Higher-arity properties of inverse limit systems

David Milovich

Texas A&M International University

2016 Spring Topology and Dynamics Conference Baylor University

These slides are online: http://dkmj.org/academic

Basic terminology and scope

compactum = compact Hausdorff space

Boolean space = compactum with a clopen base

dyadic = continuous image of a power of 2

crowded = without isolated points

ccc = every pairwise disjoint family of open sets is countable.

- Most of our example spaces will be boolean and dyadic.
- All of our example spaces will be crowded ccc compacta.

open map = function that maps open sets onto open sets

Some notation

 $X \cong Y$ means X is homeomorphic to Y.

 π_0 and π_1 are the first and second coordinate projections:

$$\pi_0(x,y) = x$$
 and $\pi_1(x,y) = y$

 $h = f \times g$ means h is the diagonal product of f and g: h(x) = (f(x), g(x))

 $Z = f \boxtimes g$ means Z is the fiber product of f and g:

$$Z = \{(x, y) : f(x) = g(y)\}$$

- 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from *n* to 2^{κ} .
- $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

 $f \sim g$ iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

- Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.
- Is $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$?

- 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from *n* to 2^{κ} .
- $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

 $f \sim g$ iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

• Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.

• Is
$$SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$$
?

If κ = ω, then SP^m(2^κ) ≅ SPⁿ(2^κ) ≅ 2^κ simply because 2^ω is up to homeomorphism the only second countable crowded Boolean space.

- 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from *n* to 2^{κ} .
- $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

 $f \sim g$ iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

• Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.

• Is
$$SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$$
?

- If κ = ω, then SP^m(2^κ) ≅ SPⁿ(2^κ) ≅ 2^κ simply because 2^ω is up to homeomorphism the only second countable crowded Boolean space.
- (Ščepin) If κ = ω₁ then again SP^m(2^κ) ≅ SPⁿ(2^κ) ≅ 2^κ. However, the proof is a lot harder.

- 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from *n* to 2^{κ} .
- $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

 $f \sim g$ iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

• Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.

• Is
$$SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$$
?

- If κ = ω, then SP^m(2^κ) ≅ SPⁿ(2^κ) ≅ 2^κ simply because 2^ω is up to homeomorphism the only second countable crowded Boolean space.
- (Ščepin) If κ = ω₁ then again SP^m(2^κ) ≅ SPⁿ(2^κ) ≅ 2^κ. However, the proof is a lot harder.
- (Ščepin) If $\kappa \geq \omega_2$ then $SP^m(2^{\kappa}) \ncong SP^n(2^{\kappa})$.

- 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from *n* to 2^{κ} .
- $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

 $f \sim g$ iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

• Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.

• Is
$$SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$$
?

- If κ = ω, then SP^m(2^κ) ≅ SPⁿ(2^κ) ≅ 2^κ simply because 2^ω is up to homeomorphism the only second countable crowded Boolean space.
- (Ščepin) If κ = ω₁ then again SP^m(2^κ) ≅ SPⁿ(2^κ) ≅ 2^κ. However, the proof is a lot harder.
- (Ščepin) If κ ≥ ω₂ then SP^m(2^κ) ≇ SPⁿ(2^κ).
 In fact, Ščepin's proof shows that SPⁿ(2^κ) is not a retract of any homeomorphic copy of SP^m(2^κ).

So, why isn't, say, $SP^7(2^{\omega_2})$ a retract of $SP^6(2^{\omega_2})$?

Lemma

Given a cardinal κ , the following are equivalent:

- $\kappa \geq \omega_2$.
- There exist $M, N \prec H(\theta)$ such that $M \cap \kappa \not\subseteq N \cap \kappa \not\subseteq M \cap \kappa$.
- There exist countable M, N ≺ H(θ) such that M ∩ κ ⊈ N ∩ κ ⊈ M ∩ κ.

Definition

" $M \prec H(\theta)$ " implies that M satisfies arbitrary finite lists of finitary closure properties that I don't want to write down. More precisely:

- M ≺ H(θ) means (M, ∈↾M, □↾M) is a first-order elementary submodel of a set-theoretic universe well-ordered by □.
- To avoid going beyond ZFC, choose a "universe" of the form (H(θ), ∈, □) for θ a regular cardinal large enough that H(θ) has all the power sets we need for the argument at hand.

