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Basic terminology and scope

compactum = compact Hausdorff space

Boolean space = compactum with a clopen base

dyadic = continuous image of a power of 2

crowded = without isolated points

ccc = every pairwise disjoint family of open sets is countable.

I Most of our example spaces will be boolean and dyadic.

I All of our example spaces will be crowded ccc compacta.

open map = function that maps open sets onto open sets
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Some notation

X ∼= Y means X is homeomorphic to Y .

π0 and π1 are the first and second coordinate projections:

π0(x , y) = x and π1(x , y) = y

h = f × g means h is the diagonal product of f and g :

h(x) = (f (x), g(x))

Z = f � g means Z is the fiber product of f and g :

Z = {(x , y) : f (x) = g(y)}
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Prelude: symmetric powers of 2κ

I 2κ is space of all functions from κ to 2.

I (2κ)n is space of all functions from n to 2κ.

I SPn(2κ) is the quotient space of (2κ)n induced by:

f ∼ g iff f = g ◦ τ for some permutation τ : n→ n

I Given 0 < m < n < ω ≤ κ, we have (2κ)m ∼= (2κ)n since
|κ×m| = |κ× n|.

I Is SPm(2κ) ∼= SPn(2κ)?

I If κ = ω, then SPm(2κ) ∼= SPn(2κ) ∼= 2κ simply because 2ω is
up to homeomorphism the only second countable crowded
Boolean space.

I (Ščepin) If κ = ω1 then again SPm(2κ) ∼= SPn(2κ) ∼= 2κ.
However, the proof is a lot harder.

I (Ščepin) If κ ≥ ω2 then SPm(2κ) 6∼= SPn(2κ).
In fact, Ščepin’s proof shows that SPn(2κ) is not a retract of
any homeomorphic copy of SPm(2κ).
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I (Ščepin) If κ ≥ ω2 then SPm(2κ) 6∼= SPn(2κ).
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So, why isn’t, say, SP7(2ω2) a retract of SP6(2ω2)?

Lemma
Given a cardinal κ, the following are equivalent:

I κ ≥ ω2.

I There exist M,N ≺ H(θ) such that M ∩ κ 6⊆ N ∩ κ 6⊆ M ∩ κ.

I There exist countable M,N ≺ H(θ) such that
M ∩ κ 6⊆ N ∩ κ 6⊆ M ∩ κ.

Definition
“M ≺ H(θ)” implies that M satisfies arbitrary finite lists of finitary
closure properties that I don’t want to write down. More precisely:

I M ≺ H(θ) means (M,∈�M,@�M) is a first-order elementary
submodel of a set-theoretic universe well-ordered by @.

I To avoid going beyond ZFC, choose a “universe” of the form
(H(θ),∈,@) for θ a regular cardinal large enough that H(θ)
has all the power sets we need for the argument at hand.
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An impossible fiber retract

Let SP7(2ω2)

id
++

f
// SP6(2ω2) g

// SP7(2ω2) .

Let N0,N1 ≺ H(θ) with f , g ∈ Ni and Ei = Ni ∩ ω2 6⊆ E1−i .

Let Yj = SP j(2E0∪E1) for each j ∈ {6, 7}.

Let Zj be the fiber product πE0
j ,E0∩E1

� πE1
j ,E0∩E1

where πBj ,A : SP j(2B)→ SP j(2A), f /∼ 7→ ((fi �A)i<j)/∼.

Then the diagonal product ζj = πE0∪E1
j ,E0

× πE0∪E1
j ,E1

maps Yj into Zj .

Y7

id

((//

ζ7
��

Y6
//

ζ6
��

Y7

ζ7
��

Z7

id

66// Z6
// Z7

I ζ7 has a fiber of size 7!.

I ζ6 has no fibers larger than 6!.

