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Abstract. We present an adaptive method of computing finite Fourier integrals
∫ b
a f(x)g(x)eiωxdx for

smooth f and smooth nonzero g, intended for the case where g is highly and irregularly oscillatory,

but f , |g|, and (arg(g))′ are not highly oscillatory. Our method easily extends to real-valued integrals∫ b
a f(x) cosh(x) cos(ωx)dx where h is smooth, with the intention that h is not highly oscillatory but cosh

is. We do not require any special information about f or g, just the ability to evaluate f , g, and g′ at

arbitrary points. Our basic step per subinterval is to integrate h(x)ei(ω+m)x where m is the slope of arg(g)

at the subinterval center and h(x) is a Chebyshev polynomial interpolation of f(x)g(x)e−imx. Thus, a tone
is factored out to improve Chebyshev interpolation accuracy. We also investigate a second-order extension

in which a chirp is factored out. An implementation of this paper’s algorithms in the Julia programming

language is publicly available.

1. Introduction

1.1. Outline.

(1) This section reviews Filon-Clenshaw-Curtis (FCC) quadrature and briefly introduces our modifica-
tion of it, tone removal.

(2) Section 2 explains tone removal in more detail and in the context of a hybrid interval-degree adaptive
numerical integration algorithm.

(3) Section 3 explains chirp removal, a higher-order extension of tone removal.
(4) Section 4 explains how to adapt tone and chirp removal to real-valued integrands.
(5) Section 5 analyzes our computation of FCC quadrature weights and proves some error bounds.
(6) Section 6 compares the performance of four variations of FCC quadrature: degree adaptive, hybrid

interval-degree adaptive, hybrid interval-degree adaptive with tone removal, and hybrid interval-
degree adaptive with chirp removal.

(7) Section 7 provides additional information about our software implementation of our algorithms.

1.2. Irregularly Oscillatory Integrands. Filon-Clenshaw-Curtis (FCC) quadrature is a strategy for com-
puting numerical Fourier integrals

(1)

∫ 1

−1

dx eiωxf(x)

for smooth f : [−1, 1] → C. We review the essentials of this method in Subsection 1.4. When f is not highly
oscillatory, it is well approximated by Chebyshev interpolation of moderate degree N , and FCC quadrature
is very efficient. On the other hand, if f is highly oscillatory, then accurate integration requires either a large
degree N or application of a moderate degree N to many small subintervals of [−1, 1]. Either way, many
evaluations of f are required.

Of course, if f can be factored as f(x) = g(x)eiµx with µ constant and g not highly oscillatory, then we
are back in the case where FCC quadrature performs well, provided we know a good value of µ. The core
of our strategy is to divide the domain of integration into subintervals on which f can be factored as above,
and to compute µ from the derivative of f at the center of the subinterval. Note that this strategy also
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handles non-Fourier oscillatory integrals

(2)

∫ 1

−1

dx f(x)

as a special case (ω = 0).
Various other modifications of FCC quadrature have been proposed to handle integrands of the form

p(x)eiωq(x) where p and q are not highly oscillatory. A popular strategy is to use the change of variables
y = q(x):

(3)

∫
dx eiωq(x)f(x) =

∫
dy eiωy p(q−1(y))

q′(q−1(y))

where q−1 is a local inverse. Neighborhoods of stationary points of q are handled using specialized techniques.
This is not our strategy for the following reasons.

(1) Our intended application is for families of integrands of a slightly different form: p(x)q(x)eiωx for a
finite set of values of ω, with p, |q|, and (arg(q))′ smooth and not highly oscillatory.

(2) Even though we could rearrange our integrand into the form pω(x)e
iωqω(x) for each ω, we want our

technique to work even in ignorance of any stationary points of qω(x).

1.3. Motivating Application. The original motivation for this work was a problem in digital channel
simulation [6] where digital simulation of an ionospheric scintillation channel model [3] required comput-
ing a covariance tensor whose coordinates were linear combinations of finite Fourier integrals of the form∫ ±1

0
dx e2nπixR(x) and

∫ ±1

0
dxxe2nπixR(x) where R(x) is an autocovariance function of the form

(4)
c1√
q1(x)

exp

(
q2(x) +

q3(x)

q1(x)

)
erf

(
σc2 + q4(x)/q1(x)√

q5(x)/q1(x)

)∣∣∣∣∣
σ=+1

σ=−1

where each ck is a complex constant and each qk is a complex quadratic polynomial. For a given channel
model, integrals for as many as ∼ 103 values of n and as many as ∼ 103 different functions R(x) were
needed. The functions R(x) were typically complex-valued and irregularly and highly oscillatory. However,
amplitude |R(x)| and instantaneous angular frequency d

dx argR(x) were non-oscillatory.

1.4. Filon-Clenshaw-Curtis Quadrature. In outline, the following is the FCC quadrature strategy for

computing
∫ 1

−1
dx eiωxf(x).

(1) Evaluate f at the Chebyshev nodes cNk = cos(πk/N), for 0 ≤ k ≤ N , for some degree N with only
small prime factors.

(2) Use a fast cosine transform to compute Chebyshev series coefficients

(5) ξNn =
2

N

N∑′′

k=0

cNknf(c
N
k )

in O(N logN) time.1 These coefficients encode the Chebyshev polynomial interpolation

(6) f(cNk ) =

N∑′′

n=0

ξNn cNkn =

N∑′′

n=0

ξNn Tn(c
N
k )

where Tn(cos θ) = cosnθ.
(3) For all (real) desired values of ω, evaluate

(7) IN (ξ⃗, ω) =

N∑′′

n=0

ξNn

∫ 1

−1

dx eiωxTn(x).