An impossible fiber retract

Let
$$SP^7(2^{\omega_2}) \xrightarrow{f} SP^6(2^{\omega_2}) \xrightarrow{g} SP^7(2^{\omega_2})$$
.

Let $N_0, N_1 \prec H(\theta)$ with $f, g \in N_i$ and $E_i = N_i \cap \omega_2 \not\subseteq E_{1-i}$.

Let $Y_j = SP^j(2^{E_0 \cup E_1})$ for each $j \in \{6, 7\}$.

Let Z_j be the fiber product $\pi_{j,E_0\cap E_1}^{E_0} \boxtimes \pi_{j,E_0\cap E_1}^{E_1}$ where $\pi_{j,A}^B \colon SP^j(2^B) \to SP^j(2^A), f/\sim \mapsto ((f_i \upharpoonright A)_{i < j})/\sim.$

Then the diagonal product $\zeta_j = \pi_{j,E_0}^{E_0 \cup E_1} \times \pi_{j,E_1}^{E_0 \cup E_1}$ maps Y_j into Z_j .

- ζ_7 has a fiber of size 7!.
- ζ_6 has no fibers larger than 6!.
- Contradiction!

Why are there fibers of size 7!?

Let
$$a \in (2^{E_0 \cap E_1})^7$$
 and $a_i = a_j$ for all $i < j < 7$.
Let $b \in (2^{E_0 \setminus E_1})^7$ and $b_i \neq b_j$ for all $i < j < 7$.
Let $c \in (2^{E_1 \setminus E_0})^7$ and $c_i \neq c_j$ for all $i < j < 7$.
Then, for all permutations $\rho, \sigma \colon 7 \to 7$:

$$\begin{split} \zeta_7((a_i \cup b_{\rho(i)} \cup c_{\sigma(i)})_{i < 7})/\sim) &= \zeta_7((a_i \cup b_i \cup c_{\tau(i)})_{i < 7})/\sim) \\ &= ((a_i \cup b_i)_{i < 7}/\sim, (a_i \cup c_{\tau(i)})_{i < 7}/\sim) \\ &= ((a_i \cup b_i)_{i < 7}/\sim, (a_i \cup c_i)_{i < 7}/\sim) \end{split}$$

What new symmetries break at ω_3 ?

"Symmetry breaking" at ω_2 is not just for symmetric powers. For example, 2^{ω_1} is homeomorphic to its Vietoris hyperspace exp (2^{ω_1}) (Ščepin) but exp (2^{ω_2}) is not a continuous image of 2^{ω_2} (Shapiro).

Are there analogous phenomena at ω_3 ?

Bell's non-supercompact dyadic compactum of weight ω_3 is loosely analogous. However, we don't know if ω_3 is least possible. At least our lemma about ω_2 has a clear analog:

Lemma

Let $0 < d < \omega$ and let κ be a cardinal. The following are equivalent.

- $\kappa \geq \omega_d$.
- There exist N₀,..., N_{d-1} ≺ H(θ) such that κ ∩ ∩_{j≠i} N_j ⊈ N_i for all i < d.</p>
- There exist countable $N_0, \ldots, N_{d-1} \prec H(\theta)$ such that $\kappa \cap \bigcap_{j \neq i} N_j \not\subseteq N_i$ for all i < d.

Quotients induced by elementary submodels

Suppose that X is $T_{3.5}$, I is a set, and $X \in N_i \prec H(\theta)$ for all $i \in I$. (By " $X \in N_i$ " we actually mean "the topology of X is an element of N_i .")

Definition

 $p \not\sim q$ if $f(p) \neq f(q)$ for some $f \in C(X, \mathbb{R}) \cap \bigcup_{i \in I} N_i$. Let $X / \bigcup_{i \in I} N_i$ be the quotient space induced by \sim . Let $\mathcal{Q}_{\bigcup_{i \in I} N_i}$ be the associated quotient map.

Lemma

If X is a compactum, or even just T_4 , then the following are equivalent:

- ▶ p ≁ q
- ▶ p and q have disjoint closed neighborhoods U, V ∈ N_i for some i.
- ▶ p and q have disjoint closed G_{δ} neighborhoods $U \in N_i$ and $V \in N_j$ for some *i*, *j*.

