
GO-SPACES AND NOETHERIAN SPECTRA

DAVID MILOVICH

Abstract. The Noetherian type of a space is the least κ for which the space
has a κop-like base, i.e., a base in which no element has κ-many supersets.

We prove some results about Noetherian types of (generalized) ordered spaces
and products thereof. For example: the density of a product of not-too-many

compact linear orders never exceeds its Noetherian type, with equality possible

only for singular Noetherian types; we prove a similar result for products of
Lindelöf GO-spaces. A countable product of compact linear orders has an

ωop
1 -like base if and only if it is metrizable. (It is known that every metrizable

space has an ωop-like base.) An infinite cardinal κ is the Noetherian type of a
compact LOTS if and only if κ 6= ω1 and κ is not weakly inaccessible. There is

a Lindelöf LOTS with Noetherian type ω1 and there consistently is a Lindelöf

LOTS with weakly inaccessible Noetherian type.

1. Introduction

The Noetherian type of a topological space is an order-theoretic analog of its
weight.

Definition 1.1. Given a cardinal κ, define a poset to be κop-like if no element is
below κ-many elements.

In the context of families of subsets of a topological space, we will always im-
plicitly order by inclusion. For example, a descending chain of open sets of type ω
is ωop-like; an ascending chain of open sets of type ω is ωop

1 -like but not ωop-like.

Definition 1.2. Given a space X,
• the weight of X, or w(X), is the least κ ≥ ω such that X has a base of size

at most κ;
• the Noetherian type of X, or Nt(X), is the least κ ≥ ω such that X has a

base that is κop-like.

Equivalently, Nt(X) is the least κ ≥ ω such that X has a base B such that
⋂
A

has empty interior for all A ∈ [B]κ.
In 1997, Noetherian type was introduced by Peregudov [12]. Preceding this

introduction are several papers by Peregudov, Šapirovskĭı and Malykhin [7, 10, 11,
13] about the topological properties Nt(·) = ω and Nt(·) ≤ ω1. In 1998 Bennett
and Lutzer [3] rediscovered (and renamed) the property Nt(·) = ω and proved
(among other things) that a GO-space X is metrizable if and only if Nt(X) = ω.
Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn [2], and Bailey [1]
further investigated the propertyNt(·) = ω in the context of related base properties.
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More recently, the author has extensively investigated the Noetherian type of βN \
N [9] and the Noetherian types of homogeneous compacta and dyadic compacta [8].
(See Engelking [4], Juhász [5], and Kunen [6] for all undefined terms.)

A surprising result from [8] is that no dyadic compactum has Noetherian type ω1.
In other words, given an ωop

1 -like base of a dyadic compactum X, one can construct
an ωop-like base of X. This result does not generalize to all compacta. In that same
paper, it was shown how to construct a compactum with Noetherian type κ, for any
infinite cardinal κ. It is still an open problem whether any infinite cardinals other
than ω1 are excluded from the spectrum of Noetherian types of dyadic compacta,
although it was shown that the Noetherian types of dyadic compacta include ω, all
singular cardinals, and κ+ for every infinite cardinal κ with uncountable cofinality.

Question 1.3. If κ is a singular cardinal with cofinality ω, then is there a dyadic
compactum with Noetherian type κ+? Is there a dyadic compactum with weakly
inaccessible Noetherian type?

The above two questions are typical of the “sup=max” problems of set-theoretic
topology. See Juhász [5] for a systematic study of these problems.

Though the above two questions remain open problems, we can now answer
the corresponding questions for compact linear orders. The spectrum of Noether-
ian types of linearly ordered compacta includes ω, excludes ω1, includes all singular
cardinals, includes κ+ for all uncountable cardinals κ, and excludes all weak inaces-
sibles. In the process of proving this claim, we will prove a general technical lemma
which says roughly that if X is a product of not-too-many µ-compact GO-spaces
for some fixed cardinal µ, then d(X) ≤ Nt(X) and in most cases d(X) < Nt(X).

Definition 1.4.

