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Boolean spaces

A Boolean space is a compact Hausdorff space with a clopen base.

A space is Boolean iff it is homeomorphic to a closed subspace of
some 2κ. But not every Boolean space is a retract of some 2κ, and
not every Boolean spaces is dyadic, that is, not even a continuous
image of some 2κ.

For a closed C ⊂ 2κ, if we consider the coordinate projections
πs : C → 2s , x 7→ x �s, for finite s ⊂ κ, then we see that a space
is Boolean iff it is an inverse limit of surjections between
finite discrete spaces.
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Special inverse limits

In short, a space is Boolean iff it is an (inverse) limit of finite
surjections (between discrete spaces).

What if we place extra requirements on these finite surjections?

I am not aware of answers in the literature, except for one section
of a book by Heindorf and Shapiro, Nearly projective Boolean
algebras. (I’ll say more about that later.)

However, I have found a new characterization of the class of
retracts of powers of 2 (also known as the Dugundji spaces or the
absolute extensors of dimension zero (i.e., AE(0) spaces)).

These retracts are exactly those limits of finite surjections that
interact with each other in a “mutually surjective” way, roughly
speaking.
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Bicommutative squares

Bicommutative squares were used extensively by Ščepin in the
1970s. The concept apparently goes at least as far back as
Kuratowski’s 1966 Topology, Vol. 1.
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A commutative square of functions W X
f
oo Z

h
oo

k
// Y g

//W is

said to bicommute if, for every pair (x , y) such that f (x) = g(y),
there exists z such that (h, k)(z) = (x , y).
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Bicommutative limits
Given an inverse limit system, say, f ji : Xj → Xi for all i ≤ j in
some directed poset, every quadruple (h, i , j , k) with
h ≤ i ≤ k ≥ j ≥ h corresponds to a commutative square.

We can ask, does every such square bicommute?
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Asking for squares with h arbitrarily low to bicommute is too much.
So, assume the poset is a meet-semilattice: ∀i , j ∃i ∧ j = inf{i , j}.
If all the squares with h = i ∧ j bicommute, say that the inverse
limit X∞ is a bicommutative limit of the Xi ’s.
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Retracts of 2ω1

X is a retract of Y if there are continuous maps X Yr
oo Xe

oo

such that r ◦ e = idX .

Every second-countable Boolean space is a retract of 2ω.

A space of uncountable weight λ is a retract of some 2κ iff it is a
retract of 2λ.

Theorem (Heindorf and Shapiro). A Boolean space of weight ℵ1
is a retract of 2ω1 iff it is a bicommutative limit of finite surjections.

(Heindorf and Shapiro’s result was actually stated and proved
purely algebraically: a Boolean algebra of size ℵ1 is projective iff it
has the “strong Freese-Nation property.”)

What if we consider tricommutative limits of finite surjections?
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Tricommutative cubes
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Given a commutative cube of functions f τσ : Xτ → Xσ for
τ ⊂ σ ⊂ 3, we say it tricommutes if, for every triple

(x{0}, x{1}, x{2}) such that f
{i}
{i ,j}(x{i}) = f

{j}
{i ,j}(x{j}) for all

i < j < 3, there exists x∅ such that f ∅{i}(x{i}) = x∅ for all i < 3.

To define n-commuting n-cubes, replace 3 with n.
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n-commutative limits

Given an inverse limit system, say, f ji : Xj → Xi for all i ≤ j in
some directed meet-semilattice (I ,≤) an n-cube subdiagram is a

commutative n-cube of the form f
ϕ(τ)
ϕ(σ) : Xϕ(τ) → Xϕ(σ) for

τ ⊂ σ ⊂ n, for some ∧-preserving map ϕ : (P(n),⊃)→ (I ,≤).

Say that an inverse limit system n-commutes if all its n-cube
subdiagrams n-commute.

Say that an inverse limit system (< ω)-commutes if, for all n < ω,
all its n-cube subdiagrams n-commute.
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Retracts of 2κ

Theorem. For a Boolean space X of weight ℵn, the following are
equivalent.

I X is a retract of 2ωn

I X is an (n + 1)-commutative limit of finite surjections.

I X is a (< ω)-commutative limit of finite surjections.

Theorem. For a Boolean space X of weight λ ≥ ℵω, the following
are equivalent.

I X is a retract of 2λ

I X is a (< ω)-commutative limit of finite surjections.

I For each n < ω, X is an n-commutative limit of finite
surjections.

(These theorems are proved in my July 2016 arXiv preprint.)

The above theorems do not change if we require that the inverse
limit system be indexed by a directed meet-semilattice instead of
merely a directed poset.
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A purely finite application

Theorem (Shapiro). The Vietoris hyperspace exp(2ω2) of
nonempty closed subsets of 2ω2 is not a continuous image (and,
hence, not a retract of) 2ω2 .

