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Abstract. We define branch product topologies, a new product construction.
Branch product topologies generalize sum topologies and product topologies.
We investigate criteria for branch products or iterations of branch products
to preserve various topological properties, focusing on the separation axioms
and compactness. In particular, we generalize the Tychonoff Theorems for
compactness and D-compactness.

Introduction

Product topologies may be defined by declaring open the preimages of open
sets by coordinates projection maps. We might visualize such a preimage as the
set of strings passing through a hole of “open” shape. There is a similar way to
topologize the set of maximal chains of a poset. We choose as special certain subsets
of the poset. Then, for each special subset, we declare open the set of maximal
chains intersecting that subset. This construction, which we call the branch product
topology, generalizes both the product topology and sum topology. Going further,
we may perform a kind of of iteration of the branch product construction which
also generalizes sums and products.

Naturally, we investigate whether various classes of topologies preserved by prod-
ucts and sums are also preserved by branch products and iterations thereof. Our
results for branch products are mixed. For iterations of branch products, which are
actually equivalent to branch products of a special form, all our results are positive
except for a specifically constructed counterexample.

Since many important topological classes are not preserved by both products
and sums, we look for restrictions on branch products and iterations thereof that
allow for nontrivial extensions of known preservation theorems for these properties.
To get positive results about topological properties not preserved by products, such
as normality, we examine the special case of branch product topologies of maximal
chains of trees, which still generalize sum topologies. To get positive results about
compactness, which is not preserved by sums, we examine restricted forms of branch
product iterations that generalize products and finite sums but not arbitrary sums.

1. Preliminaries

Definition 1.1. Let X be a nonempty poset. A branch of X is a maximal chain
of X. Let B(X) denote the set of all branches of X. A semibranch is an initial
segment of a branch. A semibranch is proper if it is not a branch. Let S (X) denote
the set of all proper semibranches of X. For each S ∈ S (X), define the fork of
S to be the set of minimal strict upper bounds of S, and denote the fork of S by
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FX(S). For each E ⊆ X, let BX(E) denote the set of branches of X that intersect
E.

Remark 1.2. From the above definitions it is immediate that the every fork is an
antichain; hence, the intersection of a fork and a chain contains at most one element.

Definition 1.3. By the previous remark, if C is a chain in X and S ∈ S (X) and
C∩FX(S) 6= ∅, then C∩FX(S) is a singleton, and we denote its element by C@S.
For each S ∈ S (X), let πS denote the map from BX(FX(S)) to FX(S) given by
πS(A) = A@S for all A ∈ BX(FX(S)).

We henceforth assume X is well-founded. Thus, FX(S) 6= ∅ for all S ∈ S (X).
Moreover, all semibranches are well-ordered, allowing us to make the following
definition.

Definition 1.4. For every α ∈ On, we define Sα to be the unique semibranch R
such that R ⊆ S and the order type of R is the minimum of the order type of S and
the order type of α. Define h(S) to be the minimum ordinal α for which Sα = S.

From this definition, we can immediately conclude the following proposition.
The proof is a simple application of transfinite induction.

Proposition 1.5. Let S be a semibranch and let α ∈ On.
(1) If α < h(S), then Sα+1 = S ∪ {S@Sα}.
(2) If α is a limit ordinal, then Sα =

⋃
β<α Sβ.

(3) A branch B can be defined recursively by defining B@Bα in terms of Bα

for each α < h(B). More precisely, given a function f : S (X) → X such
that f(S) ∈ FX(S) for all S ∈ S (X), there is a unique branch B such that
B@Bα = f(Bα) for all α < h(B).

Branch product topologies over X are constructed by giving each fork of X a
topology and then using these topologies to a topologies on the set of branches
B(X). As a subset of X, a fork is simply referred to as a fork, but in the context
of its topology, it is referred to as a fork space. The formal definition of branch
product topologies is given below.

Definition 1.6. For each S ∈ S (X), let TS be a topology on FX(S). Thus,
〈FX(S) , TS〉 is a fork space. We define the branch product topology on B(X)
by declaring {BX(U) : S ∈ S (X) , U ∈ TS} to be a subbasis of open sets.
When the topologies of the fork spaces are not clear from the context, we use
B

(
X, 〈TS〉S∈S(X)

)
to denote the set B(X) together with the branch product topol-

ogy induced by the topologies 〈TS〉S∈S(X).

As shown by the next two examples, branch products generalize sums and prod-
ucts.

Example 1.7. Let α ∈ On and let Xβ be a nonempty topological space for each
β < α. Assume that these spaces are pairwise disjoint. Let X =

⋃
β<α Xβ . For all

p, q ∈ X, we declare p ≤ q if p = q or there exist β, γ ∈ On such that γ < β < α and
p ∈ Xγ and q ∈ Xβ . Then every fork is equal to Xβ for some β < α, and we give
this fork the corresponding topology. Then the branch product topology makes
B(X) homeomorphic to

∏
β<α Xβ ; hence, the branch product topology generalizes

the product topology.
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Example 1.8. Let A be a nonempty set. For each a ∈ A, let Ba be a nonempty set.
Assume that these sets are pairwise disjoint. Let X = A∪⋃

a∈A Ba. For all p, q ∈ X,
we declare p ≤ q if p = q or if p ∈ A and q ∈ Bp. Then S (X) = {∅}∪{{a} : a ∈ A}.
If, for every a in A, we give Ba a topology and declare the T{a} to be that topology,
then, regardless of our choice for T∅, the space B(X) is homeomorphic to

⋃
a∈A Ba

with the sum topology. Hence, the branch product topology generalizes the sum
topology.

The following theorem gives an equivalent formulation of the branch product
topology in terms of continuous maps.

Theorem 1.9. The branch product topology on B(X) is the coarsest topology on
B(X) with the property that πS is continuous and BX(FX(S)) is open for all
S ∈ S (X).

Proof. Let S ∈ S (X). Then πS is clearly continuous with respect to the branch
product topology on B(X). Indeed, if U ∈ TS , then π−1

S (U) = BX(U), which is
open in the branch product topology. Also, FX(S) ∈ TS ; hence, BX(FX(S)) is
open in the branch product topology.

Conversely, suppose O is a topology on B(X) such that πS is continuous and
BX(FX(S)) ∈ O for all S ∈ S (X). Then, for each S ∈ S (X) and U ∈ TS , we have
BX(U) = π−1

S (U); hence, there exists U ∈ O such that U ∩BX(FX(S)) = BX(U).
Since BX(FX(S)) ∈ O, we have BX(U) ∈ O. Therefore, O is finer than the
branch product topology. ¤

As general as branch products are, they are clearly ways to generalize them.
Instead of using the open subsets of fork spaces of X to induce a topology on
B(X), why not use other subsets of X? Furthermore, if we do not require these
other subsets to have anything to do with forks, then why require X to well-
founded? The following definition makes these generalizations. Before we state it,
let us agree that Y henceforth denotes a nonempty and not necessarily well-founded
poset.

Definition 1.10. Given E ⊆ P(Y ) such that BY (
⋃ E) = B(Y ), let B(Y, E) denote

B(Y ) with the coarsest topology for which BY (E) is open for all E ∈ E . The
topology of B(Y, E) is called the E-induced branch product topology.

The requirement BY (
⋃ E) = B(Y ) ensures that {BY (E) : E ∈ E} is a subbasis

of open sets for B(Y, E). Moreover, using this notation, we have

B

(
X,

⋃

S∈S(X)

TS

)
= B

(
X, 〈TS〉S∈S(X)

)
.

Thus, the branch product topology of Definition 1.6 is just a particular E-induced
branch product topology; we might call it the fork-space-induced branch product
topology.

The drawback of generalizing to arbitrary E-induced branch products is that it
doesn’t make sense to say whether they preserve a topological property, for E is
generally just a subset of P(Y ), not a collection of topological spaces such as fork
spaces. However, it still makes sense to say whether a branch product iteration
(defined in Section 4) preserves a topological property in the more general setting
of E-induced branch products. Moreover, all of our results about branch product
iterations preserving topological properties hold in this more general setting.
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Of course, they are many other ways to topologize set of branches. For exam-
ple, given E ⊂ P(Y ), consider B(Y ) the weakest topology for which BY (E) is
closed for all E ∈ E . Let Bc(Y, E) denote B(Y ) with this topology, which we call
the E-induced closed branch product topology. Then Bc(X) is homeomorphic to∏

β<α Xβ in Example 1.7. Moreover, although we will not prove this in this paper,
the Tychonoff Theorem has generalizations both for branch product iterations and
for closed branch product iterations. But Bc(X) is not generally homeomorphic to⋃

a∈A Ba with the sum topology in Example 1.8. Moreover, while branch product
topologies are shown to preserve the T2 axiom in Section 2, we also there give an
example of an X for which Bc(X) is not Hausdorff, even if all the fork spaces
of X are discrete. For these reasons, we primarily investigate the branch product
topology.

Let us briefly mention one other topologization of B(X). Consider sets of the
form

⋂
U∈E BX(U) where E is a set of disjoint open subsets of fork spaces of X.

If the collection of all such sets is declared to be a subbasis, then B(X) remains
homeomorphic to

⋃
a∈A Ba with the sum topology in Example 1.8, but becomes

homeomorphic to
∏

β<α Xβ with the box topology in Example 1.7. We might call
this topologization of B(X) the branch box product topology.

2. Separation Axioms T0 Through T3 1
2

In this section, we examine when branch products preserve separation axioms
and when they break them.