• A space X is κ-compact if κ is a cardinal and every open cover of X has a
subcover of size less than κ.
• A GO-space, or generalized ordered space, is a subspace of a linearly or-

dered topological space. Equivalently, a GO-space is a linear order with a
topology that has a base consisting only of convex sets.
• The density d(X) of a space X is the least infinite cardinal κ such that X

has a dense subset of size at most κ.

It is natural to ask what happens to the spectrum of Noetherian types of compact
linear orders if we gently relax the assumption of compactness. It turns out that
there are Lindelöf linear orders with Noetherian type ω1, and, less expectedly, that
it is consistent (relative to existence of an inaccessible cardinal) that there is a
Lindelöf linear order with weakly inaccessible Noetherian type. However, it is not
consistent for a Lindelöf GO-space to have strongly inacessible Noetherian type.

We also consider the relationship between metrizability and Noetherian type,
focusing on GO-spaces. Bennett and Lutzer [3] noted that every metrizable space
has Noetherian type ω, and proved the (more difficult) converse for GO-spaces. We
strengthen these results as follows. For a Lindelöf GO-space X, we show that X is
metrizable if and only if Nt(X) = ω if and only if Nt(X) = ω1 and X is separable.
For a countable product X of compact linear orders, X is metrizable if and only if
Nt(X) = ω if and only if Nt(X) = ω1. (Note that every Lindelöf metric space is
separable, and every compact GO-space is a compact linear order.)
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2. Small densities and large Noetherian types

Definition 2.1. The π-weight π(X) of a space X is the least infinite cardinal κ
such that a space has π-base of size at most κ;

Proposition 2.2. [12] If X is a space and π(X) < cf κ ≤ κ ≤ w(X), then Nt(X) >
κ.

Proof. Suppose A is a base of X and B is π-base of X of size at most π(X). We
then have |A| ≥ κ; hence, there exist U ∈ [A]κ and V ∈ B such that V ⊆

⋂
U .

Hence, there exists W ∈ A such that W ⊆ V ⊆
⋂
U ; hence, A is not κop-like. �

Note that if X is a product of at most d(X)-many GO-spaces, then π(X) = d(X)
is witnessed by the following construction. For any D (topologically) dense in X
and of minimal size, collect all the finitely supported products of topologically open
intervals with endpoints from the union of {±∞} and the set of all coordinates of
points from D.

Trivially, Nt(X) ≤ w(X)+ for all spaces X. The next example shows that this
upper bound is attained.

Example 2.3. [12] The double-arrow space, defined as ((0, 1]×{0})∪ ([0, 1)×{1})
ordered lexicographically, has π-weight ω and weight 2ℵ0 . By Proposition 2.2, it
has Noetherian type

(
2ℵ0
)+.

3. Lindelöf GO-spaces

Bennett and Lutzer [3] noted that “it is easy to prove that any metric space,
and indeed any metacompact Moore space has an OIF base,” i.e., has Noetherian
type ω. The following proof is for the reader’s convenience.

Theorem 3.1. Every metric space has an ωop-like base.

Proof. Let X be a metric space. For each n < ω, let An be a locally finite open
refinement of the (open) balls of radius 2−n in X. Set A =

⋃
n<ω An \ {∅}. The

set A is a base of X because if p ∈ X and n < ω, then there exists U ∈ An+1 such
that p ∈ U and U is contained in the ball of radius 2−n with center p. Let us show
that A is ωop-like. Suppose that m < ω, U ∈ A, V ∈ Am, and U ( V . There
then exist p ∈ U and ε0 > ε1 > 0 such that the ε0-ball with center p is contained
in U and the ε1-ball with center p intersects only finitely many elements of An for
all n < ω satisfying 2−n > ε0/2. If 2−m ≤ ε0/2, then V is contained in the ε0-ball
with center p, in contradiction with U ( V . Hence, 2−m > ε0/2; hence, there are
only finitely many possibilities for m and V given U , for V intersects the ε1-ball
with center p. �

Conversely, Bennett and Lutzer [3] proved that GO-spaces with Noetherian type
ω are metrizable. Theorem 3.5 proves a slightly stronger statement for Lindelöf
GO-spaces.