1The notation
∑′′ denotes a sum with half weight given to the first and last summands.
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There are many implementations of (3). See [5] for a survey of their stability and efficiency. Importantly,

the time complexity of accurately computing IN (ξ⃗, ω) is O(N) and uniform with respect to ω.

To cheaply estimate the error IN (ξ⃗, ω), we compare it to its truncation

(8) IM,N (ξ⃗, ω) =

M∑′

n=0

ξNn

∫ 1

−1

dx eiωxTn(x)

for some M < N .2 A popular but very conservative choice is M = N/2. Using degree-M coefficients
(ξMm )m≤M in the above truncated sum might appear more appropriate. However, if M divides N , then the
condition ξNn ≈ 0 for n ∈ (M,N ] already implies that (ξNm)m≤M is insensitive to reducing N to M . This is
mostly easily seen by comparing cosine transforms of (ξMm )m≤M and (ξNm)m≤M :

(9)

M∑′′

m=0

cMmkξ
M
m = f(cMk ) = f(cNkN/M ) =

N∑′′

n=0

cNnkN/MξNn ≈
M∑′′

n=0

cNnkN/MξNn =

M∑′′

m=0

cMmkξ
N
m .

In practice, even if M does not divide N , if N −M is not too small then smallness of ξNn for n ∈ (M,N ] is
strong evidence that f(cos θ) is well-approximated by the first M + 1 terms of its cosine series.

A distinctive feature of Chebyshev interpolation is its progressivity: if N divides N ′ then the Chebyshev
nodes for degree N are a subset of the nodes for degree N ′. This reduces the cost of degree-adaptive methods,
which typically repeatedly double N until estimated error is tolerable.

2. Tone Removal

Given a desired integral
∫ b

a
dx eiωxf(x), we assume that f : [a, b] → C is smooth and presented as αβ

where β is nonzero and β′ can be accurately computed either directly or through automatic differentiation.
Our tone removal method is intended for the case where α, |β|, and (arg(β))′ are not highly oscillatory. An

example is α(x) = x2 and β(x) = e−100ix2

/(x + i). We use β′ only to compute the angular velocity of β
via (arg β)′ = ℑ(β′/β). On any interval S, we can factor β(x) as (β(x)e−iνx)eiνx where ν is the angular
velocity of β at the center of S. If angular velocity does not vary too much on S, then β(x)e−iνx is not
highly oscillatory on S.

Thus, the integral
∫ b

a
dx eiωxf(x) is rearranged into

∫ b

a
dx eiω̃xf̃(x) where ω̃ = ω+ν and f̃(x) = f(x)e−iνx.

If ν is large and a good approximation of (arg(β))′ on [a, b], then this rearrangement is highly advantageous.

We can accurately interpolate f̃(x) from samples at far fewer Chebyshev nodes (that is, using a much smaller
N) than would be required to accurately interpolate f(x). If ν is not large or is not a good approximation
of (arg(β))′ on all of [a, b], then the rearrangement does little harm.

2.1. Hybrid Interval-Degree Adaptive Algorithm. We use a hybrid adaptive algorithm for computing∫ b

a
dx eiωxf(x) with an outer recursion over subintervals and an inner loop over degree. Fix a finite set Ω

of angular frequencies ω, a relative error goal δrel > 0, and an absolute error goal δabs ≥ 0. First, letting
[a, b] = [c− r, c+ r], we use the change of variables x = ry + c to reduce to the case [a, b] = [−1, 1]:

(10)

∫ b

a

dx eiωxf(x) = reiωc

∫ 1

−1

dy eirωyf(ry + c).

So, assuming [a, b] = [−1, 1], our recursive algorithm for computing
∫ 1

−1
dx eiωxf(x) first computes β(0) and

β′(0) to obtain ν and then samples f(x)e−iνx at the N +1 Chebyshev nodes where N = 8. After computing

the corresponding Chebyshev coefficients ξ⃗, we compute the FCC estimate

(11)

∫ 1

−1

dx eiωxf(x) =

∫ 1

−1

dx ei(ω+ν)ye−iνyf(x) ≈ IN (ξ⃗, ω + ν)

for each ω. To estimate accuracy, we compute the norm ΥN of (IN (ξ⃗, ω + ν))ω∈Ω and the norm ΥM,N of
the discrepancy

(12)
(
IN (ξ⃗, ω + ν)− IM,N (ξ⃗, ω + ν)

)
ω∈Ω

2The notation
∑′ denotes a sum with half weight given to the first summand.
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where M = 3N/4. (Our implementation uses the Euclidean norm by default but supports arbitrary user-
supplied vector pseudonorms.)

Our acceptance criterion is ΥN ≤ max(δabs, δrelΥM,N ). If it is met, then we output our estimates

(IN (ξ⃗, ω + ν))ω∈Ω and our error estimates ((IN − IM,N )(ξ⃗, ω + ν))ω∈Ω. If it is not met, then we double
N to 16, sample f(x)e−iνx at the 8 new Chebyshev nodes c161 , c163 , . . . , c1615, and recompute our estimates and
error estimates. We repeatedly double N until ΥN ≤ max(δabs, δrelΥM,N ) or N = 64. This is the inner loop
over degree.