I Contradiction!
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Why are there fibers of size 7!?
Let a ∈ (2E0∩E1)7 and ai = aj for all i < j < 7.
Let b ∈ (2E0\E1)7 and bi 6= bj for all i < j < 7.
Let c ∈ (2E1\E0)7 and ci 6= cj for all i < j < 7.
Then, for all permutations ρ, σ : 7→ 7:

ζ7((ai ∪ bρ(i) ∪ cσ(i))i<7)/∼) = ζ7((ai ∪ bi ∪ cτ(i))i<7)/∼)

= ((ai ∪ bi )i<7/∼, (ai ∪ cτ(i))i<7/∼)

= ((ai ∪ bi )i<7/∼, (ai ∪ ci )i<7/∼)

where τ = σ ◦ ρ−1. Y7π
E0∪E1
7,E0

yy

ζ7

zz

π
E0∪E1
7,E1

{{

SP7(2E0)

π
E0
7,E0∩E1 ��

Z7
oo

��
SP7(2E0∩E1) SP7(2E1)

π
E1
7,E0∩E1

oo
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What new symmetries break at ω3?
“Symmetry breaking” at ω2 is not just for symmetric powers. For
example, 2ω1 is homeomorphic to its Vietoris hyperspace exp(2ω1)
(Ščepin) but exp(2ω2) is not a continuous image of 2ω2 (Shapiro).

Are there analogous phenomena at ω3?
Bell’s non-supercompact dyadic compactum of weight ω3 is loosely
analogous. However, we don’t know if ω3 is least possible.
At least our lemma about ω2 has a clear analog:

Lemma
Let 0 < d < ω and let κ be a cardinal. The following are
equivalent.

I κ ≥ ωd .

I There exist N0, . . . ,Nd−1 ≺ H(θ) such that κ ∩
⋂

j 6=i Nj 6⊆ Ni

for all i < d .

I There exist countable N0, . . . ,Nd−1 ≺ H(θ) such that
κ ∩

⋂
j 6=i Nj 6⊆ Ni for all i < d .
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Quotients induced by elementary submodels
Suppose that X is T3.5, I is a set, and X ∈ Ni ≺ H(θ) for all i ∈ I .
(By “X ∈ Ni” we actually mean “the topology of X is an element
of Ni .”)

Definition
p 6∼ q if f (p) 6= f (q) for some f ∈ C (X ,R) ∩

⋃
i∈I Ni .

Let X/
⋃

i∈I Ni be the quotient space induced by ∼.
Let Q⋃

i∈I Ni
be the associated quotient map.

Lemma
If X is a compactum, or even just T4, then the following are
equivalent:

I p 6∼ q

I p and q have disjoint closed neighborhoods U,V ∈ Ni for
some i .

I p and q have disjoint closed Gδ neighborhoods U ∈ Ni and
V ∈ Nj for some i , j .
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The view from the cube

Given X completely regular, S =
⋃

i∈I Ni , and X ∈ Ni ≺ H(θ), the
quotient map QS : X → X/S is isomorphic to a restriction pS of a
coordinate projection:

I Let C = C (X , [0, 1]) and let e : X ∼= Y ⊂ [0, 1]C be the Čech
embedding e(x)(f ) = f (x).

I Define πS : [0, 1]C → [0, 1]C∩S by y 7→ y �(C ∩ S).

I Let Z = πS [Y ] and pS = πS �Y .

I

Then there is a unique
h : X/S ∼= Z such that
pS ◦ e = h ◦ QS .

X

QS
��

e // Y

pS

��

id // [0, 1]C

πS
��

X/S
h
// Z

id
// [0, 1]C∩S

Warning: Although coordinate projections such as πS are open
maps, restrictions of them such as pS may not be open maps.
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Open quotient maps

When is the quotient map QS an open map?

Example

Given X = ω1 + 1 and a countable N ≺ H(θ), we have:

I There is a natural homeomorphism h : X/N ∼= δ + 1 where
δ = ω1 ∩ N:

h(QN(α)) =

{
α if α < δ

δ if α ≥ δ

I h ◦ QN sends the isolated point δ + 1 to the limit point δ.

I Therefore, h ◦ QN maps an open singleton onto a non-open
singleton.

I Therefore, h ◦ QN is not an open map.

I Therefore, QN is not an open map.
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Open generation

Theorem (Ščepin, essentially)

Given a compactum X , the following are equivalent.

1. QN : X → X/N is open for all N ≺ H(θ) with X ∈ N.

2. QN : X → X/N is open for all countable N ≺ H(θ) with
X ∈ N.

3. X has a distance function ρ(x ,C ) between points and regular
closed sets that satisfies certain axioms. . .

4. X has a “capacity,” a precursor to ρ as above consisting of
maps εB : B → [0, 1] where B ranges over a base of X and. . .

