Applications of $\omega_1\text{-approximation}$ systems

David Milovich

Boise Extravaganza in Set Theory

March 28, 2008

Notation. H_{κ} is the set of sets that are hereditarily smaller than κ .

Convention. A set M is a submodel if $\langle M, \in \rangle$ an elementary substructure of $\langle H_{\theta}, \in \rangle$ for a sufficiently large regular cardinal θ .

- Suppose we need to construct an object O of size \aleph_1 one countable piece at a time.
- At stage α , we may also need the partially completed object $O_{<\alpha}$ to satisfy certain closure properties.
- A elementary chain of countable submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ is the natural tool to use.
- An arbitrarily chosen $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ might not work. To ensure $O_{<\alpha} \in M_{\alpha}$, we may need to construct $\langle O_{\alpha} \rangle_{\alpha < \omega_1}$ and $\langle M_{\alpha} \rangle_{\alpha < \omega_1}$ simultaneously: $M_0, O_0, M_1, O_1, M_2, O_2, \ldots$

- What if we need to construct an object O of size ℵ₂ one countable piece at a time?
- An elementary chain of \aleph_1 -sized submodels $\langle M_{\alpha} \rangle_{\alpha < \omega_2}$ won't work because in general $|M_{\alpha+1} \setminus M_{\alpha}| = \aleph_1$.
- Okay, so we'll build $M_{\alpha+1}$ as the union of an elemenatry chain $\langle N_{\alpha,\beta} \rangle_{\beta < \omega_1}$ of countable submodels. With each $N_{\alpha,\beta}$ we'll build another countable piece $O_{\alpha,\beta}$ of O.

- Possible pitfall #1: we may assume $O_{<\alpha}, M_{\alpha}, O_{\alpha,<\beta} \in N_{\alpha,\beta}$ and $O_{\alpha,<\beta} \subseteq N_{\alpha,\beta}$ but not $O_{<\alpha} \subseteq N_{\alpha,\beta}$ or $M_{\alpha} \subseteq N_{\alpha,\beta}$.
- Possible pitfall #2: $O_{<\alpha}$ and $O_{\alpha,<\beta}$ might interact in a nasty way.
- If we can get around the pitfalls, we've got something useful.
- Okay, that covers \aleph_2 , but why stop there? It's easy to similarly handle \aleph_3 and \aleph_4 , and not terribly hard to see how to handle \aleph_{ω} and $\aleph_{\omega+1}$. We just need to formalize how to handle an arbitary cardinal.

Definition. A sequence of countable submodels $\langle M_{\alpha} \rangle_{\alpha < \eta}$ is an ω_1 -approximation sequence if $\langle M_{\beta} \rangle_{\beta < \alpha} \in M_{\alpha}$ for all $\alpha \leq \eta$.

Theorem. There is a \emptyset -definable map Ψ with domain equal to the class of ω_1 -approximation sequences, such that every $\Psi(\langle M_{\alpha} \rangle_{\alpha < \eta})$ is of the form $\langle \Sigma_{\alpha} \rangle_{\alpha < \eta}$ where, for all $\alpha \leq \eta$:

• Σ_{α} is a finite set of submodels.

•
$$\bigcup \Sigma_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}.$$

• if $\alpha < \eta$, then $N \in M_{\alpha}$ for all $N \in \Sigma_{\alpha}$.

We call $\langle \Sigma_{\alpha} \rangle_{\alpha \leq \eta}$ an ω_1 -approximation system.

About the proof

- Let Ω denote the class of finite, nonempty ordinal sequences $\langle \gamma_i \rangle_{i < n}$ for which $|\gamma_0| > |\gamma_1| > \cdots > |\gamma_{n-2}| \ge \aleph_1 > |\gamma_{n-1}|$ if $n \ge 2$ and $\aleph_1 > |\gamma_{n-1}|$ if n = 1.
- Let \sqsubseteq denote the lexicographic ordering of Ω . Since \sqsubseteq is a well-ordering, there is a unique isomorphism Υ from the ordinals to $\langle \Omega, \sqsubseteq \rangle$.
- Suppose $\Upsilon(\alpha) = \langle \gamma_i \rangle_{i < n}$. For each k < n 1, set $N_{\alpha,k} = \bigcup \{ M_{\beta} : \langle \gamma_0, \dots, \gamma_{k-1}, 0 \rangle \sqsubseteq \Upsilon(\beta) \sqsubset \langle \gamma_0, \dots, \gamma_k, 0 \rangle \}$. Set $N_{\alpha,n-1} = \bigcup \{ M_{\beta} : \langle \gamma_0, \dots, \gamma_{n-2}, 0 \rangle \sqsubseteq \Upsilon(\beta) \sqsubset \langle \gamma_0, \dots, \gamma_{n-1} \rangle \}$. Set $\Sigma_{\alpha} = \{ N_{\alpha,j} : j < n \} \setminus \{ \emptyset \}$. This works.