The usual product topology preserves the separation axioms T0 through T3 1
2
.

Sum topologies preserve these separation axioms as well. Which of the separation
axioms are preserved by branch products, which generalize topological sums and
cartesian products? In general, only T0 through T2 are preserved, as shown next.

Proposition 2.1. Suppose E,F ⊆ X and E ∪ F is an antichain. Then

BX(E ∩ F ) = BX(E) ∩BX(F ) .

In particular, if S ∈ S (X) and E and F are disjoint subsets of FX(S), then
BX(E) and BX(F ) are disjoint.

Proof. That BX(E ∩ F ) ⊆ BX(E) ∩ BX(F ) is clear. Let us show the reverse
inclusion. Let A ∈ BX(E) ∩BX(F ). Then there exist e ∈ A ∩ E and f ∈ A ∩ F .
Since E ∪ F is an antichain and A is a chain, e = f . Thus, A ∈ BX(E ∩ F ). ¤

Theorem 2.2. Let i ∈ {0, 1, 2}. Let all the fork spaces of X satisfy the Ti axiom.
Then B(X) satisfies the Ti axiom.

Proof. The proof is a straightforward application of Proposition 2.1. Let A and B
be distinct branches. Let S be the maximal semibranch contained in A ∩B. Then
A@S 6= B@S. If FX(S) is a T0 space, then it has an open subset U containing
exactly one of A@S and B@S; hence, BX(U) contains exactly one of A and B. If
FX(S) is a T1 space, then it has an open subset U containing A@S but not B@S;
hence, BX(U) contains A but not B. If FX(S) is a T2 space, then it has disjoint
open subsets U and V such that A@S ∈ U and B@S ∈ V ; hence, BX(U) and
BX(V ) are disjoint, A ∈ BX(U), and B ∈ BX(V ). ¤

In contrast to the above theorem, the next example shows that Bc(X) need not
be Hausdorff, even when all fork spaces of X are discrete.
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Example 2.3. Let X =
⋃

n<ω{an, bn}∪{c, d}. Define ≤ by requiring the following:
(1) S (X) = {{an : n < α} : α ≤ ω};
(2) FX({an : n < ω}) = {c, d};
(3) FX({am : m < n}) = {an, bn} for each n < ω.

Give every fork of X the discrete topology. Then the collection of sets of the form
B(X) \BX(F ) for a finite F ⊆ X is a basis of open sets for Bc(X). Let C and D
respectively denote the branches {an : n < ω} ∪ {c} and {an : n < ω} ∪ {d}. Thus,
if Bc(X) is Hausdorff, then there exists finite sets E, F ⊆ X such that C 6∈ BX(E)
and D 6∈ BX(F ) and BX(E ∪ F ) = B(X). Suppose such E and F exist. Then
E ⊆ {bn : n < ω} ∪ {c} and F ⊆ {bn : n < ω} ∪ {d}. Moreover, since E and F are
finite, there exists k < ω such that bk 6∈ E ∪ F . Hence,

{aj : j < k} ∪ {bk} 6∈ BX(E ∪ F ) ,

which contradicts BX(E ∪ F ) = B(X). Thus, Bc(X) is not Hausdorff.

Let us return to considering B(X) with the branch product topology, and when
it preserves the higher separation axioms.

Example 2.4. Branch products do not preserve any of the separation axioms T3

through T6. Let FX(∅) = {0} × R and give it the order topology of R. Let
K = {1/(n + 1) : n < ω}. For all x ∈ R \K, let FX({〈0, x〉}) = {〈1, 0〉}. Let X
have no other forks. Then B(X) is homeomorphic to R with the topology generated
by the basis consisting of the open intervals and their intersections with R \K. In
this topology, K is closed but 0 and K do not have disjoint open neighborhoods;
hence, B(X) is not a T3 space, despite the fact that all the fork spaces of X are T6

(perfectly normal Hausdorff) spaces.

Working with an arbitrary nonempty tree instead of an arbitrary nonempty
well-founded poset leads to many nice results. In particular, branch product topolo-
gies over trees preserve the T3 and T3 1

2
axioms. Henceforth, let W be a nonempty

tree.

Proposition 2.5. The set {BW (U) : U ∈ TS , S ∈ S (W )} is a basis for B(W ).

Proof. It suffices to show that {BW (U) : U ∈ TS , S ∈ S (W )} is closed under
pairwise intersections. Let S, S′ ∈ S (W ) and U ∈ TS and U ′ ∈ TS′ . Suppose there
exists B ∈ BW (U)∩BW (U ′). Then S, S′ ⊆ B. Thus, S ( S′ or S′ ( S or S = S′.
In the first case

BW (U ′) ⊆ BW (FW (S′)) ⊆ BW ({S′@S}) ⊆ BW (U) .

Whence, BW (U)∩BW (U ′) = BW (U ′). Likewise, BW (U)∩BW (U ′) = BW (U) in
the second case. In the third case, U ∪ U ′ ⊆ FW (S); hence, U ∪ U ′ is antichain;
hence, BW (U) ∩BW (U ′) = BW (U ∩ U ′) and U ∩ U ′ ∈ TS . ¤

Lemma 2.6. Suppose all fork spaces of W satisfy the T1 axiom. Then, for all
S ∈ S (W ) and for all V closed in FW (S), the subspace BW (V ) is closed.

Proof. Suppose S ∈ S (W ) and V is closed in FW (S) and A ∈ B(W ) \BW (V ).
Let T = A ∩ S. Suppose T ( S. Then A@T 6= S@T ; hence, there exists U ∈ TT

such that A@T ∈ U and S@T 6∈ U . Thus, A ∈ BW (U) and, by Proposition 2.1,
BW (U) is disjoint from BW ({S@T}), which contains BW (FW (S)), which contains
BW (V ). Suppose S = T . Then A@S 6∈ V ; hence, there exists U ∈ TS such
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that A@S ∈ U and U ∩ V = ∅. Thus, A ∈ BW (U) and, by Proposition 2.1,
BW (U) ∩BW (V ) = ∅. ¤

Theorem 2.7. Suppose all fork spaces of W satisfy the T3 axiom. Then B(W )
satisfies the T3 axiom.

Proof. Let C be a closed subset of B(W ) and let A be a branch not in C. By
Proposition 2.5, there exist S ∈ S (W ) and U ∈ TS such that A ∈ BW (U) and
C ∩BW (U) = ∅. Choose V ∈ TS such that A@S ∈ V and V ⊆ U . By Lemma 2.6,
B(W ) \ BW

(
V

)
is open. Moreover, B(W ) \ BW

(
V

)
contains C and is disjoint

from BW (V ), which contains A. Thus, A and C are separated by open sets. ¤

Theorem 2.8. Suppose all fork spaces of W satisfy the T3 1
2

axiom. Then B(W )
satisfies the T3 1

2
axiom.

Proof. Let C be a closed subset of B(W ) and let A be a branch not in C. By
Proposition 2.5, there exist S ∈ S (W ) and U ∈ TS such that A ∈ BW (U) and
C∩BW (U) = ∅. Set V = FW (S)∩⋃ C. Then U∩V = ∅; hence, U∩V = ∅. Choose
f : FW (S) → [0, 1] such that f is continuous, f(A@S) = 1, and f(V ) ⊆ {0}. Define
g : BW (FW (S)) → [0, 1] by g = f ◦ πS . Then g is continuous. By Lemma 2.6,
BW (FW (S)) is clopen; hence, we may extend g to a continuous map from B(W )
to [0, 1] by setting g(B) = 0 for all B ∈ B(W ) \BW (FW (S)). Then g(A) = 1 and
g(C) ⊆ {0}. ¤

3. Nonjaggedness

Branch product topologies over trees do not preserve the T4 axiom. Indeed, we
have the following general result.

Theorem 3.1. Suppose M is a class of topological spaces and M is hereditary
with respect to closed subspaces but not with respect to all subspaces. Then there is
a tree W with all its fork spaces are in M, but B(W ) is not in M.

Proof. First, note that M must contain a nonempty topological space, for all sub-
spaces of the empty space are closed. Therefore, we may choose FW (∅) to be a topo-
logical space inM with a subspace K that is not inM. For each p ∈ FW (∅)\K, let
FW ({p}) be an arbitrary nonempty topological space in M. Let W have no other
forks. Then BW ({p}) = {{p}} for all p ∈ K; hence, BW (K) and K are homeomor-
phic when given their respective subspace topologies; hence, BW (K) 6∈ M. Since
BW (K) = B(W ) \⋃

p∈FW(∅)\K BW (FW ({p})), the subspace BW (K) is closed in
B(W ). Therefore, B(W ) 6∈ M. ¤

Many topological properties are hereditary with respect to closed subspaces but
not with respect to all subspaces. Examples include normality, compactness, local
compactness, paracompactness, and most variants of compactness and paracom-
pactness. Thus, the negative result of Theorem 3.1 applies to all these properties.
The crucial part of the proof of this theorem is the construction of a pathological
closed subspace. By making a mild additional assumption, we can often avoid such
subspaces.

Definition 3.2. We say that a fork space of W is nonjagged if the subspace of
points in the fork that are maximal in W is closed.
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Theorem 3.3. Suppose all fork spaces of W are normal and nonjagged. Then
B(W ) is normal.