If we complete the inner loop but still reject our estimates, then we divide [−1, 1] into B = 4 congruent
subintervals and recurse, applying our algorithm to each subinterval with δabs updated to max(δabs, δrelΥN )/B.
We output estimates and error estimates summed over the subintervals. We limit the above recursion to
depth D = 10. That is, at any subinterval of depth 10 in our recursion tree, if we complete the inner loop
over degree, then we unconditionally accept our estimates and error estimates for that subinterval.

The inner loop range {8, 16, 32, 64}, the branching factor B = 4, and the maximum recursion depth
D = 10 are default values of our implementation that can be modified by user. However, we require that
the inner loop range be an interval of powers of 2 and that the minimum of this interval must be at least 8.

3. Second-Order Extension: Chirp Removal

If factoring a tone eiνx out of f(x) enables accurate numerical integration with fewer evaluations of f ,
then, for functions f that are very expensive to evaluate, it is tempting to try to factor out a polynomial
chirp eixp(x). We have implemented linear chirp removal where a quadratic Taylor series is used to factor
out a linear chirp eix(ν+µx). However, the additional computational cost of our chirp removal method makes
it inferior to tone removal except for integrands that are extremely expensive to evaluate.

Consider the following modification of our tone removal algorithm for estimating
∫ 1

−1
dx eiωxf(x) for all

ω in some finite set Ω. In addition to computing β(0) and β′(0) we now also compute β′′(0) to obtain the
linear Taylor approximation ν + µx of d

dx arg(β) at 0. If µ is too large,3 then we divide [−1, 1] into B = 4
congruent subintervals and recurse, unless we reached recursion depth D = 10, in which case we fall back
to mere tone removal. Otherwise, instead of merely factoring out a tone before sampling at the Chebyshev
nodes, we now factor out a linear chirp:

(13)

N∑′′

n=0

ξnTn(x) ≈ f(x)e−ix(ν+µx).

For each ω, the desired estimate is now

(14)

∫ 1

−1

dx eiωxf(x) ≈
N∑′′

n=0

ξn

∫ 1

−1

dx ei(ω+ν)xeiµx
2/2Tn(x).

For each p in a fixed finite set E,4 we have precomputed an accurate Chebyshev interpolation

(15)

Dp∑′′

m=0

ηp,mTm(x) ≈ eipx
2

.

We choose the least p ≥ µ and set κ =
√
µ/p. For each ω, the desired estimate is now

(16)

∫ 1

−1

dx eiωxf(x) ≈
N∑′′

n=0

ξn

Dp∑′′

m=0

ηp,m

∫ 1

−1

dx ei(ω+ν)xTm(κx)Tn(x).

As described in Subsection 3.1, a dilated Chebyshev polynomial is a linear combination of Chebyshev poly-
nomials of equal or lesser degree and, given κ, we can compute the rearrangement

(17)

Dp∑′′

m=0

ηp,mTm(κx) =

Dp∑′′

m=0

ηp,m,κTm(x)

3By default, “too large” is µ > 29.7 in our implementation. The user may optionally increase this threshold up to 216.9.
413 values ranging from 21.5 to 216.9 in our implementation.
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Table 1. Chebyshev dilation coefficients.

φn,m m = 0 m = 1 m = 2 m = 3
n = 0 1
n = 1 κ
n = 2 κ2 κ2 − 1
n = 3 κ3 3κ(κ2 − 1)
n = 4 κ4 4κ2(κ2 − 1) (3κ2 − 1)(κ2 − 1)
n = 5 κ5 5κ3(κ2 − 1) 5κ(2κ2 − 1)(κ2 − 1)
n = 6 κ6 6κ4(κ2 − 1) 3κ2(5κ2 − 3)(κ2 − 1) (10κ4 − 8κ2 + 1)(κ2 − 1)

in O(D2
p) time. Next, using the identity 2TmTn = Tm+n + T|m−n|, we multiply the Chebyshev series (13)

and (17) in O(NDp) time:

(18)

N∑′′

n=0

ξnTn(x)

Dp∑′′

m=0

ηp,m,κTm(x) =

N+Dp∑′′

n=0

ζnTn(x).

For each ω, the desired estimate is now

(19)

∫ 1

−1

dx eiωxf(x) ≈ IN+Dp
(ζ⃗, ω + ν),

which we compute in O(N+Dp) time. Total computational complexity is therefore O(N logN+NDp+D2
p).

This complexity and the empirical run times in Section 6 recommend against chirp removal except for
integrands that are extremely expensive to evaluate.

To obtain an error estimate, we repeat the computations (18) and (19) with the Chebyshev series (13)
truncated to degree M = 3N/4. Then, just as in our tone removal quadrature algorithm, we decide whether

to accept IN+Dp
(ζ⃗, ω + ν), double N , or recurse to subintervals.

3.1. Chebyshev Dilation. Given a scalar κ, the degree-n dilated Chebyshev polynomial Tn(κx), being an
even or odd polynomial of degree n, is a linear combination of the Chebyshev polynomials Tn(x), Tn−2(x),
Tn−4(x), . . . :

(20) Tn(κx) =
∑

0≤2m≤n

φn,m(κ)Tn−2m(x).