The view from the cube

Given X completely regular, $S = \bigcup_{i \in I} N_i$, and $X \in N_i \prec H(\theta)$, the quotient map $Q_S \colon X \to X/S$ is isomorphic to a restriction p_S of a coordinate projection:

- ▶ Let C = C(X, [0, 1]) and let $e: X \cong Y \subset [0, 1]^C$ be the Čech embedding e(x)(f) = f(x).
- Define $\pi_{\mathcal{S}} \colon [0,1]^{\mathcal{C}} \to [0,1]^{\mathcal{C} \cap \mathcal{S}}$ by $y \mapsto y \upharpoonright (\mathcal{C} \cap \mathcal{S})$.

• Let
$$Z = \pi_{\mathcal{S}}[Y]$$
 and $p_{\mathcal{S}} = \pi_{\mathcal{S}} \upharpoonright Y$.

Then there is a unique $X \xrightarrow{e} Y \xrightarrow{id} [0,1]^{\mathcal{C}}$ $h: X/S \cong Z \text{ such that}$ $p_S \circ e = h \circ Q_S.$ $X/S \xrightarrow{h} Z \xrightarrow{id} [0,1]^{\mathcal{C} \cap S}$

Warning: Although coordinate projections such as π_S are open maps, restrictions of them such as p_S may not be open maps.

Open quotient maps

When is the quotient map Q_S an open map?

Example

Given $X = \omega_1 + 1$ and a countable $N \prec H(\theta)$, we have:

► There is a natural homeomorphism $h: X/N \cong \delta + 1$ where $\delta = \omega_1 \cap N$:

$$h(\mathcal{Q}_N(\alpha)) = \begin{cases} \alpha & \text{if } \alpha < \delta \\ \delta & \text{if } \alpha \ge \delta \end{cases}$$

- $h \circ Q_N$ sends the isolated point $\delta + 1$ to the limit point δ .
- ► Therefore, $h \circ Q_N$ maps an open singleton onto a non-open singleton.
- Therefore, $h \circ Q_N$ is not an open map.
- Therefore, Q_N is not an open map.

Open generation

Theorem (Ščepin, essentially)

Given a compactum X, the following are equivalent.

- 1. $\mathcal{Q}_N : X \to X/N$ is open for all $N \prec H(\theta)$ with $X \in N$.
- 2. $Q_N: X \to X/N$ is open for all countable $N \prec H(\theta)$ with $X \in N$.
- 3. X has a distance function $\rho(x, C)$ between points and regular closed sets that satisfies certain axioms...
- X has a "capacity," a precursor to ρ as above consisting of maps ε_B: B → [0,1] where B ranges over a base of X and...

Ščepin stated his results in terms of special kinds of inverse limits instead of elementary submodels.

Definition

Say that a compactum X is openly generated (OG) if it satisfies the above conditions.

Some properties of openly generated compacta

- ▶ (Ščepin) Products of OG compacta are OG.
- ▶ (Ščepin) Symmetric powers of OG compacta are OG.
- (Ščepin) G_{δ} subspaces of OG compacta are OG.
- ▶ (Ščepin) Vietoris hyperspaces of OG compacta are OG.
- (Shapiro) Some OG compacta are not dyadic.
- (Ščepin) But, like a dyadic compactum, if X is a continuous image of an OG compactum, then X is ccc and has weight equal to its π-character.
- ► (Ščepin) Also like dyadic spaces, regular closed sets in OG compacta are G_δ.

Question (Ščepin)

If every OG compactum a continuous image of an OG boolean space?

Retracts of 2^{κ}

Definition

Say that a space is Dugundji if it is \cong a retract of a power of 2.

Theorem (Ščepin)

- All Dugundji spaces are OG.
- All OG Boolean spaces of weight $\leq \omega_1$ are Dugundji.
- 2^{ω_1} is the only Dugundji space with all points of character ω_1 .

Corollary

 $2^{\omega_1} \cong SP^n(2^{\omega_1}) \cong \exp(2^{\omega_1}).$

d-ary open generation

Lemma

Given a compactum X and $d < \omega$, the following are equivalent.

- $\mathcal{Q}_{\bigcup_{i < d-1} N_i}$ is open for all $N_0, \ldots, N_{d-1} \prec H(\theta)$ with $X \in N_i$.
- ► $Q_{\bigcup_{i < d-1} N_i}$ is open for all countable $N_0, \ldots, N_{d-1} \prec H(\theta)$ with $X \in N_i$.