Proof. Let V and V ′ be disjoint closed subsets of B(W ). For each S ∈ S (W ), set

VS = {p ∈ FW (S) : V ∩BW ({p}) 6= ∅},
and define V ′

S analogously. Let MS denote the set of elements of VS that are
maximal in W ; define M ′

S analogously.
Let us show that BW

(
MS

) ⊆ V. Suppose p ∈ MS . Then p is maximal in W ;
hence, there is a unique branch A that contains p. Suppose A 6∈ V. Then there
exist T ∈ S (W ) and U ∈ TT such that A ∈ BW (U) and V ∩ BW (U) = ∅. In
particular, S ∪ {q} 6∈ BW (U) for all q ∈ MS . If T = S, then U ∈ TS ; whence,
U ∩MS = ∅; whence, U ∩MS = ∅; whence, p 6∈ U ; whence, A 6∈ BW (U), which is
absurd. Therefore, T 6= S. Moreover, since p is the maximum of A, we have T ⊆ S.
Thus, T ( S. Thus, for all q ∈ MS , we have

S ∪ {q} ∈ BW (FW (S)) ⊆ BW ({S@T}) = BW ({A@T}) ⊆ BW (U) ,

which is absurd. Therefore, BW

(
MS

) ⊆ V. Similarly, BW

(
M ′

S

) ⊆ V ′.
Let us show that MS ∩ V ′

S = ∅. Suppose p ∈ MS ∩ V ′
S . Set A = S ∪ {p}. Since

p ∈ MS , the point p is maximal in W . Therefore, A ∈ BW

(
MS

) ⊆ V. Hence,
A 6∈ V ′. Hence, there exist T ∈ S (W ) and U ∈ TT such that A ∈ BW (U) and
BW (U) ∩ V ′ = ∅. Clearly, T ⊆ S. If T = S, then U ∩ V ′

S = ∅; whence, p 6∈ V ′
S ,

which is absurd. Thus, T ( S. Since p ∈ V ′
S , we have V ′

S 6= ∅. Therefore, choose
q ∈ V ′

S and B ∈ BW ({q}) ∩ V ′. Then

B ∈ BW (FW (S)) ⊆ BW ({S@T}) = BW ({A@T}) ⊆ BW (U) .

Hence, BW (U) ∩ V ′ 6= ∅, a contradiction. Therefore, MS ∩ V ′
S = ∅. Similarly,

M ′
S ∩ VS = ∅.
Choose Y ′

S , ZS ∈ TS such that V ′
S ⊆ Y ′

S and MS ⊆ ZS and Y ′
S ∩ ZS = ∅.

Similarly, choose YS , Z ′S ∈ TS such that VS ⊆ YS and M ′
S ⊆ Z ′S and YS ∩ Z ′S = ∅.

Set US = YS∩ZS and U ′
S = Y ′

S∩Z ′S . Then US∩U ′
S = ∅. Moreover, since MS ⊆ VS ,

we have MS ⊆ YS ; hence, MS ⊆ US . Similarly, M ′
S ⊆ U ′

S . Moreover, since V ′
S ⊆ Y ′

S

and US ∩ Y ′
S ⊆ ZS ∩ Y ′

S = ∅, we have US ∩ V ′
S = ∅. Similarly, U ′

S ∩ VS = ∅.
Define A to be the set of S ∈ S (W ) for which BW (FW (S)) ∩ V 6= ∅ and

BW (FW (S)) ∩ V ′ = ∅. Similarly, define A′ to be the set of S ∈ S (W ) for which
BW (FW (S)) ∩ V ′ 6= ∅ and BW (FW (S)) ∩ V = ∅. Also, define A′′ to be the set of
S ∈ S (W ) for which BW (FW (S)) ∩ V 6= ∅ and BW (FW (S)) ∩ V ′ 6= ∅. Set

U =
⋃

S∈A
BW (FW (S)) ∪

⋃

S∈A′′
BW (US) and

U ′ =
⋃

S∈A′
BW (FW (S)) ∪

⋃

S∈A′′
BW (U ′

S) .

Then U and U ′ are open. Let us show they are disjoint. For each S ∈ A and
S′ ∈ A′, we have BW (FW (S)) * BW (FW (S′)) * BW (FW (S)). Since W is a
tree, we have S * S′ * S. Therefore, again using the fact that W is a tree, we
have BW (FW (S)) ∩BW (FW (S′)) = ∅.

Suppose S ∈ A′′ and S′ ∈ A′. Then S 6= S′. If S * S′ * S, then

BW (FW (S)) ∩BW (FW (S′)) = ∅;
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Whence, BW (US)∩BW (FW (S′)) = ∅. Suppose S′ ( S. Let A ∈ BW (FW (S))∩V.
Since BW (FW (S)) ⊆ BW ({S@S′}) = BW ({A@S′}), we have A ∈ BW (FW (S′)),
in contradiction with the definition of A′. Therefore, S ( S′. Consequently,
BW (FW (S′)) ⊆ BW ({S′@S}). Hence, by the definitions of A′ and V ′

S , we have
S′@S ∈ V ′

S ; hence, S′@S 6∈ US . By Proposition 2.1, BW (US) ∩BW ({S′@S}) = ∅.
Thus, BW (US) ∩ BW (FW (S′)) = ∅. Similarly, if S ∈ A and S′ ∈ A′′, then
BW (FW (S)) ∩BW (U ′

S′) = ∅.
Now suppose S, S′ ∈ A′′. If S * S′ * S, then BW (FW (S))∩BW (FW (S′)) = ∅;

whence, BW (US)∩BW (U ′
S′) = ∅. If S = S′, then US ∩U ′

S′ = ∅; whence, by Propo-
sition 2.1, BW (US) ∩BW (U ′

S′) = ∅ . If S ( S′, then BW (U ′
S′) ⊆ BW ({S′@S});

whence, S′@S ∈ V ′
S ; whence, S′@S 6∈ US ; whence, by Proposition 2.1,

BW (US) ∩BW (U ′
S′) ⊆ BW (US) ∩BW ({S′@S}) = ∅.

Similarly, if S′ ( S, then BW (US) ∩BW (U ′
S′) = ∅. Therefore, U ∩ U ′ = ∅.

Let us show that V ⊆ U . Suppose A ∈ V. Since A 6∈ V ′, there exist S ∈ S (W )
and U ∈ TS such that A ∈ BW (U) and BW (U) ∩ V ′ = ∅. Suppose A@S is not
maximal in W . Then BW (FW (S ∪ {A@S})) = BW ({A@S}) ⊆ BW (U). Hence,
BW (FW (S ∪ {A@S})) ∩ V ′ = ∅; hence, S ∪ {A@S} ∈ A; hence, A ∈ U . Suppose
A@S is maximal in W . Then A@S ∈ MS ; hence, A@S ∈ US ; hence, A ∈ U . Thus,
V ⊆ U . Similarly, V ′ ⊆ U ′. Therefore, V and V ′ are separated by open sets. ¤

Theorem 3.4. Suppose all fork spaces of W are paracompact and nonjagged. Then
B(W ) is paracompact.

Proof. Let U be an open cover of B(W ). We inductively define a locally finite open
refinement of U with union B(W ). The existence of such a refinement suffices to
prove the theorem.

Suppose α ∈ On and we have the following:
(1) {Aβ : β < α} is a pairwise disjoint set of ⊆-antichains of proper semi-

branches;
(2) if β < α and S ∈ Aβ and T is a proper semibranch contained in S, then

there exists γ ≤ β such that T ∈ Aγ ;
(3) if β < α and S ∈ Aβ , then ES,β is a subset of TS whose union contains all

elements of FW (S) that are maximal in W ;
(4) {BW (U) : U ∈ ES,β} is a locally finite refinement of U for each β < α and

S ∈ Aβ ;
(5) if β, γ < α and S ∈ Aβ and T ∈ Aγ and T ( S, then S@T 6∈ ⋃ ET,γ .

Let Bα be the set of ⊆-minimal elements of S (W ) \⋃
β<αAβ . Let Aα be the

set of S ∈ Bα for which there is no β < α and T ∈ Aβ such that T ( S and
S@T ∈ ⋃ ET,β . Suppose S ∈ Aα. If there exist T ∈ S (W ) and U ∈ U such that
T ( S and BW ({S@T}) ⊆ U , then set ES,α = {FW (S)}. Suppose such T and U
do not exist. Let MS denote the set of elements of FW (S) that are maximal in W .
If MS = ∅, then set ES,α = ∅. Suppose MS 6= ∅. Then, for each p ∈ MS , there exist
Up ∈ TS and Up ∈ U such that p ∈ Up and BW (Up) ⊆ Up. Since MS is closed and
FW (S) is paracompact, we may choose ES,α to be a locally finite open cover of MS

that refines {Up : p ∈ MS}. Hence, {BW (U) : U ∈ ES,α} is a refinement of U.
Let us show that {BW (U) : U ∈ ES,α} is locally finite. Suppose A ∈ B(W ) and

every neighborhood of A intersects
⋃

U∈ES,α
BW (U). Then BW (FW (S)), which

contains
⋃

U∈ES,α
BW (U) and is closed by Lemma 2.6, must also contain A. Let
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V be a neighborhood of A@S that only intersects finitely many members of ES,α.
Then BW (V ) only intersects finitely many elements of {BW (U) : U ∈ ES,α}.

By the definition of Bα and the containment of Aα in Bα, we have (1) and (2)
if α + 1 replaces α. By the definition of Aα, we have (5) if α + 1 replaces α. By
what we have already shown about ES,α for each S ∈ Aα, we have (3) and (4) if
α + 1 replaces α. If λ is 0 or a limit ordinal, and (1)-(5) are satisfied for all α < λ,
then clearly (1)-(5) are satisfied if α = λ. Thus, by induction, (1)-(5) are satisfied
for every ordinal α.