We compute the above coefficients φn,m = φn,m(κ) using the recursion

φn,m = κφn−1,m + κφn−1,m−1 − φn−2,m−1 (∀m ∈ [1, ⌊n/2⌋));(21)

φ2n+1,n = 2κφ2n,n + κφ2n,n−1 − φ2n−1,n−1 (∀n ≥ 1);(22)

φ2n,n = κφ2n−1,n−1 − φ2n−2,n−1 (∀n ≥ 1);(23)

φn,0 = κφn−1,0 (∀n ≥ 1);(24)

φ0,0 = 1,(25)

which follows from the usual recursion Tn(x) = 2xTn−1(x)−Tn−2(x). Explicit formulas for 0 ≤ 2m ≤ n ≤ 6
are given in Table 1. We also note that if κ ∈ [−1, 1] then φn,m has an integral formula

(26) φn,m =
2

π

∫ π

0

dx cos[n cos−1(κ cosx)] cos[(n− 2m)x]

that implies a uniform bound |φn,m| ≤ 2.

4. Extension to Real Oscillatory Integrals

For real Fourier integrals
∫ b

a
dx f(x) cos(ωx) and

∫ b

a
dx f(x) sin(ωx) where f : [a, b] → R is smooth and

highly oscillatory, if f can be factored as α cos(γ) or α sin(γ) where α and γ are each real-valued and not
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highly oscillatory, then our tone and chirp removal methods are applicable using β = eiγ :∫ b

a

dxα(x) cos(γ(x)) cos(ωx) =
1

2

∑
+,−

ℜ
∫ b

a

dx e±iωxα(x)eiγ(x)(27)

∫ b

a

dxα(x) cos(γ(x)) sin(ωx) =
1

2

∑
+,−

±ℑ
∫ b

a

dx e±iωxα(x)eiγ(x)(28)

∫ b

a

dxα(x) sin(γ(x)) cos(ωx) =
1

2

∑
+,−

ℑ
∫ b

a

dx e±iωxα(x)eiγ(x)(29)

∫ b

a

dxα(x) sin(γ(x)) sin(ωx) =
1

2

∑
+,−

∓ℜ
∫ b

a

dx e±iωxα(x)eiγ(x).(30)

However, our adaptive algorithm’s criterion for recursion to smaller subintervals must be adjusted to take
into account that our goal for each ω ∈ Ω is an accurate estimate not of a single complex Fourier integral,
but of the real part or imaginary part of the sum of two complex Fourier integrals, a sum that may involve
significant cancellation. Our implementation achieves this by using a pseudonorm on CΩ∪−Ω consisting of a
norm (Euclidean by default) on RΩ composed with the real or imaginary part operator and with the sum or
difference map ς± : CΩ∪−Ω → CΩ where (ς±x⃗)ω = xω ± x−ω.

5. Computation of FCC Quadrature Weights

5.1. Overview. The core of our FCC quadrature implementation is an algorithm for accurately computing

sequences of weights
∫ 1

−1
dx eiωxTn(x) for 0 ≤ n ≤ N . For this, we numerically solve the three-term recurrence

ωτn−1

2(n− 1)
+ τn − ωτn+1

2(n+ 1)
=

2 cosω

1− n2
(2 ≤ n even)(31)

− ωτn−1

2(n− 1)
+ τn +

ωτn+1

2(n+ 1)
=

2 sinω

1− n2
(3 ≤ n odd)(32)

where

τ2m =

∫ 1

−1

dx cos(ωx)T2m(x)(33)

τ2m+1 =

∫ 1

−1

dx sin(ωx)T2m+1(x).(34)

(This recurrence follows from integration by parts and the identity T ′
n+1/(n+1)−T ′

n−1/(n− 1) = 2Tn.) We
use solution method “RR” of [5]: forward recursion where it is numerically stable, for n ≤ |ω|, and Olver’s
method [7] where it is numerically stable, for n > |ω|. (The boundary conditions for the forward recursion
are ωτ0 = 2 sinω and τ0 − ωτ1 = 2 cosω if |ω| ≥ 1.) Our application of Olver’s method consists of selecting
a padding length P and making the three-term recurrence for |ω| < n ≤ N + P a tridiagonal linear system
by replacing τ⌊|ω|⌋ with its value computed by forward recursion and by approximating τN+P+1 as 0. (If
|ω| < 1, we add the boundary condition 4τ1 + ωτ2 = 2 sinω.) The resulting tridiagonal system is diagonally
dominant and numerically stably solved by the Thomas algorithm in linear time.

5.2. Padding Length Selection. How to select the padding length P is not discussed in [5]. We will give

strong evidence that P = 9 + 2
⌈
(1 +

√
74N)/2

⌉
is sufficiently large when using double-precision floating-

precision arithmetic, which has unit roundoff 2−53. More precisely, what we will prove is that the absolute
algorithmic error in our computation of τn is at most 2−53 |τN+P+1|; what we will merely give strong evidence
for is that absolute algorithmic error in our computation of τn is generically at most 2−53 max(|τn| , |τn+1|)
and much smaller when |ω| << N . For comparison, the identity 2xTn(x) = Tn−1(x) + Tn+1(x) implies

(35) dτn/dω = (−1)n+1(τn−1 + τn+1)/2.