Lemma 3.2. Let X be a Lindelöf GO-space with open cover A. The cover A has
a countable, locally finite refinement consisting only of open convex sets.

Proof. Let {An : n < ω} be a countable refinement of A consisting only of open
convex sets. For each n < ω, set Bn = An \

⋃
m<nAm; set B = {Bn : n < ω}. The

set B is a locally finite refinement of A. Let C be the set of open convex subsets
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of X which intersect only finitely many elements of B. Let D be the set of U ∈ C
satisfying U ⊆ V for some V ∈ C. Let {Dn : n < ω} be a countable subcover of D.
For each n < ω, set En = Dn \

⋃
m<nDm; set E = {En : n < ω}. The set E is a

locally finite refinement of C. For each n < ω, set Fn = An\
⋃
{E ∈ E : Bn∩E = ∅};

set F = {Fn : n < ω}. Since E is locally finite, each Fn is open. Moreover, Fn ⊆ An
for all n < ω; hence, F is a refinement of A.

Let G =
⋃
n<ω Gn where Gn is the set of maximal convex subsets of Fn. This

makes G an open refinement of A. It suffices to show that G is locally finite and
countable. We accomplish this in three steps. First, we show that F is locally
finite. Second, we show that each Gn is locally finite. Third, we show that each Gn
is countable. This suffices because each Gn is a partition of Fn.

For the first step, since E is a locally finite cover of X, it suffices to show that
each element of E only intersects finitely many elements of F . Let i < ω and
choose V ∈ C such that Ei ⊆ V . Suppose j < ω and Ei ∩ Fj 6= ∅. We then have
Ei ∩Bj 6= ∅ by definition of Fj . Hence, V ∩Bj 6= ∅; hence, there are only finitely
many possibilities for Bj ; hence, there are only finitely many possibilities for Fj .

For the second step, suppose p ∈ X. We just need to show that p has a neighbor-
hood intersecting at most finitely many G ∈ Gn. Let U be an open convex neigh-
borhood of p intersecting at most finitely many elements of E . By its construction,
each Ei ∈ E is a finite union of convex sets. Moreover, by the construction of Fn,
given any G0, G1 ∈ Gn with G0 < G1, there exists a maximal convex subset H of
some Ei ∈ E such that G0 < H < G1. Therefore, U intersects at most finitely
many elements of Gn.

For the third step, we will extend Gn to an open cover U of X such that every
subcover of U includes Gn. This suffices because X is Lindelöf. For each G ∈ Gn,
choose pG ∈ G. For each q ∈ Fn, let U(q) = G where q ∈ G ∈ Gn. For each
q ∈ X \ Fn, use the local finiteness of Gn to find an open neighborhood U(q) of q
such that pG 6∈ U(q) for all G ∈ Gn. Set U = {U(q) : q ∈ X}, which is our desired
open cover. �

Definition 3.3. Let Hθ denote the set of all sets that are hereditarily of size less
θ, where θ is a regular cardinal sufficiently large for the argument at hand. The
relation M ≺ Hθ means that 〈M,∈〉 is an elementary substructure of 〈Hθ,∈〉.

Lemma 3.4. Let X be a nonseparable, Lindelöf GO-space. The space X does not
have an ωop-like base.

Proof. Lindelöf metric spaces are separable, so X is not metrizable, so by Bennett
and Lutzer’s result, Nt(X) > ω. We also provide an independently discovered
proof below. This proof is direct in that the property of metrizability is not used
in the argument.