For each α ∈ On, define Vα as follows:

(3.1) Vα =
⋃

β<α

⋃

S∈Aβ

{BW (U) : U ∈ ES,β}.

By (3), all elements of Vα are open. By (4), Vα is a refinement of U. Let us show
that Vα is locally finite. Suppose β, γ < α and S ∈ Aβ and T ∈ Aγ and U ∈ ES,β

and V ∈ ET,γ and BW (U) ∩BW (V ) 6= ∅. Then BW (FW (S)) is not disjoint from
BW (FW (T )); hence, S ⊆ T or T ⊆ S, for W is a tree. If S ( T , then T@S 6∈ U
by (5); whence,

∅ = BW (U) ∩BW ({T@S}) ⊇ BW (U) ∩BW (FW (T )) ⊇ BW (U) ∩BW (V ) ,

which is absurd. Therefore, T ⊆ S. By symmetry, S ⊆ T ; hence, S = T . Hence,
by (1), β = γ. Therefore, the unions in (3.1) are disjoint unions. Moreover, by (4),
the set {BW (U) : U ∈ ES,β} is locally finite for all β < α and S ∈ Aβ . Hence,
Vα is locally finite. Therefore, it suffices to prove that Vα covers B(W ) for some
ordinal α.

Let A ∈ B(W ). Suppose there exists S ∈ S (W ) \⋃
α∈OnAα such that S ⊆ A.

Choose S to be as small as possible. Then there exists α ∈ On such that S is
a ⊆-minimal element of S (W ) \ ⋃

β<αAβ . Therefore, by definition of Aα, there
exist β < α and T ∈ Aβ such that T ( S and A@T = S@T ∈ ⋃ ET,β . Therefore,
A ∈ ⋃

Vα.
Suppose every proper semibranch contained in A is in

⋃
α∈OnAα. Further sup-

pose A has no maximum. Since A ∈ ⋃
U, there exist R ∈ S (W ) and U ∈ TR and

U ∈ U such that A@R ∈ U and BW (U) ⊆ U . Set S = R ∪ {A@R}. Then S ∈ Aα

for some α ∈ On. Moreover, by definition, ES,α = {FW (S)}. Set T = S ∪ {A@S}.
Then T@S ∈ FW (S) =

⋃ ES,α; hence, by (5), T 6∈ ⋃
β∈OnAβ , which is absurd.

Therefore, A has a maximum. Set S = A \ {max A}. Then there exists α ∈ On
such that S ∈ Aα. By (3), A@S ∈ ⋃ ES,α; hence, A ∈ ⋃

Vα+1.
Thus, for each A ∈ B(W ), there exists ξ(A) ∈ On such that A ∈ ⋃

Vξ(A).
Therefore, B(W ) =

⋃
Vξ where ξ = sup{ξ(A) : A ∈ B(W )}. ¤

The arguments used to prove the above theorem about paracompactness also
apply to topological dimension.

Theorem 3.5. Let n < ω. Suppose all fork spaces of W are nonjagged and have
topological dimension at most n. Then B(W ) has topological dimension at most n.

Proof. The argument is the same as in the proof of Theorem 3.4. Wherever they
are mentioned, simply respectively replace paracompactness, local finiteness, and
finiteness with having topological dimension at most n, having order at most n+1,
and having cardinality at most n + 1. ¤
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In the special case of nonjaggedness where W is a tree with no maximal elements,
the branch product topology collapses in the sense that it is independent of the fork
topologies. Thus, even assuming all forks are nonjagged, B(W ) may have lower
topological dimension than all of its fork spaces.

Theorem 3.6. The branch product topology on B(W ) is independent of the topolo-
gies of the fork spaces which have no elements maximal in W .

Proof. Let A be the set of S ∈ S (W ) such that FW (S) has no elements maximal
in W . Fix the topologies of all fork spaces except FW (S) for S ∈ A. Then the
coarsest possible branch product topology of B(W ) is induced by giving FW (S)
the indiscrete topology for each S ∈ A. Likewise, the finest possible branch product
topology of B(W ) is induced by giving FW (S) the discrete topology for each S ∈ A.
Let S ∈ A and E ⊆ FW (S). Since W is a tree and no elements of FW (S) are
maximal in W , we have

BW (E) =
⋃

p∈E

BW (FW (S ∪ {p})) .

Hence, BW (E) is open in B(W ) even if FW (S) is given the indiscrete topology for
each S ∈ A. Thus, the coarsest possible branch product topology of B(W ) is finer
than the finest. Therefore, the branch product topology of B(W ) does not depend
on the topology of FW (S) for S ∈ A. ¤

Corollary 3.7. Suppose W is a tree with no maximal elements. Then the branch
product topology on B(W ) is independent of the topologies of the fork spaces. More-
over, B(W ) is Hausdorff and has topological dimension 0 (and is therefore para-
compact).

Proof. The first statement of the corollary immediately follows from Theorem 3.6.
Let us prove the second statement. Every fork space is nonjagged because it has
no maximal elements. Moreover, we may assume every fork space is discrete, and
hence is Hausdorff and has topological dimension 0. By Theorems 2.2 and 3.5,
B(W ) is paracompact Hausdorff and has topological dimension 0. ¤

Remark 3.8. A T1 space with topological dimension 0 is easily shown to be zero-
dimensional in the sense of having a basis of clopen sets.

The next example shows that Corollary 3.7 may not be extended to conclude
B(W ) is locally compact or perfectly normal.

Example 3.9. Let W =
⋃

α<ω1

({aα} ∪ {bα,n : n < ω}) and let

(3.2) aβ > aα < bα,n < bα,n+1 and bα,0 6≤ aβ

for all α < β < ω1 and n < ω. The relations in (3.2) uniquely define the ordering
of W . Moreover, W is a tree without maximal elements, and Corollary 3.7 applies.
However, the singleton {{aα : α < ω1}} is closed but is not a Gδ set in B(W );
hence, B(W ) is not perfectly normal; hence, B(W ) is not metrizable. Moreover,
B(W ) is not locally compact: if α < ω1, then

{
BW ({bα+n,0}) : n < ω} ∪ {BW ({aα+ω})

}

is an open cover of the clopen set BW ({aα}), and it has no finite subcover; hence,
no neighborhood of the branch {aα : α < ω1} has compact closure.
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4. Branch Product Iterations

Before defining iterated branch products, we need some additional notation.
Henceforth, let Xp be a nonempty poset and let Ep ⊆ P(Xp) satisfy BXp(

⋃ Ep) =
B(Xp) for each p ∈ Y . Assume that Xp ∩Xq = ∅ for all distinct p, q ∈ Y . Let Z
be the ordered sum

∑
p∈Y Xp and let E =

⋃
p∈Y Ep.

Definition 4.1. We say that B(Z, E) is the iterated branch product of the spaces
B(Xp, Ep) for which p ∈ Y .

Since B(Xp, Ep) could be an iterated branch product for any p ∈ Y , we can
iterate branch products arbitrarily many times, justifying the term “iterated.” Also,
B(Z, E) is the E-induced branch product by definition. Moreover, if Y and Xp are
well-founded for all p ∈ Y , then B(Z) E can be defined in terms of branch products
induced by fork spaces, as shown below.

Lemma 4.2. Suppose Y and Xp are well-founded for all p ∈ Y . Then, for each
S ∈ S (Z), there is a unique y ∈ Y such that

FZ(S) = FXy (S ∩Xy) ,

or there is a unique I ⊆ Y such that FZ(S) =
⋃

p∈I FXp(∅). Moreover, if both
such a y and I exist, then I = {y} and S ∩Xy = ∅.
Proof. Let S ∈ S (Z). Let p ∈ FZ(S) and let y ∈ Y satisfy p ∈ Xy. Suppose p is
not minimal in Xy. Then S ∩Xy is cofinal in S; whence, FXy (S ∩Xy) = FZ(S).
Moreover, there is at most one y such that S∩Xy is cofinal in S, for Z is an ordered
sum of {Xr : r ∈ Y }. Suppose p is minimal in Xy. Let q ∈ FZ(S) be arbitrary
and let z ∈ Y satisfy q ∈ Xz. Suppose q is not minimal in Xz. Then we have

FXz (S ∩Xz) = FZ(S) ;

hence, p ∈ Xz; hence, y = z. Since q is not minimal in Xz but is a minimal strict
upper bound of S, there exists r ∈ S∩Xz. Therefore, p is not a strict upper bound
of S, for p is minimal in Xz. This situation is absurd. Therefore, q is minimal in
Xz. Thus, there exists I ⊆ Y such that FZ(S) ⊆ ⋃

y∈I FXy (∅).
Since Xu ∩Xv = ∅ for all distinct u, v ∈ Y , there is a smallest such I, and hence

we may choose I to be as small as possible. Then FXw(∅) ∩ FZ(S) 6= ∅ for all
w ∈ I. Suppose w ∈ I and r ∈ FXw(∅)∩FZ(S) and s ∈ FXw(∅) \FZ(S). Since r
is minimal in Xw and is a strict upper bound of S, every element of Xw, including
s, is a strict upper bound of S. Since s is not a minimal strict upper bound of
S, there exists t ∈ Z such that t is less than s and is a strict upper bound of S.
Since s is minimal in Xw, there exists v ∈ Y such that t ∈ Xv and v is less than w.
But then t is also less than r, which is absurd. Therefore, FZ(S) =

⋃
y∈I FXy (∅).