Ščepin stated his results in terms of special kinds of inverse limits
instead of elementary submodels.

Definition
Say that a compactum X is openly generated (OG) if it satisfies
the above conditions.
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Some properties of openly generated compacta

I (Ščepin) Products of OG compacta are OG.

I (Ščepin) Symmetric powers of OG compacta are OG.

I (Ščepin) Gδ subspaces of OG compacta are OG.

I (Ščepin) Vietoris hyperspaces of OG compacta are OG.

I (Shapiro) Some OG compacta are not dyadic.

I (Ščepin) But, like a dyadic compactum, if X is a continuous
image of an OG compactum, then X is ccc and has weight
equal to its π-character.

I (Ščepin) Also like dyadic spaces, regular closed sets in OG
compacta are Gδ.

Question (Ščepin)

If every OG compactum a continuous image of an OG boolean
space?
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Retracts of 2κ

Definition
Say that a space is Dugundji if it is ∼= a retract of a power of 2.

Theorem (Ščepin)

I All Dugundji spaces are OG.

I All OG Boolean spaces of weight ≤ ω1 are Dugundji.

I 2ω1 is the only Dugundji space with all points of character ω1.

Corollary

2ω1 ∼= SPn(2ω1) ∼= exp(2ω1).
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d-ary open generation

Lemma
Given a compactum X and d < ω, the following are equivalent.

I Q⋃
i<d−1 Ni

is open for all N0, . . . ,Nd−1 ≺ H(θ) with X ∈ Ni .

I Q⋃
i<d−1 Ni

is open for all countable N0, . . . ,Nd−1 ≺ H(θ)
with X ∈ Ni .

Definition
Say that a compactum X is d-arily openly generated (OGd) if it
satisfies the above conditions.

Remarks:

I All compacta are OG1.

I OG2 is the same as OG.

I If n > m, then OGn implies OGm.
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A hierarchy theorem

Theorem (Milovich)

1. The Dugundji spaces are exactly the OG<ω boolean spaces.

2. All OGd+1 Boolean spaces of weight ≤ ωd are Dugundji.

3. There is a Boolean space Y of weight ωd that is OGd but not
OGd+1.

(Our set-theoretic lemma about ωd is relevant to proving 2 and 3.)

Corollary

exp(2ω2) and SPn(2ω2) (for n ≥ 2) are OG2 but not OG3.

Question
For d ≥ 3, the only known Y as above is an ad-hoc construction.
Is there a “natural” space that is OG3 but not OG4?
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Inverse diagrams

Definition

I An inverse diagram is a pair ((Xi )i∈P , (fi ,j)i<j) where:

I (P, <) is a strict partial order.
I Xi is a compactum.
I fi,j : Xj → Xi is a quotient map.

(Between compacta, all continuous
surjections are quotient maps.)

I fi,k = fi,j ◦ fj,k if i < j < k .
I (Define fi,i = id : Xi → Xi .)

Xk
fj,k

~~
fi,k

��

Xj

fi,j   
Xi

I The canonical limit of (~X , ~f ) is the compactum
X∞ = {~x ∈

∏
i Xi : ∀(i < j) xi = fi ,j(xj)}

together with maps fi ,∞ : X∞ → Xi , ~x 7→ xi .
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Inverse limit systems

Definition

I (P, <) is directed if all its finite subsets have upper bounds.

I If P is directed, we call ((Xi )i∈P , (fi ,j)i<j) an inverse limit
system and X∞ an inverse limit.

Warning: If P is not directed then fi ,∞ may not be surjective and
X∞ may even be empty.
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Retracts of 2κ as linear inverse limits

Inverse diagrams have been used to state and prove many internal
structural characterizations of properties of compacta.

Theorem (Koppelberg)

A space X is Dugundji iff X is ∼= the limit of some
((Xα)α<κ, (fα,β)α<β<κ) where, for all α:

I X0 = 1.

I Xα+1 = K0 ⊕ K1 where {K0,K1} is a clopen cover of Xα.

I fα,α+1(x , i) = x .

I For limit γ, (Xγ , (fα,γ)α<γ) = lim((Xα)α<γ , (fα,β)α<β<γ).