In the interesting alternative approach of [4], Olver’s method is applied to a three-term recurrence for

the integrals υn =
∫ 1

−1
dx eiωxT ′

n(x)/n but υN+P+1 is approximated by an asymptotic expansion instead of

by zero. In Experiment 3 of [4], the value of N + P starts at N and is repeatedly multiplied by 3/2 (and
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rounded up to the nearest integer) until the last term of their seven-term asymptotic estimate of υN+P+1 is
less than 10−15. We prefer our simpler implementation over [4] because the relevant tridiagonal system is
very cheap to solve, costing only O(N) elementary arithmetical operations plus the evaluation of cosω and
sinω.

Towards justifying P = 9 + 2
⌈
(1 +

√
74N)/2

⌉
, write the three-term recurrence as

(36) an−1τn−1 + τn − an+1τn+1 = bn

where

an = (−1)n+1 ω

2n
; bn =

{
2 cosω
1−n2 : n even
2 sinω
1−n2 : n odd

.(37)

Letting s = 1 + ⌊|ω|⌋ ≤ N ≤ N + P = t, we form the tridiagonal system consisting of

τ̂s − a′s+1τ̂s+1 = b′s(38)

an−1τ̂n−1 + τ̂n − an+1τ̂n+1 = bn (s < n < t)(39)

at−1τ̂t−1 + τ̂t = bt(40)

where a′s+1 = as+1 and b′s = bs + as−1τs−1 if s > 1 else b′1 = 1
2 sinω. Next, we bring the system into upper

triangular form

τ̂n − a′n+1τ̂n+1 = b′n (s ≤ n < t)(41)

τ̂t = b′t(42)

where a′n = an/(1 + an−2a
′
n−1) for n ≥ s+ 2 and b′n = (bn − an−1b

′
n−1)/(1 + an−2a

′
n−1) for n ≥ s+ 1. We

then solve the system using back substitution and approximate τn by τ̂n, thus introducing absolute errors
according to the recursion

(43) |τ̂n − τn| =
∣∣a′n+1

∣∣ |τ̂n+1 − τn+1|

with boundary condition τ̂t+1 = 0. In particular, |τ̂n − τn| = |τt+1|
∏t

m=n

∣∣a′m+1

∣∣. Our next task is to bound
these errors.

Lemma 1. |am| ≤ |a′m| ≤ 2 |am| for all m ∈ (s, t].

Proof. Assuming without loss that ω ̸= 0, let cm = a′m/2am. It suffices to show that 1/2 ≤ cm < 1.
Proceeding by induction on m, the base case m = s + 1 is clear. For the inductive case where m ≥ s + 2,
the recursion a′m = am/(1 + am−2a

′
m−1) implies

(44)
1

cm
=

2am
a′m

= 2(1 + 2am−2am−1cm−1) = 2− ω2cm−1

(m− 2)(m− 1)
.

We have |ω| < s ≤ m− 2. Therefore,

□(45) 0 ≤ cm−1 ≤ 1 ⇒ 0 ≤ ω2cm−1

(m− 2)(m− 1)
< 1 ⇒ 1

2
≤ cm < 1.

Applying Lemma 1 to the error recursion (43), we have

(46) |τ̂n − τn| ≤
|ω|

n+ 1
|τ̂n+1 − τn+1| ≤ |τ̂n+1 − τn+1|

for each n ∈ [s, t]. Moreover,

(47) |τ̂n − τn| ≤ |τt+1|
t∏

m=n

s

m+ 1
≤ |τt+1|

N+P∏
m=N

N

m+ 1
= |τt+1|

NP+1N !

(N + P + 1)!
.

Note that if |ω| ≪ N , then the above bound exaggerates the absolute error in τn by at least a large factor
of (N/ |ω|)P+1.

Stirling’s approximation and ln(1 + x) = x− x2/2 + o(x2) are enough to prove the asymptotic estimate

(48)
NP+1N !

(N + P + 1)!
∼ exp

[
− P 2

2N

]
for P ≪ N . With a little more work, we obtain the following non-asymptotic bound.
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Lemma 2.

ln
NP+1N !

(N + P + 1)!
< − (P + 1)(P + 2)(N − P − 1)

2N2
.

Proof. Instead of Stirling’s approximation, we use Robbins’ bounds [8]

(49)
1

12k + 1
< ln(k!)−

[(
k +

1

2

)
ln k − k + ln

√
2π

]
<

1

12k
.

Applying the upper bound to k = N and the lower bound to k = N + P + 1, we have

ln
NP+1N !

(N + P + 1)!
< P + 1−

(
N + P +

3

2

)
ln

N + P + 1

N
+

12(P + 1) + 1

12N(12(N + P + 1) + 1)
(50)

< P + 1−
(
N + P +

3

2

)
ln

N + P + 1

N
+

13(P + 1)

(12N)2
.(51)

The estimate ln(1 + x) > x(1− x/2) for x > 0 implies

P + 1−
(
N + P +

3

2

)
ln

N + P + 1

N
< P + 1− P + 1

4N2
(2N + 2P + 3)(2N − 1− P )(52)

=
P + 1

4N2
[(2P + 3)(P + 1)− 2N(P + 2)].(53)

Combining this with (51) yields

ln
NP+1N !

(N + P + 1)!
<

P + 1

4N2
[(2P + 3)(P + 1)− 2N(P + 2) + 13/36](54)

<
P + 1

4N2
[2(P + 1)(P + 2)− 2N(P + 2)](55)

= − (P + 1)(P + 2)(N − P − 1)

2N2
. □

Lemma 3. If |ω| < n and p ≥ 10 +
√
74n, then

∏n+p
m=n

∣∣a′m+1

∣∣ < 2−53.