Moreover, for any J such that FZ(S) =
⋃

y∈J FXy (∅), we have I = J because
Xu ∩Xv = ∅ for all distinct u, v ∈ Y .

Finally, suppose y ∈ Y and I ⊂ Y satisfy

FZ(S) = FXy (S ∩Xy) =
⋃

p∈I

FXp(∅) .

Then clearly I = {y}. Hence, FXy (S ∩Xy) = FXy (∅). Finally, S∩Xy = ∅ because
forks of nonempty proper semibranches of Xy do not contain minimal elements of
Xy. ¤
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Definition 4.3. Suppose Y and Xp are well-founded for each p ∈ Y . For each
p ∈ Y and S ∈ S (Xp), let Tp,S be a topology of FXp

(S). For each S ∈ S (Z),
if FZ(S) = FXp

(S ∩Xp) for some p ∈ Y , then set OS = Tp,S∩Xp
. If FZ(S) =⋃

p∈E FXp(∅) for some E ⊆ Y , then let OS be the sum topology on FZ(S) induced
by 〈Tp,∅〉p∈E . By Lemma 4.2, it is legitimate to define the sum branch product
topology of B(Z) to be the branch product topology of B

(
Z, 〈OS〉S∈S(X)

)
.

Theorem 4.4. Supose Y and Xp are well-founded for each p ∈ Y . Further suppose
that Ep =

⋃
S∈S(Xp) Tp,S. Then the topology of B(Z, E) is the sum branch product

topology of B(Z).

Proof. For each S ∈ S (Z) and U ∈ OS , the set U is a union of elements of E
by definition. Thus, BZ(U) is open in B(Z, E). Conversely, suppose p ∈ Y and
U ∈ Ep. Then there exists S ∈ S (Xp) such that U ∈ Tp,S . Let T ∈ S (Y )
satisfy p ∈ FY (T ). For each q ∈ T , choose Aq ∈ B(Xq). Suppose S 6= ∅.
Then U ∈ OR for any R ∈ S (Z) for which S = R ∩ Xp. Such an R always
exists: an example is S ∪ ⋃

q∈T Aq. Thus, BZ(U) is open in the sum branch
product topology. Suppose S = ∅. Set R =

⋃
q∈T Aq. Then R ∈ S (Z) and

FZ(R) =
⋃

q∈FY(T ) FXq (∅). Therefore, U ∈ Tp,∅ ⊆ OR. Thus, BZ(U) is open in
the sum branch product topology. Thus, the topology of B(Z, E) is the sum branch
product topology of B(Z), for each topology has a subbasis of open sets also open
in the other topology. ¤

Unlike branch products, branch product iterations preserve all the separation
axioms preserved by sums and products. This is because, up to homeomorphism,
branch product iterations can be constructed using the familiar topological opera-
tions of products, sums, and subspaces, as shown by the next theorem.

Lemma 4.5. Suppose p ∈ Y . Then BZ(Xp) is clopen

Proof. Suppose A ∈ B(Z)\BZ(Xp). Then π(A) ∈ B(Y )\BY ({p}). Since π(A) is
a maximal chain, there exists q ∈ π(A) such that p and q are incomparable. Thus,
A ∈ BZ(Xq), which is open in B(Z, E) and disjoint from BZ(Xp). ¤
Theorem 4.6. Let C be a topological class hereditary with respect to subspaces and
closed under finite sums and products of |Y |-many spaces. Suppose B(Xp, Ep) ∈ C
for all p ∈ Y . Then B(Z, E) ∈ C.
Proof. We construct an element of C homeomorphic to B(Z, E). Let Λ be a
nonempty member of C, such as B(Xp, Ep) for some p ∈ Y . Fix λ ∈ Λ. For
each p ∈ Y , let Mp be the topological sum of B(Xp, Ep) and Λ. Given a partial
function f on Y , let ζ(f) be the unique extension of f to a complete function on
Y for which ζ(f)(p) = λ for all p ∈ Y \ dom f . Set M =

∏
p∈Y Mp; set

N =
⋃

A∈B(Y )



ζ(f) : f ∈

∏

p∈A

B(Xp)





and give it the subspace topology induced by M . Then N ∈ C.
Let us show that B(Z, E) is homeomorphic to N . For each A ∈ B(Z), let η(A)

denote the partial function on Y for which η(A)(p) = A∩Xp for all p ∈ Y for which
A∩Xp 6= ∅ and η(A)(p) is undefined otherwise. Set θ = ζ ◦ η. Then θ is a bijection
from B(Z, E) to N because dom η(A) ∈ B(Y ) for all A ∈ B(Z).
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Let us show that θ is a homeomorphism. Let O denote the topology of Λ. Set
Op = O ∪ {BXp

(E) : E ∈ Ep}. Then Op is a subbasis for Mp. Hence,
⋃

p∈Y {{f ∈
N : f(p) ∈ U} : U ∈ Op} is a subbasis for N . Suppose p ∈ Y and U ∈ Op. If
U = BXp(E) for some E ∈ Ep, then θ−1

({f ∈ N : f(p) ∈ U}) = BZ(E), which
is open. If λ ∈ U ∈ O, then θ−1

({f ∈ N : f(p) ∈ U}) = B(Z) \BZ(Xp), which
is open by Lemma 4.5. If λ 6∈ U ∈ O, then {f ∈ N : f(p) ∈ U} = ∅. Thus, θ is
continuous. Furthermore, θ is open because θ(BZ(E)) = {f ∈ N : f(p) ∈ BXp(E)}
for all E ∈ Ep and {BZ(E) : E ∈ E} is a subbasis for B(Z, E). Thus, θ is a
homeomorphism. ¤

Corollary 4.7. The T0 axiom, the T1 axiom, the T2 axiom, regularity, complete
regularity, total disconnectedness, and the property of having a basis of clopen sub-
sets are each preserved by branch product iterations. Moreover, if Y is countable
and B(Xp, Ep) is metrizable for all p ∈ Y , then B(Z, E) is metrizable.

Corollary 4.7 mentions the most commonly used topological properties that are
preserved by sums and products. Since these properties are all also hereditary
with respect to subspaces, the following example of a topological class closed under
products and sums but not under branch product iterations is necessarily a bit
obscure.

Definition 4.8. For any set E, let [E]1 denote the set of singleton subsets of E.

Example 4.9. Let D denote the closure of the class of discrete spaces with respect
to sums and products. A nondiscrete space in D must be constructed using infinite
products; hence, such a space has cardinality at least 2ℵ0 .

Let us construct a countable nondiscrete space that is a branch product iteration
of discrete spaces. Let Y be the unique poset satisfying Y = {an, bn : n < ω} and
S (Y ) = {{am : m < n} : n < ω} and FY ({a−m : m < n}) = {an, bn}. For
each p ∈ Y , let Xp be a singleton. Then B(Z, E) is homeomorphic to B

(
Y, [Y ]1

)
.

Moreover, B(Y ) is countable and B
(
Y, [Y ]1

)
is not discrete because the branch

{an : n, ω} is not isolated. Thus, branch product iterations strictly generalize sums
and products.

Note that B
(
Y, [Y ]1

)
is homeomorphic to B(Y ) with the branch product topol-

ogy induced by giving each fork the discrete topology. Thus, there is a branch
product not in D but induced by fork spaces all in D. Hence, branch products also
strictly generalize sums and products.

5. The Tychonoff Theorem

The Tychonoff Theorem has a very nice generalization in terms of branch product
iterations. The proof is similar to that of the usual Tychonoff Theorem.

Theorem 5.1. The space B(Z, E) is compact if and only if B
(
Y, [Y ]1

)
is compact

and B(Xp, Ep) is compact for all p ∈ Y .

Proof. Let π : B(Z) → P(Y ) be given by π(A) = {p ∈ Y : A ∩Xp 6= ∅}. It is clear
that the range of π is exactly B(Y ).

Suppose B
(
Y, [Y ]1

)
is not compact. By the Alexander Subbasis Theorem, there

exists I ⊆ Y such that BY (I) = B(Y ) but BY (F ) ( B(Y ) for all finite F ⊆ I.
Set J = {BZ(Xp) : p ∈ I}. Then J is an open cover of B(Z, E): if A ∈ B(Z), then
π(A) ∈ B(Y ); whence, π(A) ∩ I 6= ∅; whence, A ∩Xp 6= ∅ for some p ∈ I; whence,
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A ∈ ⋃
J. Suppose F is a finite subset of I. Then there exists B ∈ B(Y ) \BY (F ).

For each p ∈ B, choose Ap ∈ B(Xp). Then
⋃

p∈B Ap is a branch of Z not in⋃
p∈F BZ(Xp). Therefore, J has no finite subcover; hence, B(Z, E) is not compact.
Suppose B(Xp, Ep) is not compact for some p ∈ Y . By the Alexander Subbasis

Theorem, there exists A ⊆ Ep such that {BXp(I) : I ∈ A} is a cover of B(Xp) with
no finite subcover. Consequently, {BZ(I) : I ∈ A} is a cover of BZ(Xp) with no
finite subcover. Thus, to prove that B(Z, E) is not compact, it suffices to note that
BZ(Xp) is closed in B(Z, E) by Lemma . refbranchiteratesingletonclosedLEM.