For any (~X , ~f ) as above, all maps fα,β and fα,∞ are open.
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Colimits and inverse semilattices

Definition

I The canonical colimit of an inverse limit system
((Xi )i∈P , (fi ,j)i<j) is the compactum X−∞ = X∞/∼ where ∼
is the intersection of all closed equivalence relations that
contain

⋃
i∈P{(x , y) : fi ,∞(x) = fi ,∞(y)}.

I The maps associated with X−∞ are f−∞,i : Xi → X−∞ where
p 7→ [~x ] where xi = p.

Definition
(~X , ~f ) is an inverse semilattice if:

I P is a directed meet-semilattice.

I (Xi∧j , (fi∧j ,i , fi∧j ,j)) is the colimit of
((Xi ,Xj ,X∞), (fi ,∞, fj ,∞)).

Xi

fi∧j,i
��

X∞
fi,∞
oo

fj,∞
��

Xi∧j Xj
fi∧j,joo

P is a meet-semilattice if every pair {i , j} ⊆ P has a greatest lower
bound i ∧ j .
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Retracts of 2κ as nonlinear inverse limits
Call ((Xi )i∈P , ~f ) an inverse lattice if:

I P is a lattice.

I (Xi∧j , (fi∧j ,i , fi∧j ,j)) is the colimit of
((Xi ,Xj ,Xi∨j), (fi ,i∨j , fj ,i∨j)).

I (Xi∨j , (fi ,i∨j , fj ,i∨j)) is the limit of
((Xi ,Xj ,Xi∧j), (fi∧j ,i , fi∧j ,j)).

Xi

fi∧j,i
��

Xi∨j
fi,i∨j
oo

fj,i∨j
��

Xi∧j Xj
fi∧j,joo

P is a lattice if every pair {i , j} ⊆ P has a greatest lower bound
i ∧ j and least upper bound i ∨ j .

Theorem (Milovich)

Given a boolean space X , following are equivalent.

I X is Dugundji.

I X is ∼= the limit of an inverse lattice of second countable
spaces with open maps.

I X is ∼= the limit of an inverse lattice of finite spaces.
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Fiber products make lattices

Given X
f // Z Y

goo , its limit is isomorphic to the fiber
product f � g = {(x , y) : f (x) = g(y)} with three outgoing arrows
π0, π1, and h = f ◦ π0 = g ◦ π1.

X

f
��

f � g
π0oo

π1
��

h

||
Z Yg
oo

Moreover, Z with the three incoming arrows f , g , and h is

isomorphic to the colimit of X (f � g)
π0oo π1 // Y .

Therefore, the above diagram is an inverse lattice.

In category theory, the above diagram called a pullback square.
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Semilattice and lattice expansions

We can expand any inverse limit system (~X , ~f ) to an inverse
semilattice by inserting the missing colimits.

However, we may not be able to expand (~X , ~f ) to an inverse
lattice.

Why? If we insert a fiber product and the coordinate projections
from this fiber product, then we are required to insert maps to this
fiber product may not be quotient maps. . .
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Binary obstructions
Given an inverse semilattice (~X , ~f ), every
diagonal product of the form fi ,k × fj ,k
continuously maps Xk into the fiber prod-
uct fi∧j ,i�fi∧j ,j but may not map Xk onto
this fiber product. Call instances of this
problem binary obstructions.

Xkfi,k

��
fi,k×fj,k

��
fj,k

||

Xi

fi∧j,i
��

fi∧j ,i � fi∧j ,jπ0
oo

π1

��
Xi∧j Xj

fi∧j,joo

Example

S7(2ω2) ∼= lim((SP7(2C ))C∈[P]ℵ0 , (π
D
7,C )C(D); there are no binary

obstructions. In particular, ζ7 : Z7 → Y7 is surjective.

Theorem (Milovich)

• A compactum is OG iff it is ∼= the limit of an inverse semilattice
of open quotient maps between second countable compacta
without binary obstructions.
• However, there is an OG boolean space not ∼= any limit of an
inverse semilattice of finite spaces without binary obstructions.
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Pullback hypercubes
Given P a meet-semilattice, d < ω, an inverse diagram
((Xi )i∈P , ~f ), and D ∈ [P]d , define the d-ary fiber product
Ò

i∈D Xi :

ò

i∈D
Xi =

{
~x ∈

∏
i∈D

Xi : ∀i , j ∈ D fi∧j ,i (xi ) = fi∧j ,i (xj)

}
.