Let A be a base of X. Let us show that A is not ωop-like. First, let us construct
sequences of open sets 〈An,k〉n,k<ω and 〈Bn,k〉n,k<ω. Our requirements are that
Bn,i ⊆ An,i ∈ A, that Bn,i is convex, that {Bn,k : k < ω} is a locally finite cover of
X and pairwise ⊆-incomparable, and that {Ai,k : k < ω} ∩ {Aj,k : k < ω} ⊆ [X]1

for all i < j < ω and n < ω.
Suppose n < ω and we are given 〈Am,k〉k<ω and 〈Bm,k〉k<ω for all m < n and

they meet our requirements. Let p ∈ X. Set Vp =
⋂
{Bm,k : m < n and k <

ω and p ∈ Bm,k}. The set Vp is open. If |Vp| = 1, then set Up = Vp. If |Vp| > 1,
then choose Up ∈ A such that p ∈ Up ( Vp. Set U = {Up : p ∈ X}. By Lemma 3.2,
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there exists a countable, locally finite refinement Bn of U consisting only of convex
sets. Since Bn is locally finite, it has no infinite ascending chains; hence, we may
assume Bn is pairwise ⊆-incomparable because we may shrink Bn to its maximal
elements. Let {Bn,k : k < ω} = Bn. For each k < ω, set An,k = Up for some
p ∈ X satisfying Bn,k ⊆ Up. Suppose m < n and i, j < ω and Am,i = An,j 6∈ [X]1.
Choose p ∈ X such that An,j = Up; choose k < ω such that p ∈ Bm,k. We
then have Bm,i ⊆ Am,i = Up ( Vp ⊆ Bm,k, in contradiction with the pairwise
⊆-incomparability of {Bm,l : l < ω}. Thus, {Am,l : l < ω} ∩ {An,l : l < ω} ⊆ [X]1

for all m < n. By induction, 〈An,k〉n,k<ω and 〈Bn,k〉n,k<ω meet our requirements.
Let {X,≤,A, ~A, ~B} ⊆ M ≺ Hθ and |M | = ω. Since X is nonseparable, there

must be a nonempty open convex set W disjoint from M . For each n < ω, choose
in < ω such that W ∩Bn,in 6= ∅. Let us show that W ⊆ An,in 6∈ [X]1 for all n < ω.
Fix n < ω. If An,in ∈ [X]1, then An,in ⊆ M , which implies W ∩M 6= ∅, which is
absurd. Therefore, let us show that W ⊆ An,in . Seeking a contradiction, suppose
W 6⊆ An,in . We then have W 6⊆ Bn,in . Since X is Lindelöf, {p ∈ X : p < Bn,in}
has a countable cofinal subset Y . By elementarity, we may choose Y ∈M . Since Y
is countable, Y ⊆ M . Likewise, {p ∈ X : Bn,in < p} has a coinitial subset Z with
Z ⊆M . Since W and Bn,in are convex and W intersects both Bn,in and X \Bn,in ,
W intersects Y or intersects Z. Hence, W intersects M , which yields our desired
contradiction.

We have shown that W ⊆ An,in for all n, and hence that A is not ωop-like. �

Theorem 3.5. Let X be a Lindelöf GO-space. The following are equivalent.
(1) X is metrizable.
(2) X has an ωop-like base.
(3) X is separable and has an ωop

1 -like base.

Proof. By Theorem 3.1, (1) implies (2). By Lemma 3.4, (2) implies (3). Hence, it
suffices to show that (3) implies (1). Suppose X has a countable dense subset D and
an ωop

1 -like base. We then have π(X) = ω; hence, by Proposition 2.2, w(X) = ω;
hence, X is metrizable. �

See Example 6.1 for a nonseparable Lindelöf linear order that has Noetherian
type ω1.

4. Small Noetherian types and smaller densities

For compact linearly ordered topological spaces, the theorem at the end of this
section strengthens Theorem 3.5. To prepare for this theorem, we first prove our
main technical lemma, which we state in very general terms.

Lemma 4.1. Suppose κ is a regular uncountable cardinal, µ is an infinite cardinal,
|λ<µ| < κ for all λ < κ, X is a product of fewer than κ-many µ-compact GO-spaces,
and Nt(X) ≤ κ. We then have d(X) < κ.