Applications

- Theorem (Jackson and Mauldin, 2002). There is a Steinhaus set, that is, a subset S of \mathbb{R}^2 that meets every isometric copy of \mathbb{Z}^2 at exactly one point.
- Jackson and Mauldin didn't exactly use ω_1 -approximation systems. They more directly used the tree T formed by the closure of Ω with respect to initial segments. They built a sequence of substructures of \mathbb{R}^2 indexed by a subtree of T.

- **Definition.** A poset *P* is is κ^{op} -like if no element of *P* has κ -many elements above it.
- Definition. A base of a boolean algebra B is a subset A of B such that for all b ∈ B we have b = V_{i<n} a_i for some a₀,..., a_{n-1} ∈ A.
- **Definition.** A boolean algebra is free if it isomorphic to the algebra of clopen sets $Clop(2^{\lambda})$ for some cardinal λ .
- Definition. Let the reaping number r(B) of a boolean algebra B be the least κ such that some ultrafilter U of B has a refinement of size κ.

Lemma. Free boolean algebras reflect cones. More precisely, if A is a free boolean algebra, M is a submodel, and $a \in A \in M$ (but maybe $a \notin M$), then $\{b \in A \cap M : a < b\}$ has a minimum element.

Theorem. Every subset of a free boolean algebra contains a dense ω^{op} -like subset.

Proof. Use the lemma, elementary chains, and induction on the size of the boolean algebra.

Theorem. If B is a subalgebra of a free boolean algebra and $\mathfrak{r}(B) = |B|$, then every base of B contains an ω^{op} -like base.

Proof. Use the lemma and ω_1 -approximation systems.

Topological consequences

Definition. A base \mathcal{A} of a space X is a family of open sets such that for every open U and every $p \in U$ there exists $V \in \mathcal{A}$ such that $p \in V \subseteq U$.

Definition. A local base \mathcal{A} at a point p in a space of X is a family of open sets containing p such that for every open U containing p there exists $V \in \mathcal{A}$ such that $V \subseteq U$.

Definition. A π -base \mathcal{A} of a space X is a family of nonempty open sets such that for every nonempty open U there exists $V \in \mathcal{A}$ such that $V \subseteq U$.

Definition. A dyadic compactum is a Hausdorff space that is a continuous image of 2^{λ} for some λ . (Example: compact groups are dyadic.)

Convention. Families of open sets are ordered by \subseteq .

Theorem. Let X be a dyadic compactum. Then every π -base of X contains an ω^{op} -like π -base and every local base in X contains an ω^{op} -like local base.

Theorem. If X is also homogeneous, then every base of X contains an ω^{op} -like base.

λ -approximation systems

• Suppose $\lambda = cf(\lambda) > \omega$. Replace \aleph_1 with λ in the definition of Ω . Replace " M_{α} countable" with " $|M_{\alpha}| \subseteq M_{\alpha} \cap \lambda \in \lambda$ ". Then you've got λ -approximation systems.

Theorem. Let C be a coproduct of boolean algebras each no bigger than κ . Every subset of C contains a κ^{op} -like dense subset. **Proof.** Use elementary chains.

Theorem. If *B* is a subalgebra of *C* and $\mathfrak{r}(B) = |B|$, then every base of *B* contains a κ^{op} -like base. **Proof.** Use κ^+ -approximation systems and ω_1 -approximation systems.

Topological consequences

- Let X be a Hausdorff space and a continuous image of a product of compact Hausdorff spaces each with weight at most κ .
- Every π -base of X contains an κ^{op} -like π -base and every local base in X contains an κ^{op} -like local base.
- If X is also homogeneous, then every base of X contains a $\kappa^{\rm op}\text{-like}$ base.

Questions

- If *B* is a boolean algebra and *B* reflects cones, then is *B* a subalgebra of a free boolean algebra?
- The answer is yes if $|B| \leq \aleph_1$. I haven't figured out how to avoid Pitfall #2.
- Is there a topological space X with a κ^{op} -like base \mathcal{A} and a base \mathcal{B} that does not contain a κ^{op} -like base? (This can't happen for π -bases or for local bases at a common point.)
- The answer is no if we have GCH and X compact, Hausdorff, and homogeneous.

References

S. Jackson and R. D. Mauldin, *On a lattice problem of H. Steinhaus*, J. Amer. Math. Soc. **15** (2002), no. 4, 817–856.