Suppose B
(
Y, [Y ]1

)
is compact and B(Xp, Ep) is compact for all p ∈ Y . Further

suppose H ⊆ E and
⋃

I∈HBZ(I) = B(Z). By the Alexander Subbasis Theorem,
it suffices to prove that H has a finite subset H′ such that

⋃
I∈H′ BZ(I) = B(Z).

For each p ∈ Y , set Hp = H ∩ P(Xp). Define J as follows:

J =
{

p ∈ Y :
⋃

I∈Hp

BXp
(I) = B(Xp)

}
.

Suppose BY (J) = B(Y ). Since B
(
Y, [Y ]1

)
is compact, there is a finite set F ⊆ J

such that BY (F ) = B(Y ). For each p ∈ F , there is a finite set H′p ⊆ Hp such that⋃
I∈H′p BXp(I) = B(Xp), by compactness. Now let A be an arbitrary branch of

Z. Then π(A) contains an element of F , say p. Then A ∩ Xp, which is a branch
of Xp, intersects an element of H′p. Set H′ =

⋃
p∈F H′p. Then H′ has the desired

properties.
Suppose BY (J) ( B(Y ). Then there exists B ∈ B(Y ) such that B ∩ J = ∅.

Hence, for each p ∈ B, there exists a branch Ap of Xp that is not in
⋃

I∈Hp
BXp(I).

Set A =
⋃

p∈B Ap. Then A ∈ B(Z) \⋃
p∈B

⋃
I∈Hp

BZ(I). Since E ⊆ ⋃
p∈Y P(Xp),

we have H =
⋃

p∈Y Hp. Therefore, A 6∈ ⋃
I∈HBZ(I), a contradiction. Thus,

B(Z, E) is compact. ¤

Corollary 5.2 (Tychonoff Theorem). Suppose I is a set and Xi is a topological
space for each i ∈ I. Then

∏
i∈I Xi is compact if and only if Xi is compact for all

i ∈ I.

Proof. We may assume that I 6= ∅ and Xi 6= ∅ for all i ∈ I. We may further assume
that Xi ∩Xj = ∅ for all distinct i, j ∈ I. For each i ∈ I, let Oi be the topology of
Xi. Give I an arbitrary linear ordering and, for each i ∈ I, order Xi such that it
is an antichain. Then B(Xi,Oi) is homeomorphic to Xi. Set P =

∑
i∈I Xi. Then

B
(
P,

⋃
i∈I Oi

)
is homeomorphic to

∏
i∈I Xi. Since B(I) is a singleton, B

(
I, [I]1

)
is

compact. Thus, by Theorem 5.1, B
(
P,

⋃
i∈I Oi

)
is compact if and only if B(Xi,Oi)

is compact for all i ∈ I. Thus,
∏

i∈I Xi is compact if and only if Xi is compact for
all i ∈ I. ¤

Theorem 5.1 has an analogue for sum branch product topologies.

Theorem 5.3. Supose Y and Xp are well-founded for each p ∈ Y . Further suppose
that Ep =

⋃
S∈S(Xp) Tp,S. Then B(Z, E) with the sum branch product topology is

compact if and only if the space

B
(
Y, 〈P(FY (S))〉S∈S(Y )

)

is compact and B
(
Xp, 〈Tp,S〉S∈S(Xp)

)
is compact for all p ∈ Y .
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Proof. By definition, B
(
Xp, 〈Tp,S〉S∈S(Xp)

)
is equal to B(Xp, Ep). Moreover, the

space
B

(
Y, 〈P(FY (S))〉S∈S(Y )

)

is clearly equal to B
(
Y, [Y ]1

)
. Thus, by Theorem 5.1, it suffices to note that, by

Theorem 4.4, B
(
Z,

⋃
p∈Y E

)
is just B(Z) with the sum branch product topology.

¤

By the same argument as the proof of Corollary 5.2, when Y is a chain, The-
orem 5.1 reduces to the Tychonoff Theorem, for in this case, B(Y ) is a singleton
and B(Z, E) is easily checked to be homeomorphic to

∏
p∈Y B(Xp, Ep). It is nat-

ural to ask which posets P besides chains are such that B
(
P, [P ]1

)
is compact.

By the Alexander Subbasis Theorem, B
(
P, [P ]1

)
is compact if and only if, for

every E ⊆ P such that BP (E) = B(P ), there exists a finite set F ⊆ E such
that BP (F ) = B(P ). This characterization has the advantage of conciseness, but
it gives us very little direct information about P . For well-founded posets, next
theorem remedies this deficiency.

Definition 5.4. Given S ∈ S (X), we say that S is capped if S contains an element
p such that BX({p}) ⊆ BX(FX(S)).

Remark 5.5. If S ∈ S (X) and S has a maximum, then the minimal strict up-
per bounds of max S are exactly the minimal strict upper bounds of S; whence,
BX({max S}) ⊆ BX(FX(S)); whence, S is capped. Thus, whether a proper semi-
branch is capped is only an interesting question when it has no maximum.

Lemma 5.6. Let P be a nonempty poset. Then BP ({p}) is clopen in B
(
P, [P ]1

)
for all p ∈ P .

Proof. Simply note that BP ({p}) = B(P ) \⋃
p6≤q 6≤q BP ({q}). ¤

Theorem 5.7. The space B
(
X, [X]1

)
is compact if and only if every fork in X is

finite and every nonempty proper semibranch of X is capped.

Proof. Suppose B
(
X, [X]1

)
is compact. Let S ∈ S (X). Let A =

⋂
p∈S BX({p}).

By Lemma 5.6, A is closed; hence, it is compact. Moreover, a branch A is in A if
and only if it contains S. Therefore, {BX({p}) : p ∈ FX(S)} is an open cover of
A with no proper subcover. Hence, FX(S) is finite.

Further suppose S ∈ S (X) \ {∅}. Let us show that S is capped. Set

Vp = BX({p}) \BX(FX(S))

for each p ∈ S. By Lemma 5.6, Vp is closed for all p ∈ S. Suppose A ∈ ⋂
p∈S Vp.

Then A contains S. Therefore, A intersects FX(S); hence, A 6∈ ⋃
p∈S Vp. This

situation is absurd; hence,
⋂

p∈S Vp = ∅.
By compactness, there exists a finite set F ⊆ S such that

⋂
p∈F Vp = ∅. Since

S is a chain, so is F . Suppose Vmax F is nonempty. Then choose A ∈ Vmax F .
Set A′ = {p ∈ S : p ≤ maxF} and A′′ = {p ∈ A : p ≥ max F}. Then A′ ∪ A′′

is a branch of X. Let us show that A′ ∪ A′′ ∈ ⋂
p∈F Vp. First, F ⊆ A′; hence,

A′ ∪A′′ ∈ ⋂
p∈F BX({p}). Second, A′ ⊆ S and A′′ ⊆ A and

S ∩FX(S) = A ∩FX(S) = ∅;
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hence, A′ ∪A′′ 6∈ BX(FX(S)). Thus, A′ ∪A′′ ∈ ⋂
p∈F Vp, which is absurd. There-

fore, Vmax F = ∅; hence, S is capped. Thus, the “only if” part of the theorem
holds.

Let us prove the “if” part. Suppose every fork in X is finite and every nonempty
proper semibranch of X is capped. Further suppose E ⊆ X and BX(E) = B(X).
Then it suffices to prove that BX(F ) = B(X) for some finite set F ⊆ E. Suppose
that no such F exists. Then it suffices to find a branch A such that A∩E = ∅, for
this contradicts BX(E) = B(X).

By Proposition 1.5, we may define A by defining A@Aα in terms of Aα for
every α < h(A). Suppose α ∈ On and Aα is a proper semibranch such that
BX({p}) * BX(F ) for all p ∈ Aα and for all finite subsets F of E. Suppose, for each
q ∈ FX(Aα), that there exists a finite set Fq ⊆ E such that BX({q}) ⊆ BX(Fq).
Set G =

⋃
q∈FX(Aα) Fq. Then G is finite because FX(Aα) is finite. If Aα = ∅,

then B(X) = BX(FX(∅)) ⊆ BX(G), in contradiction with our assumption that
BX(F ) 6= B(X) for all finite subsets F of E. Therefore, Aα 6= ∅; hence, Aα is
capped; hence, there exists p ∈ Aα such that BX({p}) ⊆ BX(FX(Aα)) ⊆ BX(G),
which is absurd. Therefore, there exists q ∈ FX(Aα) such that BX({q}) * BX(F )
for all finite subsets F of E. Let A@Aα be such a q. Then, by induction, every
element p of A is such that BX({p}) * BX(F ) for all finite subsets F of E.
Therefore, p 6∈ E for all p ∈ A; hence, A ∩ E = ∅. ¤

For a tree W , the compactness of B
(
W, [W ]1

)
comes close to imposing finiteness

of proper semibranches. The next theorem makes this statement more precise.
However, the proof of this theorem requires some new notation as well as several
lemmas.

Definition 5.8. Given a poset P , let <′P be the set of ordered pairs 〈p, q〉 in P 2

for which p is the maximum strict lower bound of q and q is the minimum strict
upper bound of p. Let ∼P be the finest equivalence relation that contains <′P . If
P is clear from the context, then <′P and ∼P may be respectively abbreviated by
<′ and ∼.

Remark 5.9. For every poset P , all ∼P -classes are clearly chains.

Lemma 5.10. Suppose P is a poset. Then ∼P is compatible with the ordering of
P .

Proof. Let ≤ denote the ordering of P . Suppose p, p′, q, q′ ∈ P and

p′ ∼ p < q ∼ q′ 6∼ p.