Proof. Let X =
∏
i<ν Xi where ν < κ and each Xi is a µ-compact subspace of a

linearly ordered topological space Yi. Seeking a contradiction, suppose d(X) ≥ κ.
Let U be a κop-like base of X, {〈Yi,≤Yi

, Xi : i < ν〉,U} ∈ M ≺ Hθ, |M | < κ,
M ∩ κ ∈ κ, and M<µ ⊆ M . (We can construct M as the union of an appropriate
elementary chain of length ρ, where ρ is the least regular cardinal ≥ µ. Such an M
is not too large because ρ < κ, a fact that follows from µ ≤ |2<µ| < κ and cf(µ) <
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µ ⇒ µ+ ≤ |µcf(µ)| < κ). Since d(X) > |M |, there is a finite subproduct
∏
i∈σXi

of X that has a nonempty open subset disjoint from M . We may choose this open
subset to be the interior of a set of the form B =

∏
i∈σ Bi where each Bi is maximal

among the convex subsets of Xi disjoint from M . Set Ai = {p ∈ Xi : p < Bi} and
Ci = {p ∈ Xi : p > Bi}. Since {p : Ai < p < Ci} = Bi, which is nonempty but
disjoint from M , we have {Ai, Ci} 6⊆M by elementarity.

Claim. max{cf(Ai), ci(Ci)} ≥ µ for all i ∈ σ.

Proof. Seeking a contradiction, suppose cf(Ai) < µ and ci(Ci) < µ. We then have
Ai ∩M,Ci ∩M ∈ M . Since Ai ∩M is cofinal in Ai, Ai = {p : ∃q ∈ Ai ∩M p ≤
q} ∈M . Likewise, Ci ∈M , in contradiction with the fact that {Ai, Ci} 6⊆M . �

Therefore, we may assume that cf(Ai) ≥ µ for all i ∈ σ (by symmetry). Since
X is µ-compact, there exists xi = supYi

(Ai) = min(Bi) ∈ Xi for all i ∈ σ.

Claim. There exists yi = supYi
(Bi) ∈ (xi,∞) for all i ∈ σ, with the understanding

that in this proof all intervals are intervals of Xi (so yi ∈ Xi).

Proof. If ci(Ci) ≥ µ, then, by µ-compactness, there exists yi = infYi(Ci) ∈ Xi. In
this case, yi is also max(Bi) because yi 6∈ Ci. Moreover, yi = max(Bi) > min(Bi) =
xi because otherwise the interior of B would be empty, for xi = supYi

(Ai), which
is not an isolated point in Xi. If ci(Ci) < µ, then Ci ∈ M , just as in the previous
claim’s proof, so there exists Di ∈ M such that Di is a cofinal subset of {p ∈
Xi : p < Ci} of minimal size. In this case, Di includes a cofinal subset of Bi, so
Di 6⊆M , so |Di| ≥ κ, so µ < κ ≤ |Di| = cf(Bi), so there exists yi = supYi

(Bi) ∈ Xi

by µ-compactness. Also, cf(Bi) ≥ κ implies supYi
(Bi) > min(Bi) = xi. Thus, in

any case there exists yi = sup(Bi) ∈ (xi,∞) for all i ∈ σ. �

Let U ∈ U satisfy xi ∈ πi[U ] ⊆ (−∞, yi) for all i ∈ σ. Since cf(Ai) ≥ µ > 1 for
all i ∈ σ, we then have 〈xi : i ∈ σ〉 ∈

∏
i∈σWi ⊆ πσ[U ] where each Wi is of the form

(ui, vi) or (ui, vi] for some ui < xi and vi ≤ yi; we may assume ui ∈M . Moreover,
there exist pi, qi ∈ Xi∩M such that ui < pi < qi < xi. Since U is a κop-like base, it
includes fewer than κ-many supersets of

⋂
i∈σ π

−1
i [(ui, qi)] as members. Since the

set of supsersets of
⋂
i∈σ π

−1
i [(ui, qi)] in U is a set in M and a set of size less than

κ, it is also a subset of M . In particular, U ∈M .
Fix an arbitrary i ∈ σ. If cf(πi[U ]) < µ, then M would include a cofinal subset of