Proof. By Lemma 1, the product
∏n+p

m=n

∣∣a′m+1

∣∣ is at most f(n, p) =
∏n+p

m=n
n

m+1 . By Lemma 2,

(56) ln f(n, p) < g(n, p) = (p+ 1)(p+ 2)(p+ 1− n)/2n2.

Since f(n, p) is decreasing with respect to p,

(57) ln f(n, p) < g(n, 10 +
√
74n) = h(n) = −37 +

51

2

√
74

n
+

1192

n
+

385

2n

√
74

n
+

726

n2
.

Since h is a decreasing function of n and

(58) h(8× 105) = −36.753 < −36.737 = −53 ln 2,

the theorem holds for n ≥ 8 × 105. Direct numerical computation verifies the rest. In particular, when
p = 10 + ⌈

√
74n⌉, the maximum value of

∏n+p
m=n

n
m+1 for n ≤ 106 is 2−53.14 at n = 296. □

Lemma 3 implies that if we use some padding P for Olver’s method and

(59) |ω| < n ≤ n+ 10 +
√
74n ≤ n+ p ≤ N + P,

then the approximation error |τ̂n − τn| is at most 2−53 |τ̂n+p+1 − τn+p+1|, which is 2−53 |τN+P+1| if also
n + p = N + P . As discussed earlier, this bound is very loose if |ω| ≪ N . For the general case, our goal is
to give strong evidence that

(60) |τ̂n − τn| ≤ 2−53 max(|τn| , |τn+1|)

holds generically.
Therefore, we want to understand if and how |τn| decays as n increases. The three-term recurrence (36)

is equivalent to the fixed point equation τn = (b + Aτ)n where (Ax)n = an+1xn+1 − an−1xn−1 for n ≥ 2.
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For each r ≥ s, declare Ar to be the infinite-dimensional operator on vectors of the form (xn)n≥r such that
(Arx)n = (Ax)n if n > r and (Arx)r = ar+1xr+1. The l2 operator norm of Ar satisfies

(61) ∥Ar∥ ≤ |ar|+ |ar+2| =
|ω| (r + 1)

r(r + 2)
< 1.

Therefore,

(62) τ≥r = (τn)n≥r =

∞∑
k=0

Ak
rc≥r

where cn = bn if n > r and cr = br + ar−1τr−1 if r > 1 else c1 = b′1. In particular,

(63)

∣∣∣∣∣τn −

[
n−r−1∑
k=0

Akb

]
n

∣∣∣∣∣ = ∣∣[An−r
r τ≥r

]
n

∣∣ = O

(
|ω| (r + 1)

r(r + 2)

)n−r

.

By induction on k, if n− 2 ≥ k ≥ 0 then

(64) (Akb)n = ωkbn

[
k+1∏
m=2

2m− 1

n2 −m2

]
·

{
(−1)k/2 : k even

(−1)n+(k−1)/2 : k odd
.

Therefore, if r/(r − |ω|) ≪ n− r, then |τn+2| ≤ |τn| because

n even ⇒ τn ≈ −2 cosω

n2 − 1
− 3ω sinω

(n2 − 1)(n2 − 4)
(65)

n odd ⇒ τn ≈ −2 sinω

n2 − 1
+

3ω cosω

(n2 − 1)(n2 − 4)
.(66)

Empirically, more is true: starting at n = s, there is a short transition zone of rapid exponential decay of
|τn| followed by an asymptotic regime of decay for even n and decay for odd n according to (65) and (66).
Figure 1 illustrates this.

Thus, if n ∈ [s,N ] and P is odd and at least 10 +
√
74n, then, choosing m ∈ {n, n+ 1} such that N −m

is even, we have strong evidence that

(67) |τ̂n − τn| ≤ 2−53 |τn+P+1| ≤ 2−53 |τN+P+1| ≤ 2−53 |τm|

is generically true. Also recall that this bound is larger than the actual absolute error by at least a factor of
(N/ |ω|)P+1, which is very large if |ω| ≪ N .

5.3. Padding Lengths For Other Precisions. For a floating-point data format with unit roundoff u other
than 2−53, it is not hard to find an analog of the bound p ≥ 10+

√
74n of Lemma 3. The analog of 74 should

be something slightly larger than −2 lnu and the analog of 10 can be determined empirically. In particular,

padding length P = 3+ 2
⌈
(1 +

√
34N)/2

⌉
is sufficient for single-precision floating-point arithmetic because

u = 2−24 and if p = 4 + ⌈
√
34n⌉ then the maximum value of

∏n+p
m=n

n
m+1 for n ≤ 106 is 2−24.50 at n = 850.

Similarly, if u = 2−256, then padding length P = 55+2
⌈√

356N/2
⌉
is sufficient because if p = 55+ ⌈

√
356n⌉

then the maximum value of
∏n+p

m=n
n

m+1 for n ≤ 106 is 2−256.22 at n = 4018.

Figure 2 measures the accuracy of vectors of weights (τn)n≤N computed using double precision by com-
paring them to weights computed using 256-bit precision.

6. Empirical Performance

In this section we compare the following four FCC quadrature variants.