It suffices to show that p′ < q′. To do so, we first show that p′ < q. Since p ∼ p′, we
have p ≤ p′ or p′ ≤ p. If p′ ≤ p, then p′ < q. Suppose p ≤ p′ 6< q. Then p′ ∼ p ≤ p′;
hence, there exist n < ω and r0, . . . , rn ∈ P such that

p = r0 <′ r1 <′ · · · <′ rn = p′.

Let m be the minimal ordinal not greater than n such that rm 6< q. Then m > 0.
Therefore, rm−1 < q and rm is the minimum strict upper bound of rm−1; hence,
q ≥ rm and q 6> rm; hence, q = rm; hence, p ∼ q, which is absurd. Therefore,
p′ < q.

Since q ∼ q′, we have q ≤ q′ or q′ ≤ q. If q ≤ q′, then p′ < q′. Suppose
p′ 6< q′ ≤ q. Since q ∼ q′ ≤ q, there exist n < ω and r0, . . . , rn ∈ P such that
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q′ = r0 <′ r1 <′ · · · <′ rn = q. Let m be the maximum ordinal not greater than
n such that p′ 6< rm. Then m < n. Therefore, p′ < rm+1 and rm is the maximum
strict lower bound of rm+1; hence, p′ ≤ rm and p′ 6< rm; hence, p′ = rm; hence,
p′ ∼ q, which is absurd. Therefore, p′ < q′. ¤

Lemma 5.11. Suppose P is a poset and Q = P/≈ where ≈ is an equivalence
relation on P that is compatible with the ordering of P and whose classes are all
chains. Then B

(
P, [P ]1

)
is homeomorphic to B

(
Q, [Q]1

)
.

Proof. Define f : B(P ) → P(Q) by f(A) = {p/≈ : p ∈ A} for all A ∈ B(P ).
Since ≈ is compatible with the ordering of P , the poset P is an ordered sum of
its ≈-classes. Since these classes are all chains, every branch of P is a union of
≈-classes. Thus, f is a bijection from B(P ) to B(Q). Let us show that f is
a homeomorphism from B

(
P, [P ]1

)
to B

(
Q, [Q]1

)
. If p ∈ P and A ∈ BP ({p}),

then clearly f(A) ∈ BQ({p/≈}). Conversely, if p ∈ P and B ∈ BQ({p/≈}), then
f−1(B) ∈ BP ({p}), for f−1(B) is a union of ≈-classes. Thus, f bijects BP ({p})
onto BQ({p/≈}) for each p ∈ P . Hence, f sends a subbasis of B

(
P, [P ]1

)
to a

subbasis of B
(
Q, [Q]1

)
, and f−1 sends a subbasis of B

(
Q, [Q]1

)
to a subbasis of

B
(
P, [P ]1

)
. ¤

Lemma 5.12. Suppose P is a poset. Then there exists a poset Q such that ∼Q is
discrete and B

(
P, [P ]1

)
is homeomorphic to B

(
Q, [Q]1

)
. Moreover, if P is a tree,

then we may choose Q to be a tree.

Proof. Set Q0 = P and let ≈0 denote the equality relation on P . Given α ∈ On
and Qα and an equivalence relation ≈α such that Qα = P/≈α, let ≈α+1 be the set
of ordered pairs 〈p, q〉 ∈ P 2 such that p/≈α∼Qα q/≈α. Set Qα+1 = P/≈α+1. Since
every ∼Qα-class is a chain, if every ≈α-class is a chain, then so is every ≈α+1-class.
Moreover, since ∼Qα is compatible with the ordering of Qα by Lemma 5.10, if ≈α

is compatible with the ordering of P , then so is ≈α+1.
Given a limit ordinal λ and equivalence relations 〈≈α〉α<λ, set ≈λ=

⋃
α<λ ≈α.

Suppose that every ≈α-class is a chain and ≈α⊆≈β for all α < β < λ. Then ≈λ

is an equivalence relation and every ≈λ-class is a chain. Set Qλ = P/≈λ. Further
suppose that ≈α is compatible with the ordering of P for all α < λ. Then ≈λ is
compatible with the ordering of P : if p, p′, q, q′ ∈ P and p′ ≈λ p < q ≈λ q′ 6≈λ p
where ≤ is the ordering of P , then p′ ≈α p < q ≈α q′ 6≈α p for some α < λ; whence,
p′ < q′.

By induction, for all α ∈ On, the equivalence relation ≈α is compatible with
the ordering of P and all its equivalence classes are chains. Hence, B

(
P, [P ]1

)
is

homeomorphic to B
(
Qα, [Qα]1

)
by Lemma 5.11. Since there are at most

∣∣P(
P 2

)∣∣
equivalence relations on P , there exists α ∈ On such that ≈α=≈α+1. Set Q = Qα.
Then ∼Q is discrete and B

(
P, [P ]1

)
is homeomorphic to B

(
Q, [Q]1

)
.

Finally, suppose Q is not a tree. Then there exists q ∈ Q such that the set of
lower bounds of q are not well-ordered. Let L denote of the set of lower bounds of q.
Suppose L is not a chain. Then there exist p, p′ ∈ P such that p/≈α, p′/≈α∈ L and
p/≈α is incomparable with p′/≈α; whence, p is incomparable with p′. Moreover,
there exists r ∈ P such that r/≈α= q and p and p′ are lower bounds of r. Thus, P
is not a tree. Suppose L is a chain. Then L contains a strictly descending sequence
〈qn〉n<ω. For each n < ω, choose pn ∈ P such that pn/≈α= qn. Then 〈pn〉n<ω is
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strictly descending in P . Thus, P is not a tree. Therefore, Q is a tree if P is a
tree. ¤
Theorem 5.13. The space B

(
W, [W ]1

)
is compact if and only if there is a tree

V such that B
(
W, [W ]1

)
is homeomorphic to B

(
V, [V ]1

)
and all forks and proper

semibranches of V are finite.

Proof. By Lemma 5.12, there is a tree V such that ∼V is discrete and B
(
W, [W ]1

)
is homeomorphic to B

(
V, [V ]1

)
. Suppose B

(
W, [W ]1

)
is compact. Then B

(
V, [V ]1

)
is also compact. By Theorem 5.7, all forks in V are finite. Suppose S ∈ S (V ) and
S is infinite. Then Sω has order type ω. By Theorem 5.7, there exists n < ω such
that BV ({S@Sn}) ⊆ BV (FV (Sω)). Suppose there exists p ∈ FV (Sn+1) such that
p 6= S@Sn+1. Since V is a tree, p is not comparable with any element of FV (Sω).
Therefore, no branch containing p intersects FV (Sω). Since S@Sn < p, there
exists a branch containing p and S@Sn; hence, BV ({S@Sn}) is not contained in
BV (FV (Sω)), which is absurd. Therefore, FV (Sn+1) = {S@Sn+1}. Thus, S@Sn+1

is the minimum strict upper bound of S@Sn. Moreover, since V is a tree, S@Sn is
the maximum strict lower bound of S@Sn+1. Therefore, S@Sn <′ S@Sn+1; hence,
S@Sn ∼ S@Sn+1, in contradiction with our choice of V . Therefore, all proper
semibranches of V are finite.

Conversely, suppose there is a tree V such that B
(
W, [W ]1

)
is homeomorphic to

B
(
V, [V ]1

)
and all forks and proper semibranches of V are finite. Then it suffices

to show that B
(
V, [V ]1

)
is compact. By Theorem 5.7, it suffices to show that every

nonempty proper semibranch of V is capped. Suppose S ∈ S (V ) \ {∅}. Then S is
finite. Clearly, BV ({max S}) ⊆ BV (FV (S)); hence, S is capped. ¤

A weaker notion of compactness is D-compactness:

Definition 5.14. Let K be a nonempty set and let D be an ultrafilter on K. Given
a topological space M , a map f : K → M , and a point p ∈ M , we say p is a D-limit
point of f if f−1(U) ∈ D for every neighborhood U of p. We say M is D-compact
if every map f : K → M has a D-limit point.

The original definition for K = ω is due to Bernstein[1]. Bernstein proves that
compactness implies D-compactness and that the Tychonoff Theorem still holds if
D-compactness replaces compactness. Saks[2] defined D-compactness for arbitrary
K and generalized these results.

The Tychonoff Theorem is generalized by Theorem 5.1, and the Tychonoff Theo-
rem for D-compactness is generalized in exactly the same way by the next theorem.
The theorem needs the following lemma.

Lemma 5.15. Suppose M is D-compact space with closed subspace N . Then N is
D-compact.

Proof. Let f be a map from K to N and let p be a D-limit point of f in M . If
p 6∈ N , then M \N is a neighborhood of p and f−1(M \N) = ∅, in contradiction
with the definition of D-limit point. Hence, p ∈ N ; hence, N is D-compact. ¤
Theorem 5.16. The space B(Z, E) is D-compact if and only if B

(
Y, [Y ]1

)
is

D-compact and B(Xp, Ep) is D-compact for all p ∈ Y .

Proof. Let π : B(Z) → B(Y ) be given by

π(A) = {p ∈ Y : A ∩Xp 6= ∅}
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for all A ∈ B(Z). For each p ∈ Y , let Bp be an arbitrary branch of Xp. Let
ρ : B(Y ) → B(Z) be given by ρ(A) =

⋃
p∈A Bp for all A ∈ B(Y ).