Diagram for D = 3: X0

��

$$

Ò

i∈3 Xi
oo

zz

��

X0∧1

��

X1
oo

��
X0∧1∧2 X1∧2oo

X0∧2

::

X2
oo

ee
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Higher-arity obstructions

Definition
An inverse semilattice (~X , ~f ) has a d-ary obstruction if there exist
distinct i0, . . . , id−1 < j such that the diagonal product

∏
k<d fik ,j

does not map Xj onto the fiber product
Ò

k<d Xik .

Lemma (Milovich)

Given 2 ≤ d < ω, a compactum X is OGd iff X is ∼= the limit of
an inverse semilattice (~X , ~f ) such that

I Each Xi is a second-countable compactum.

I
∏

k<d−1 fik ,j is open for all i0, . . . , id−2 < j ,

I (~X , ~f ) has no ≤d-ary obstructions.
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Proof strategy for OGd 6⇒ OGd+1

• Build a strict partial ordering / that is directed and has
countable lower cones.

• Simultaneously build an inverse limit system
((Xα)α<ωd

, (fβ,α)β/α).

• Ensure that if β0, . . . , βd−1 / α then:

I
∏

i<d fβi ,α : Xα →
Ò

i<d Xβi is onto.

I
∏

i<d−1 fβi ,α : Xα →
Ò

i<d−1 Xβi is open.

I
∏

i<d fβi ,α : Xα →
Ò

i<d Xβi is “usually” not open.
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How to partially order ωd

We will simultaneously construct / and sequences (Xα)α<ωd
,

(fβ,α)β/α, and (Mα)α<ωd
such that:

I X0 = 2ω ∼= Xα.

I Mα is ≺ H(θ) and countable.

I The sequences (Xβ)β<α+1, (fγ,β)γ/β<α, and (Mβ)β<α are
elements of Mα.

I {fβ,α : β / α} is a subset of Mα.

Define β / α⇔ Mβ ∈ Mα and note that

Mβ ∈ Mα ⇔ Mβ ( Mα ⇔ β ∈ α ∩Mα ⇒ β < α.

Ignoring ~X and ~f , a sequence ~M as above is called a Davies
sequence or a long ω1-approximation sequence. Such sequences
have other applications in both set theory and topology. . .
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Useful properties of ~M

~M is essentially a very very weak gap-d morass that exists in ZFC.

I / is directed and well-founded.

I Each lower cone {β : β / α} partitions into ≤d-many
countable directed sets Dα,i for i < k(α).

I Each intersection
⋂
α∈I Mα is a directed union

⋃
α∈J Mα.

I Therefore, we won’t have to think about colimits.

Xα and fβ,α : Xα → Xβ are of the following form if α > 0.

I (Yα,i , (gβ)β∈Dα,i ) = lim((Xβ)β∈Dα,i ,
~f �Dα,i ).

I Xα = C0 ⊕ C1 where {C0,C1} is a closed cover of
Ò

i<k(α) Yα,i .

I fβ,α(~y , j) = gβ(yi ) for β ∈ Dα,i .

29 / 30



Sufficient criteria for witnessing OGd 6⇒ OGd+1

Again, Xα and fβ,α : Xα → Xβ are of the following form if α > 0.

I (Yα,i , (gβ)β∈Dα,i ) = lim((Xβ)β∈Dα,i ,
~f �Dα,i ).

I Xα = C0 ⊕ C1 where {C0,C1} is a closed cover of
Ò

i<k(α) Yα,i .

I fβ,α(~y , j) = gβ(yi ) for β ∈ Dα,i .

We additionally require:

1. Xα 3 (~y , j) 7→ ~y �s defines an open map to
Ò

i∈s Yα,i for all
s ∈ [k(α)]<d .

2. Xα 3 (~y , j) 7→ y defines a non-open map if k(α) = d .

Finally:

I X∞ will be OGd thanks to 1.

I X∞ will not be OGd+1 thanks to 2. More precisely, given any
inverse limit system (~Ξ, ~ξ), where Ξ∞ ∼= X∞ and each Ξi is
second countable, we can use 2 to find i0, . . . id−1 < j such
that

∏
k<d ξik ,j is not open.
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