πi[U ], in contradiction with Bi missing M . Therefore, cf(πi[U ]) ≥ µ. Hence, there
exists z = supYi

(πi[U ]). By elementarity, z ∈ M , so Bi < z, so z = min(Ci) =
supYi

(Bi) = y. Because of the freedom in how we chose U , it follows that every
neighborhood of xi includes a neighborhood that, like πi[U ], has supremum yi
(in Yi) and has cofinality at least µ. Therefore, there is an infinite increasing
sequence of points between xi and yi that are contained in every neighborhood
of xi, in contradiction with Xi being a subspace of the ordered space Yi. Thus,
d(X) < κ. �

Corollary 4.2. Suppose that X is a product of at most 2ℵ0-many Lindelöf GO-
spaces such that Nt(X) ≤

(
2ℵ0
)+. We then have d(X) ≤ 2ℵ0 .

Corollary 4.3. Suppose that κ is a regular uncountable cardinal, X is a product
of less than κ-many linearly ordered compacta, and Nt(X) ≤ κ. We then have
d(X) < κ.
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The last corollary fails for singular κ. As we shall see in Theorem 5.1, if λ is an
uncountable singular cardinal, then Nt(λ+1) = λ, despite the fact that d(κ+1) = κ
for all infinite cardinals κ. Moreover, the space (κ+ 1)κ has Noetherian type ω and
density κ for all infinite cardinals κ, so we cannot weaken the above hypothesis that
X has less than κ-many factors. The equation Nt((κ + 1)κ) = ω follows from a
general theorem of Malykhin.

Theorem 4.4. [7] Let X =
∏
i∈I Xi where each Xi has a minimal open cover of

size two (e.g., Xi is T1 and |Xi| ≥ 2.). If supi∈I w(Xi) ≤ |I|, then Nt(X) = ω.

Proof. For each i ∈ I, let {Ui,0, Ui,1} be a minimal open cover of Xi. Since w(X) =
supi∈I w(Xi), we may choose A to be a base of X of size at most |I| and choose
an injection f : A → I. Let B denote the set of all nonempty sets of the form
V ∩π−1

f(V )

[
Uf(V ),j

]
where V ∈ A and j < 2. Since f is injective, the intersection of

every infinite subset of B has empty interior. Hence, B is an ωop-like base of X. �

Theorem 4.5. Let X be a product of countably many linearly ordered compacta.
The following are equivalent.

(1) X is metrizable.
(2) X has an ωop-like base.
(3) X has an ωop

1 -like base.
(4) X is separable and has an ωop

1 -like base.

Proof. By Theorem 3.1, (1) implies (2), which trivially implies (3). By Corol-
lary 4.3, (3) implies (4). Finally, (4) implies (1) because if X is separable, then
π(X) = ω, so w(X) = ω by Proposition 2.2. �

5. The Noetherian spectrum of the compact orders

Theorem 4.5 implies that no linearly ordered compactum has Noetherian type ω1.
What is the class of Noetherian types of linearly ordered compacta? We shall prove
that an infinite cardinal κ is the Noetherian type of a linearly ordered compactum
if and only if κ 6= ω1 and κ is not weakly inaccessible.

Theorem 5.1. Let κ be an uncountable cardinal and give κ+ 1 the order topology.
If κ is regular, then Nt(κ+ 1) = κ+; otherwise, Nt(κ+ 1) = κ.

Proof. Using Corollary 4.3, the lower bounds on Nt(κ + 1) are easy. We have
d(κ + 1) ≥ λ for all regular λ ≤ κ, so Nt(κ + 1) > λ for all regular λ ≤ κ. It
follows that Nt(κ + 1) ≥ κ and Nt(κ + 1) > cf κ. We can also prove these lower
bounds directly using the Pressing Down Lemma. Let A be a base of κ+ 1 and let
λ be a regular cardinal ≤ κ. Let us show that A is not λop-like. For every limit
ordinal α < λ, choose Uα ∈ A such that α = maxUα; choose η(α) < α such that
[η(α), α] ⊆ Uα. By the Pressing Down Lemma, η is constant on a stationary subset
S of λ. Hence, A 3 {η(minS) + 1} ⊆ Uα for all α ∈ S; hence, A is not λop-like.
Once again, it follows that Nt(κ+ 1) ≥ κ and Nt(κ+ 1) > cf κ.