Suppose B
(
Y, [Y ]1

)
is not D-compact. Then there is a map f : K → B(Y ) with

no D-limit point. In particular, there is no A ∈ B(Y ) such that f−1(BY ({p}) ∈ D
for all p ∈ A. Let B be an arbitrary branch of Z. Then there exists p ∈ π(B) such
that f−1(BY ({p}) 6∈ D. Furthermore, f−1(BY ({p}) = (ρ ◦ f)−1(BZ(Xp)) and
BZ(Xp) is a neighborhood of B. Hence, B is not a D-limit point of ρ ◦ f . Hence,
B(Z, E) is not D-compact.

Suppose p ∈ Y and B(Xp, Ep) is not D-compact. Then there is a map f from K
to B(Xp) with no D-limit point. Let A be an arbitrary element of BZ(Xp). Then,
since {BXp

(U) : U ∈ Ep} is a subbasis for B(Xp, Ep) and D is a filter, there exists
U ∈ Ep such that A ∩Xp ∈ BXp(U) and f−1(BXp(U)) 6∈ D. Let g be a map from
B(Xp) to B(Z) such that B ⊆ g(B) for all B ∈ B(Xp) and g(A ∩Xp) = A. Then
A is not a D-limit point of g ◦ f , for we have

(g ◦ f)−1(BZ(U)) = f−1(BXp
(U)) 6∈ D.

Thus, BZ(Xp) is not a D-compact subspace of B(Z, E). But BZ(Xp) is a closed
subspace of B(Z, E) by Lemma 4.5. Thus, B(Z, E) is not D-compact.

Suppose B
(
Y, [Y ]1

)
is D-compact and B(Xp, Ep) is D-compact for all p ∈ Y . Let

f be a map from K to B(Z). Since {BZ(U) : U ∈ E} is a subbasis for B(Z, E) and
D is a filter, it suffices to show that Z has a branch B such that, for every U ∈ E ,
if B ∈ BZ(U), then f−1(BZ(U)) ∈ D. By D-compactness, π ◦ f has a D-limit
point A ∈ B(Y ). For each p ∈ A, let Dp = (π ◦ f)−1(BY ({p})). Then Dp ∈ D for
all p ∈ A. Fix p ∈ A. Set fp = f ¹ Dp an let gp : BZ(Xp) → B(Xp) be given by
gp(C) = C ∩Xp for all C ∈ BZ(Xp). Extend gp ◦f to a map hp : K → B(Xp). Let
Ap be a D-limit point of hp. So defining Ap for all p ∈ A, set B =

⋃
p∈A Ap ∈ B(Z).

Suppose U ∈ E and B ∈ BZ(U). Then there exists p ∈ A such that U ∈ Ep and
Ap ∈ BXp(U). Set Ep = h−1

p (BXp(U)). Then Ep ∈ D; hence, Dp ∩ Ep ∈ D.
But f−1(BZ(U)) = Dp ∩ Ep; hence, B is a D-limit point of f . Thus, B(Z, E) is
D-compact. ¤

Theorem 5.16 is a verbatim copy of Theorem 5.1 except that “D-compact” re-
places “compact.” Given this, it is easy to verify that Corollary 5.2 and Theorem 5.3
are also still hold if “D-compact” replaces “compact”: we need only copy their
proofs and respectively replace “compact” and “Theorem 5.1” with “D-compact”
and “Theorem 5.16.”

Our characterization of compactness of B
(
X, [X]1

)
in Theorem 5.7 also has a

close analogue for D-compactness, but its proof is not as trivially translated. To
simplify notation, if D is nonprincipal, then let δ be the maximum cardinal λ for
which D is λ-complete. If D is principal, then let δ = ∞, which means δ is formally
greater than every ordinal.

Definition 5.17. Given S ∈ S (X), we say that S is D-capped if, for every map
f : K → B(X) such that f−1(BX({p})) ∈ D for all p ∈ S, we have

f−1(BX(FX(S))) ∈ D.

Theorem 5.18. The space B
(
X, [X]1

)
is D-compact if and only if every fork in

X has cardinality less than δ and every proper semibranch of X is D-capped.
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Proof. Suppose B
(
X, [X]1

)
isD-compact. Let S ∈ S (X). LetA =

⋂
p∈S BX({p}).

By Lemma 5.6, A is closed; hence, it is D-compact. Moreover, a branch A is in A
if and only if it contains S. Suppose |FX(S)| ≥ δ. Then δ < ∞ and there exists
a partition 〈Iα〉α<δ of K such that Iα 6∈ D for all α < δ. Let η be an injection
from δ into FX(S), and choose f : K → A such that πS(f(Iα)) = {η(α)}. Let A
be a D-limit point of f in A. Then A ⊇ S; hence, A@S exists. If A@S = η(α) for
some α < δ, then f−1(BX({A@S}) = Iα 6∈ D. If A@S is not in the range of η,
then f−1(BX({A@S}) = ∅ 6∈ D. Therefore, A is not a D-limit point of f , which is
absurd. Hence, |FX(S)| < δ.

Let us show that S is D-capped. Let f : K → B(X) satisfy f−1(BX({p}))
for all p ∈ S. Let A be a D-limit point of f . Suppose A + S. Then there
exists p ∈ S and q ∈ A such that p 6≤ q 6≤ p. Hence, BX({p}) ∩ BX({q}) = ∅;
hence, f−1(BX({q})) 6∈ D; hence, A is not a D-limit point of f , which is absurd.
Therefore, A ⊇ S. Hence, A ∈ BX(FX(S)); hence, f−1(BX(FX(S))) ∈ D; hence,
S is D-capped. Thus, the “only if” part of the theorem holds.

Let us prove the “if” part. Suppose every fork in X has cardinality less than δ and
every proper semibranch of X is D-capped. Let f be an arbitrary map from K to
B(X). We recursively construct a D-limit point A of f by defining A@Aα in terms
of Aα for all α < h(A). Suppose Aα ∈ S (X) and f−1(BX({p})) ∈ D for all p ∈ Aα.
Then f−1(BX(FX(Aα))) ∈ D because Aα is D-capped. Since |FX(Aα)| < δ,
there exists q ∈ FX(Aα) such that f−1(BX({q})) ∈ D. Set A@Aα = q. Then, by
induction, f−1(BX({p})) ∈ D for all p ∈ A. Therefore, since {BX({p}) : p ∈ X}
is a subbasis for B

(
X, [X]1

)
and D is a filter, A is a D-limit point of f . ¤

For a tree W , the next theorem characterizes D-compactness of B
(
W, [W ]1

)
similarly to Theorem 5.13. First, we need a lemma.

Lemma 5.19. Suppose S ∈ S (X) and |S| < δ. Then S is D-capped.

Proof. Let f : K → B(X) satisfy f−1(BX({p})) ∈ D for all p ∈ S. Then we have

f−1(BX(FX(S))) ⊇
⋂

p∈S

f−1(BX({p})) ∈ D

because |S| < δ. ¤

Theorem 5.20. The space B
(
W, [W ]1

)
is D-compact if and only if there is a tree

V such that B
(
W, [W ]1

)
is homeomorphic to B

(
V, [V ]1

)
and all forks and proper

semibranches of V have cardinality less than δ.

Proof. By Lemma 5.12, there is a tree V such that ∼V is discrete and B
(
W, [W ]1

)
is homeomorphic to B

(
V, [V ]1

)
. Suppose B

(
W, [W ]1

)
is D-compact. Then so is

B
(
V, [V ]1

)
. By Theorem 5.18, all forks in V have cardinality less than δ. Suppose

S ∈ S (V ) and |S| ≥ δ. Then δ < ∞ and Sδ has order type δ. Let us derive a
contradiction. First we show that |FV (Sα+1)| ≥ 2 for all α < δ. Fix α < δ. Since V
is a tree, S@Sα is the maximum strict lower bound of every element of FV (Sα+1).
Moreover, if |FV (Sα+1)| = 1, then S@Sα+1 is the minimum strict upper bound of
S@Sα; whence, S@Sα <′ S@Sα+1, in contradiction with the discreteness of ∼V .
Therefore, |FV (Sα+1)| ≥ 2 as desired.

By the definition of δ, there is a sequence 〈Dα〉α<δ in D such that
⋂

α<δ Dα = ∅
and Dα ⊇ Dβ for all α < β < δ. Moreover, we may assume that Dλ =

⋂
α<λ Dα

for all limit ordinals λ < δ. For each α < δ, choose pα ∈ FV (Sα+1) \ {S@Sα+1}
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and choose A(α) ∈ BV ({pα}). Since V is a tree, Sα+1 ⊆ Aα for all α < δ. Let f
be the map from K to B(V ) given by f(Dα \Dα+1) = {A(α)} for all α < δ. Then
f−1({S@Sα}) = Dα ∈ D for all α < δ. By Theorem 5.18, S is D-capped; hence,
f−1(BV (FV (S))) ∈ D. But V is a tree; hence,

BV (FV (S)) = {A ∈ B(V ) : A ⊇ S};
hence,

f−1(BV (FV (S))) =
⋂

α<δ

f−1(BV ({S@Sα})) =
⋂

α<δ

Dα = ∅,

which is absurd. Therefore, |S| < δ as desired.
Conversely, suppose there is a tree V such that B

(
W, [W ]1

)
is homeomorphic

to B
(
V, [V ]1

)
and all forks and proper semibranches of V have cardinality less

than δ. By Lemma 5.19, all proper semibranches of V are D-capped. Hence, by
Theorem 5.18, B

(
V, [V ]1

)
is D-compact. Hence, B

(
W, [W ]1

)
is D-compact. ¤
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