frac{1}{6^{3}}+\frac{1}{7^{3}}+\frac{1}{8^{3}}+\frac{1}{9^{3}} \approx 1.196531986
$$

Second, estimate the rest of the sum, $\sum_{n=10}^{\infty} \frac{1}{n^{3}}=\frac{1}{10^{3}}+\frac{1}{11^{3}}+\frac{1}{12^{3}}+\cdots$, using integral test estimates:

$$
\begin{gathered}
\int_{10}^{\infty} \frac{d x}{x^{3}} \leq \sum_{n=10}^{\infty} \frac{1}{n^{3}} \leq \int_{10}^{\infty} \frac{d x}{x^{3}}+\frac{1}{10^{3}} \\
\int_{10}^{\infty} \frac{d x}{x^{3}}=\lim _{t \rightarrow \infty}\left(\left.\frac{x^{-2}}{-2}\right|_{10} ^{t}\right)=\lim _{t \rightarrow \infty}\left(\frac{t^{-2}}{-2}-\frac{10^{-2}}{-2}\right)=\lim _{t \rightarrow \infty}\left(-\frac{1}{2 t^{2}}+\frac{1}{200}\right)=\frac{1}{200} . \\
.005=\frac{1}{200}=\int_{10}^{\infty} \frac{d x}{x^{3}} \leq \sum_{n=10}^{\infty} \frac{1}{n^{3}} \leq \int_{10}^{\infty} \frac{d x}{x^{3}}+\frac{1}{10^{3}}=\frac{1}{200}+\frac{1}{1000}=.006
\end{gathered}
$$

Finally, we add our value for $\sum_{n=1}^{9} \frac{1}{n^{3}}$ to our estimate of $\sum_{n=10}^{\infty} \frac{1}{n^{3}}$ to get an estimate of $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$:

$$
\begin{gathered}
1.196531986+.005 \approx \sum_{n=1}^{9} \frac{1}{n^{3}}+\int_{10}^{\infty} \frac{d x}{x^{3}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{3}} \leq \sum_{n=1}^{9} \frac{1}{n^{3}}+\int_{10}^{\infty} \frac{d x}{x^{3}}+\frac{1}{10^{3}} \approx 1.196531986+.006 \\
1.201531986 \leq \sum_{n=1}^{\infty} \frac{1}{n^{3}} \leq 1.202531986 .
\end{gathered}
$$

My computer (using a more advanced estimation technique) says that $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=1.2020569032 \ldots$ (correct to ten decimal places), in agreement with our estimate.

In general, the integral test tells us that if $p>1$, then

$$
\frac{1}{p-1}=\int_{1}^{\infty} \frac{d x}{x^{p}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{p}} \leq \int_{1}^{\infty} \frac{d x}{x^{p}}+\frac{1}{1^{p}}=\frac{p}{p-1}
$$

To get a better a estimate, we pick a number K, compute the first $K-1$ terms of the sum directly, and then estimate the rest using the integral test:

$$
\begin{aligned}
& \sum_{n=1}^{K-1} \frac{1}{n^{p}}+\int_{K}^{\infty} \frac{d x}{x^{p}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{p}} \leq \sum_{n=1}^{K-1} \frac{1}{n^{p}}+\int_{K}^{\infty} \frac{d x}{x^{p}}+\frac{1}{K^{p}} \\
& \sum_{n=1}^{K-1} \frac{1}{n^{p}}+\frac{1}{(p-1) K^{p-1}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{p}} \leq \sum_{n=1}^{K-1} \frac{1}{n^{p}}+\frac{1}{(p-1) K^{p-1}}+\frac{1}{K^{p}} .
\end{aligned}
$$

The difference between our lower and upper bounds is $\frac{1}{K^{p}}$, so by adding up the first $K-1$ terms, and then adding the appropriate integral, we get an estimate with an error less than $\frac{1}{K^{p}}$.

The formula $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is important enough to have its own abbreviation, $\zeta(p)$ (pronounced "zeta of p"). There's a $\$ 1,000,000$ prize for anyone who can answer a certain famous question about the ζ function. Google "Riemann Hypothesis."