Corollary. Although 2ω2 is a tricommutative inverse limit of finite
surjections, exp(2ω2) is not.

Corollary. There is a tricommutative cube of finite surjections
that is not tricommutative after after applying the exp functor.

Given f : X → Y continuous, exp(f ) : exp(X )→ exp(Y ) where
exp(f )(A) = f [A] for all closed nonempty A ⊂ X .

In contrast, Heindorf and Shapiro proved algebraically that the exp
functor preserves bicommutative squares of Boolean spaces. (And
it’s easier to prove this topologically for all spaces.)
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Montemayor’s tricommutative cube

Again, there is a tricommutative cube of finite surjections that is
not tricommutative after after applying the exp functor.

Though my non-constructive proof gave no bound, my guess was
that a small example existed. I gave one of my students, René
Montemayor, the task of finding an explicit example cube, actually,
the Stone dual of such a cube, since I taught him the relevant
background in terms of Boolean algebras.

In the algebraic formulation, one does not have to search for 8 sets
and 12 surjections between them, but rather for 1 Boolean algebra
and 3 subalgebras. The intersections of these subalgebras form the
other 4 vertices of the cube; the inclusion maps form the 12 edges
of the cube.

I suspected some cube with 23 at the top would work. René found
that 22 ∼= 4, and no less, is enough.
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Montemayor’s tricommutative cube

The following is the Stone dual of Montemayor’s minimal example,
before the exp functor is applied.

{12, 3, 4}

��

&&

{1, 2, 3, 4}oo

xx
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��
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ff
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Tricommutativity destroyed

After applying the exp functor, the resulting cube’s
non-tricommutativity is witnessed below.
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Why is tricommutativity destroyed?

Why does exp destroy tricommutativity but not bicommutativity?

From an algebraic perspective, the obstruction to exp preserving
tricommutativity is that if ei : Ai → B are inclusions of Boolean
algebras for i < 2, then

⋃
i<2 Ai could generate B yet⋃

i<2 exp(ei )[exp(Ai )] not generate exp(B).

Subalgebras of the form 〈(A0 ∩ A2) ∪ (A1 ∩ A2)〉 matter for
tricommutativity but not for bicommutativity.
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About the proofs

To prove that a retract R of 2κ is an (< ω)-commutative limit of
finite surjections:

Use Koppelberg’s characterization of retracts of powers of 2 as
limits of continuous linear inverse systems of open surjections
f βα : Xβ → Xα where each f α+1

α extends to the first coordinate
projection on Xα × 2.

The rest is algebra and simple transfinite recursion.

For the proof of the converse:

Use Haydon’s characterization of retracts of powers of 2 as limits
of continuous linear inverse systems of open surjections
f βα : Xβ → Xα where each f α+1

α extends to the first coordinate
projection on Xα × 2ω.
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More about the proofs
To prove an (< ω)-commutative limit L of finite surjections
f ts : Lt → Ls is a retract of 2κ, and that (n + 1)-commutative is
enough if w(L) ≤ ℵn:

1. Use a Davies sequence, that is, a sequence of countable
Mα ≺ (H(θ),∈, /) such that (Mβ)β<α ∈ Mα.

2. Each
⋃
β<αMβ is a finite union

⋃
i<k Ni where Ni ≺ H(θ).

3. If α ≤ ωn, then “finite” improves to “≤ n.”

4. For a set E , define L/E by x/E 6= y/E iff Boolean
combinations of clopen sets in E separate x and y .

5. (k + 1)-commutativity of (L•, f
•
• ) implies that the natural

quotient map L/Mα → L/(Mα ∩
⋃

i<k Ni ) is open.

6. By elementarity, L/
⋃

i<k Ni , which equals L/
⋃
β<αMβ, is an

open quotient of L/
⋃
β<α+1Mβ.

7. By Haydon’s criterion, L is a retract of 2w(L).
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Questions

1. Is there a tricommutative limit of finite surjections that is not
a retract of some 2κ?

2. Is there a tricommutative limit of open surjections between
second countable Boolean spaces that is not a tricommutative
limit of finite surjections? (The answer is ‘yes’ if tri- is
replaced by bi-.)

3. Is there a tricommutative limit of open surjections between
second countable Boolean spaces that is not dyadic?

Any example answering (1), (2), or (3) must have weight ≥ ℵ3.

For inverse limit systems of open surjections between second
countable Boolean spaces, I can cook up an n-commutative system
whose limit is not the limit of any (n + 1)-commutative system
(using Davies sequences, of course). But I don’t know how to do
this for finite surjections when n ≥ 3.

I know (1) or (2) has a ‘yes’ answer, but I don’t know which.
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