Trivially, Nt(κ+ 1) ≤ w(κ+ 1)+ = κ+. Hence, it suffices to show that κ+ 1 has
a κop-like base if κ is singular. Suppose E ∈ [κ]<κ is unbounded in κ. Let F be
the set of limit points of E in κ+ 1. Define B by

B = {(β, α] : E 3 β < α ∈ F or sup(E ∩ α) ≤ β < α ∈ κ \ F}.
The set B is a κop-like base of κ+ 1. �
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Definition 5.2. Given a poset P with ordering ≤, let P op denote the set P with
ordering ≥.

Theorem 5.3. Suppose κ is a singular cardinal. There then is a linearly ordered
compactum with Noetherian type κ+.

Proof. Set λ = cf κ and X = λ+ + 1. Partition the set of limit ordinals in λ+ into
λ-many stationary sets 〈Sα〉α<λ. Let 〈κα〉α<λ be an increasing sequence of regular
cardinals with supremum κ. For each α < λ and β ∈ Sα, set Yβ = (κα + 1)op. For
each α ∈ X \

⋃
β<λ Sβ , set Yα = 1. Set Y =

⋃
α∈X{α} × Yα ordered lexicographi-

cally. We then have Nt(Y ) ≤ w(Y )+ ≤ |Y |+ = κ+. Hence, it suffices to show that
Y has no κop-like base.

Seeking a contradiction, suppose A is a κop-like base of Y . For each α < λ, let
Uα be the set of all U ∈ A that have at least κα-many supersets in A. For all
isolated points p of Y , there exists α < λ such that {p} 6∈ Uα; whence, p 6∈

⋃
Uα.

Since 〈α+1, 0〉 is isolated for all α < λ+, there exist β < λ and a set E of successor
ordinals in λ+ such that |E| = λ+ and (E × 1) ∩

⋃
Uβ = ∅. Let C be the closure

of E in λ+. The set C is closed unbounded; hence, there exists γ ∈ C ∩ Sβ+1. Set
q = 〈γ, κβ+1〉. We then have q ∈ E × 1; hence, q 6∈

⋃
Uβ . Since q has coinitiality

κβ+1, any local base B at q will contain an element U such that U has κβ-many
supersets in B. Hence, there exists U ∈ Uβ such that q ∈ U ; hence, q ∈

⋃
Uβ , which

yields our desired contradiction. �

Theorem 5.4. No linearly ordered compactum has weakly inaccessible Noetherian
type. More generally, for every weakly inaccessible κ, products of fewer than κ-many
linearly ordered compacta do not have Noetherian type κ.

Proof. Suppose κ is weakly inaccessible, X is a product of fewer than κ-many
linearly ordered compacta, and Nt(X) ≤ κ. It suffices to prove Nt(X) < κ.
By Corollary 4.3, we have d(X) < κ; hence, each factor of X has π-weight less
than κ; hence, π(X) < κ. If w(X) ≥ κ, then Nt(X) > κ by Proposition 2.2, in
contradiction with our assumptions about X. Hence, w(X) < κ; hence, Nt(X) ≤
w(X)+ < κ. �

6. The Lindelöf spectrum

The spectrum of Noetherian types of Lindelöf linearly ordered topological spaces
trivially includes the spectrum of Noetherian types of compact linearly ordered
topological spaces. More interestingly, the inclusion is strict, as the next example
shows.

Example 6.1. [12] Theorem 4.5 fails for Lindelöf linearly ordered topological
spaces. Let X be (ω1 × Z) ∪ ({ω1} × {0}) ordered lexicographically. The space
X is Lindelöf and nonseparable and {{〈α, n〉} : α < ω1 and n ∈ Z}∪ {X \ (α×Z) :
α < ω1} is an ωop

1 -like base of X. Moreover, X has no ωop-like base because ev-
ery local base at 〈ω1, 0〉 includes a descending ω1-chain of neighborhoods. Thus,
Nt(X) = ω1.