(1) Degree: Degree-adaptive5 FCC quadrature.
(2) Plain: Hybrid6 adaptive FCC quadrature as in Subsection 2.1 except without tone removal.
(3) Tone: Hybrid adaptive FCC quadrature with tone removal as in Section 2.
(4) Chirp: Hybrid adaptive FCC quadrature with linear chirp removal as in Section 3.

5Starting at N = 8 and doubling thereafter up to a maximum of 220.
6See Subsection 2.1.
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Figure 1. Typical relationship between |τn| and n.

Table 2. Real-valued integrand factorizations for 7 integrals from [5].

Integral Integrand Form α(x) γ(x) ω

I1 =
∫ 1

0
dx cos(10x2) sin(50x) α(x) cos γ(x) sin(ωx) 1 10x2 50

I2 =
∫ 1

0
dx cosx cos(40 cosx) α(x) cos γ(x) cos(ωx) 1 40 cosx 1

I3 =
∫ 1

0
dx sinx cos(500(x2 + x)) α(x) cos γ(x) sin(ωx) 1 500(x2 + x) 1

I4 =
∫ π

0
dx cos(30x) cos(30 cosx) α(x) cos γ(x) cos(ωx) 1 30 cosx 30

I5 =
∫ π/2

0
dx sinx cos(cosx) cos(100 cosx) α(x) cos γ(x) sin(ωx) cos(cosx) 100 cosx 1

I6 =
∫ 2

0
dx ex sin(50 coshx) α(x) sin γ(x) cos(ωx) ex 50 coshx 0

I7 =
∫ 1

0
dx cos(47πx2/4) cos(41πx/4) α(x) cos γ(x) cos(ωx) 1 47πx2/4 41π/4

6.1. Seven Easier Integrals. We applied our methods to the seven real-valued Fourier integrals of Table 4
of [5].7 For each of these integrals, the integrand can be factored as in Section 4. Table 2 lists our factorization
choices.

7We replaced the undefined parameter β of integral I2 with 1.
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Figure 2. Worst relative discrepancy εrel = maxn≤N

∣∣∣τ (53)n /τ
(256)
n − 1

∣∣∣ and worst absolute

discrepancy εabs = maxn≤N

∣∣∣τ (53)n − τ
(256)
n

∣∣∣ between Chebyshev weights computed using

double precision and 256-bit precision. (The respective unit roundoffs are 2−53 and 2−256.)
Each plot shows results for 2,001 values of ω that range from 10−10 to 1010 with log-uniform
spacing. Given an interpolation degree N and angular frequency ω, the vector (τn)n≤N is
computed using forward recursion for n ≤ ω and Olver’s method for n > ω. In particular,
the discrepancies observed at higher frequencies ω ≥ N are entirely attributable to forward
recursion.

Table 3. Performance comparison for 7 integrals from [5]. The unit roundoff was 2−53 and
the relative error goal was 10−8. Timings were performed using a single core of an Intel
i7-8750H 2.20GHz CPU and exclude compilation warm up time.

Integrand Evaluations Run Time (s)
Integral Degree Plain Tone Chirp Degree Plain Tone Chirp

I1 65 65 33 9 10−4.2 10−4.3 10−4.4 10−3.5

I2 65 65 33 33 10−4.3 10−4.3 10−4.3 10−2.6

I3 1025 2157 325 9 10−3.5 10−3.0 10−3.9 10−2.1

I4 129 197 197 133 10−4.1 10−3.9 10−3.9 10−2.3

I5 129 261 197 65 10−4.0 10−3.9 10−3.9 10−2.0

I6 257 393 229 65 10−4.0 10−4.0 10−3.9 10−2.0

I7 129 261 197 9 10−4.1 10−3.9 10−4.0 10−2.6

Table 3 demonstrates the principle of large efficiency gains through tone or chirp removal. Judging by the
integrand evaluation counts, Chirp is best, Tone does about as well as Degree, and Plain is worst. Without
tone or chirp removal, restricting the interpolation degrees to 8 ≤ N ≤ 64 and dividing the domain into
subintervals was typically inferior to simply using a higher interpolation degree. Table 4 verifies that the
seven integrals were computed sufficiently accurately by all four methods.

Practically, run time matters more than an evaluation count. For the seven integrands of Table 2, Degree,
Plain, and Tone have very similar run times except for one integral where Tone is faster; Chirp is the slowest
by a wide margin. Chirp will have a speed advantage over Tone only if the integrand is extremely expensive
to evaluate.

6.2. One Harder Integral. In contrast to the above seven integrals, if the irregularly oscillatory part of
an integrand has much higher typical frequency, then Tone typically has a much greater speed advantage
over Plain and Degree. For example, as displayed in Table 5, Tone was 100 times faster than Plain at

computing
∫ 13

12
dx ex+iex with relative error goal δrel = 10−8, using double-precision arithmetic (and ω = 0).

The method Degree failed at the same task, estimating its relative error to be 10−8.6 when it was actually
103.9, making its output worse than useless. For Degree, merely increasing working precision to 256 bits
did not improve accuracy; merely decreasing δrel to 10−12 improved actual relative error to 10−6.6 at the
cost of a run time 200 times longer than Tone’s run time for δrel = 10−8 with double-precision arithmetic,
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Table 4. Accuracy verification for 7 integrals from [5]. The unit roundoff was 2−53 and the
relative error goal was 10−8. Estimated relative errors were computed as in Subsection 1.4
usingM = 3N/4. Actual relative errors were computing by comparing to integrals computed
using Tone with unit roundoff 2−256 and relative error goal δrel = 10−30. Nonzero error
magnitudes are rounded to the nearest power of 10.

