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Motivation

• Study homeomorphism-invariant local properties of compacta

in hopes of obtaining negative results about open questions

about homogeneous compacta.

• Specifically, study order-theoretic properties of local bases of

compacta.
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Topological preliminaries

• Definition. A local base at a point p in a space X is a family
F of open neighborhoods of p such that every neighborhood
of p contains an element of F.

• Definition. A local π-base at a point p in a space X is a
family F of nonempty open subsets of X such that every
neighborhood of p contains an element of F.

• Definition. χ(p, X) = min{|F| : F local base at p}.

• Definition. πχ(p, X) = min{|F| : F local π-base at p}.
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Tukey equivalence

• Definition. A directed set P is Tukey reducible to a directed
set Q (written P ≤T Q) if there is map from P to Q such
that the image of every unbounded set is unbounded.

• Theorem (Tukey, 1940). P ≡T Q iff P and Q embed as
cofinal subsets of a common third directed set.

• Convention. Families of open sets are ordered by ⊇.

• Corollary. Every two local bases at a common point are
Tukey equivalent.
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• P ≤T Q ⇒ cf(P ) ≤ cf(Q)

• α ≤T β ⇔ cf(α) = cf(β)

• P ≤T P ×Q

• If P ≤T R ≥T Q, then P ×Q ≤T R.

• Convention. Sets of the form [A]<κ are ordered by ⊆.

• P ≤T [cf(P )]<ω

• [A]<ω ≤T [B]<ω ⇔ |A| ≤ |B|+ ω
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• Theorem 1. Let X be a compactum and κ = minp∈X πχ(p, X).

Then there is a local base F at some point in X such that

[κ]<ω ≤T F.

• Corollary. Let X be a compactum such that every point has

a local base with no uncountable antichains (in the sense of

incomparability). Then there is a countable local π-base at

some point in X.

• Proof. Use ω1 → (ω1, ω + 1) to conclude that [ω1]
<ω is not

Tukey reducible to any local base of X. Apply Theorem 1.
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• Definition. A directed set P is flat if P ≡T [cf(P )]<ω. A
point in a space is flat if it has a flat local base.

• Corollary. Let X be a compactum such that πχ(p, X) =
χ(q, X) for all p, q ∈ X. Then X has a flat point.

• Definition. A compactum is dyadic if it is a continuous
image of a power of 2.

• Theorem 2. Every point in every dyadic compactum is flat.

• Question. Is every point in every homogeneous compactum
flat?
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Independence results about βω \ ω

• Theorem 3 (Dow & Zhou, 1999). There is a flat point in

βω \ ω.

• Question. Is it consistent that all points in βω \ ω are flat?

• Theorem 4 (MA). If ω ≤ cf(κ) = κ ≤ c, then βω \ ω has a

local base Tukey equivalent to [c]<κ.

• Question. Assuming MA, does Theorem 4 enumerate all

Tukey classes of local bases of βω \ ω?
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• Definition. The pseudointersection number p is the least κ
for which MAκ fails for some σ-centered poset.

• Theorem 5. If κ is a regular infinite cardinal less than p and
Q is a κ-directed set, then no local base in βω \ ω is Tukey
equivalent to κ×Q. 4/9/2007: The second κ should be
a κ+.

• Corollary (MA). If κ and λ are distinct regular infinite car-
dinals, then no local base in βω \ ω is Tukey equivalent to
κ× λ.

• Theorem 6. Given any two regular uncountable cardinals κ
and λ, it is consistent with ZFC that βω \ ω has a local base
Tukey equivalent to κ× λ.

8



• Remark. It is not hard to show that, for a fixed κ, a con-

struction of Brendle and Shelah (1999) can be trivially mod-

ified to yield of a model of ZFC in which βω \ ω has a local

base Tukey equivalent to κ× λ for each λ in an arbitrary set

of regular cardinals exceeding κ.
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• About the proof of Theorem 2. It suffices to build a local

base F at a given point such that F is ω-like (i.e., all bounded

sets are finite). We proceed by induction on the weight of

the space, using a chain of elementary substructures of some

Hθ and a nice reflection property of free boolean algrebras,

which are the Stone duals of powers of 2.

11



• About the proof of Theorem 1. It suffices to find a κ-sized

family of neighborhoods of some point p such that the in-

tersection of an infinite subfamily never has p in its inte-

rior. Given a family F of sets, set Φ(F) =
{
〈σ, 〈Ei〉i<n〉 ∈

[F]<ω × ([F]ω)<ω : ∀τ ∈ ∏
i<n Ei

⋂
σ ⊆ ⋃

ran(τ)
}
. The trick

is to iteratively construct open neighborhoods 〈Uα〉α<κ of a

common point such that Φ({Uα}α<κ) = ∅.

• About the proof of Theorem 4. Use Solovay’s Lemma

to iteratively build a local base F at a Pκ-point that also

satisfies Φκ(F) = ∅ where Φκ(F) is Φ(F) with [F]ω replaced

by [F]κ.

12