Easily generalizing this example, if κ is a regular cardinal and X is (κ × Z) ∪
({κ} × {0}) ordered lexicographically, then X is κ-compact and Nt(X) = κ.

A consequence of Lemma 4.1 is that Lindelöf linearly ordered topological spaces
cannot have strongly inaccessible Noetherian type, just as in the compact case.
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More generally, we have the following theorem, which is proved just as Theorem 5.4
was proved.

Theorem 6.2. Suppose κ is a weakly inaccessible cardinal, |λ<µ| < κ for all λ < κ,
and X is a X is a product of fewer than κ-many µ-compact GO-spaces. We then
have Nt(X) 6= κ.

Proof. Suppose that Nt(X) ≤ κ. Let us show that Nt(X) < κ. By Lemma 4.1, we
have d(X) < κ; hence, each factor of X has π-weight less than κ; hence, π(X) <
κ. If w(X) ≥ κ, then Nt(X) > κ by Proposition 2.2, in contradiction with our
assumptions about X. Hence, w(X) < κ; hence, Nt(X) ≤ w(X)+ < κ. �

Corollary 6.3. If κ is strongly inaccessible, then the class of Noetherian types of
µ-compact GO-spaces excludes κ if and only if µ < κ.

Proof. “If”: Theorem 6.2. “Only if”: The above generalization of Example 6.1. �

On the other hand, it is consistent (relative to the consistency of an inaccessi-
ble), that some Lindelöf linearly ordered topological space has weakly inaccessible
Noetherian type. To show this, we first force 2ℵ0 ≥ κ where κ is weakly inaccessible
(say, by adding κ-many Cohen reals). Next, we construct the desired linear order
in this forcing extension using the following theorem.

Theorem 6.4. If κ is a weak inaccessible and 2ℵ0 ≥ κ, then there is a Lindelöf
linear order Z such that Nt(Z) = κ.

Proof. Let B be a Bernstein subset of X = [0, 1], i.e., B includes some point in P
and misses some point in P , for all perfect P ⊆ X. Let f : B → κ be surjective.
For each x ∈ B, set Yx = ωop +ωf(x) +ω, which is Lindelöf. For each x ∈ X \B, set
Yx = {0}. Set Z =

⋃
x∈X({x} × Yx) ordered lexicographically. First, let us show

that Z is Lindelöf. Let U be an open cover of Z. For every x ∈ X \ B, 〈x, 0〉 has
neighborhoods Ox and Ux such that U 3 Ux ⊇ Ox =

⋃
a<b<c({b}×Yb) where a, c ∈

(X ∩ Q) ∪ {±∞}. Therefore, there is a countable D ⊆ X such that {Ox : x ∈ D}
covers (X \ B) × {0}. Set V = {Ux : x ∈ D} and C = {x ∈ X : Yx 6⊆

⋃
x∈D Ox}.

The set C is closed in X and a subset of the Bernstein set B, so C is countable.
Therefore,

⋃
x∈C({x}× Yx) is Lindelöf; hence, it is covered by a countable W ⊆ U ,

making V ∪W a countable subcover of U .
Finally, let us show that Nt(Z) = κ. For every α < κ and x ∈ f−1[{α + 1}],

Yx has a point with cofinality ωα+1, so Nt(Z) ≥ ωα+1. Therefore, it suffices to
construct a κop-like base of Z. Let A denote the countable set of all sets of the
form

⋃
a<b<c Yb where a, c ∈ (X ∩Q)∪ {±∞}, which includes a local base at 〈x, 0〉

for every x ∈ X \B. Since each Yx for x ∈ B has no maximum or minimum, we can
combine A with a copy of a base Bx of Yx for each x ∈ B in order to produce a base
B of Z. We may choose each Bx to have size less than κ, so B must be κop-like. �
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