Estimated Relative Error Actual Relative Error
Integral Degree Plain Tone Chirp Degree Plain Tone Chirp

I1 10−19 10−19 10−12 10−17 10−15 10−15 10−14 10−15

I2 10−17 10−17 10−9 0 10−14 10−14 10−13 10−13

I3 10−17 10−7 10−13 10−14 10−12 10−12 10−13 10−15

I4 10−15 10−9 10−15 10−9 10−15 10−15 10−15 10−11

I5 10−9 10−7 10−15 10−12 10−13 10−13 10−13 10−12

I6 10−17 10−8 10−11 10−8 10−13 10−13 10−13 10−11

I7 10−19 10−12 10−14 0 10−15 10−15 10−15 10−15

Table 5. Performance and accuracy comparison for the integral
∫ 13

12
dx ex+iex including

integrand evaluation counts, run times, estimated relative error magnitudes, and actual
relative error magnitudes. Timings were performed using a single core of an Intel i7-8750H
2.20GHz CPU and exclude compilation warm up time. Actual errors were computed relative

to a value of i(eie
12 − eie

13

) computed with 256-bit precision.

Relative Unit Integrand Estimated Actual

Method Error Goal Roundoff Evaluations Run Time (s) Relative Error Relative Error

Plain 10−8 2−53 632053 10−0.9 10−5.4 10−7.3

Plain 10−8 2−256 632053 101.3 10−5.4 10−11.5

Tone 10−8 2−53 5365 10−2.9 10−7.1 10−8.8

Tone 10−8 2−256 5365 10−0.7 10−7.1 10−11.5

Chirp 10−8 2−53 533 10−0.1 10−8.6 10−11.2

Degree 10−8 2−53 32769 10−1.8 10−8.6 103.9

Degree 10−8 2−256 32769 100.4 10−8.6 103.9

Degree 10−12 2−53 262145 10−0.6 10−14.9 10−6.6

Degree 10−12 2−256 262145 101.4 10−75.8 10−67.5

which achieved actual relative error 10−8.8. Using both 256-bit working precision and δrel = 10−12 for Degree
further improved actual relative error to 10−67.5 at the cost of increasing run time by another factor of 100.
Fundamentally, method Degree suffered from massive cancellation because the Chebyshev series

(68) ex+iex =

∞∑
n=0

cnTn(2x− 25)

on [12, 13] has an oscillatory coefficient sequence c⃗ even when restricted to the even terms c2n that contribute
to

(69)

∫ 13

12

dx ex+iex =

∞∑
n=0

c2n
1− 4n2

.

The largest coefficient magnitude |c2n| does not occur until 2n=150,170.
Overall, we recommend Tone as a default method over Degree, Plain, and Chirp.

7. Software Implementation

We implemented the algorithms of this paper in the Julia [2] programming language. Our implementation
is publicly available as an MIT-licensed Julia package FCCQuad.jl at the following URL.

https://github.com/dkm2/FCCQuad.jl
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7.1. Supported Data Types. For the FCC weights computation described in Section 5, we currently
support three Julia data types: Float32, Float64, and BigFloat. However, for BigFloat we only support
the default precision of 256 bits, that is, unit roundoff u = 2−256. For each of these data types, the padding
length P is as in Section 5.

For numerical integration methods Degree, Plain, and Tone, we currently support the same data types as
in the previous paragraph. For the method Chirp, we currently support only Float64.

7.2. Higher-Degree Automatic Differentiation. For a univariate scalar-valued analytic functions f ,
forward-mode automatic differentiation of moderate degree d is both simple and efficient given a type-generic
implementation of f in a programming language (for examples, Julia or C++) for which specializations to
concrete types can be compiled to machine code. The compiler specializes the implementation of f to a data
type representing a ring K[ε]/O(εd+1) where K is a field of characteristic zero and the extension of f to this
field is defined by the Taylor series expansion

(70) f(a+ bε) =

d∑
n=0

f (n)(a)

n!
(bε)n

for all a ∈ K and b ∈ K[ε]/O(εd+1). If f is an elementary function, there is no more work to be done; libraries
implementing the needed primitive operations on K[ε]/O(εd+1) are publicly available. One example is the
open-source Julia package TaylorSeries.jl [1]. On the other hand, if the implementation of f uses, for
example, an erf implementation intended only for double-precision floating point, then the user may need to
manually extend the definition of f to K[ε]/O(εd+1).

Alternatively, if the degree d is moderate, then recursive use of degree-1 automatic differentiation is simpler
to implement and only moderately inefficient. For example, working in L[ε2]/O(ε22) where L = K[ε1]/O(ε21),
we can extract a second-degree Taylor series:

(71) f(x+ ε1 + ε2) = f(x+ ε1) + f ′(x+ ε1)ε2 = f(x) + f ′(x)ε1 + f ′(x)ε2 + f ′′(x)ε1ε2.

Our current implementation uses our own lightweight implementation of K[ε]/O(ε3) for primitive opera-
tions and some special functions, including erf, which is not currently supported by TaylorSeries.jl. (The
popular forward-mode automatic differentiation Julia package ForwardDiff.jl supports computing second
derivatives. Unfortunately, it currently has poor support for complex numbers.)
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