Definition

Say that a compactum X is *d*-arily openly generated (OG_d) if it satisfies the above conditions.

Remarks:

- ► All compacta are OG₁.
- OG₂ is the same as OG.
- If n > m, then OG_n implies OG_m .

A hierarchy theorem

Theorem (Milovich)

- 1. The Dugundji spaces are exactly the $OG_{<\omega}$ boolean spaces.
- 2. All OG_{d+1} Boolean spaces of weight $\leq \omega_d$ are Dugundji.
- 3. There is a Boolean space Y of weight ω_d that is OG_d but not OG_{d+1} .

(Our set-theoretic lemma about ω_d is relevant to proving 2 and 3.)

Corollary

 $\exp(2^{\omega_2})$ and $SP^n(2^{\omega_2})$ (for $n \ge 2$) are OG_2 but not OG_3 .

Question

For $d \ge 3$, the only known Y as above is an ad-hoc construction. Is there a "natural" space that is OG_3 but not OG_4 ?

Inverse diagrams

Definition

- ► An inverse diagram is a pair $((X_i)_{i \in P}, (f_{i,j})_{i < j})$ where:
 - ▶ (*P*, <) is a strict partial order.
 - ► X_i is a compactum.
 - *f_{i,j}*: *X_j* → *X_i* is a quotient map. (Between compacta, all continuous surjections are quotient maps.)

•
$$f_{i,k} = f_{i,j} \circ f_{j,k}$$
 if $i < j < k$.

• (Define
$$f_{i,i} = id : X_i \to X_i$$
.)

► The canonical limit of (\vec{X}, \vec{f}) is the compactum $X_{\infty} = \{\vec{x} \in \prod_{i} X_{i} : \forall (i < j) \ x_{i} = f_{i,j}(x_{j})\}$ together with maps $f_{i,\infty} : X_{\infty} \to X_{i}, \ \vec{x} \mapsto x_{i}.$

Inverse limit systems

Definition

- (P, <) is directed if all its finite subsets have upper bounds.
- If P is directed, we call ((X_i)_{i∈P}, (f_{i,j})_{i<j}) an inverse limit system and X_∞ an inverse limit.

Warning: If P is not directed then $f_{i,\infty}$ may not be surjective and X_{∞} may even be empty.

Retracts of 2^{κ} as linear inverse limits

Inverse diagrams have been used to state and prove many internal structural characterizations of properties of compacta.

Theorem (Koppelberg)

A space X is Dugundji iff X is \cong the limit of some $((X_{\alpha})_{\alpha < \kappa}, (f_{\alpha,\beta})_{\alpha < \beta < \kappa})$ where, for all α :

►
$$X_0 = 1$$
.

•
$$X_{\alpha+1} = K_0 \oplus K_1$$
 where $\{K_0, K_1\}$ is a clopen cover of X_{α} .

•
$$f_{\alpha,\alpha+1}(x,i) = x$$
.

► For limit γ , $(X_{\gamma}, (f_{\alpha,\gamma})_{\alpha < \gamma}) = \lim((X_{\alpha})_{\alpha < \gamma}, (f_{\alpha,\beta})_{\alpha < \beta < \gamma}).$

For any (\vec{X}, \vec{f}) as above, all maps $f_{\alpha,\beta}$ and $f_{\alpha,\infty}$ are open.

Colimits and inverse semilattices

Definition

- ► The canonical colimit of an inverse limit system ((X_i)_{i∈P}, (f_{i,j})_{i<j}) is the compactum X_{-∞} = X_∞/~ where ~ is the intersection of all closed equivalence relations that contain ⋃_{i∈P}{(x, y) : f_{i,∞}(x) = f_{i,∞}(y)}.
- ▶ The maps associated with $X_{-\infty}$ are $f_{-\infty,i}: X_i \to X_{-\infty}$ where $p \mapsto [\vec{x}]$ where $x_i = p$.

Definition

 (\vec{X}, \vec{f}) is an inverse semilattice if:

- ► *P* is a directed meet-semilattice.
- $(X_{i \wedge j}, (f_{i \wedge j, i}, f_{i \wedge j, j})) \text{ is the colimit of } ((X_i, X_j, X_{\infty}), (f_{i,\infty}, f_{j,\infty})).$

P is a meet-semilattice if every pair $\{i, j\} \subseteq P$ has a greatest lower bound $i \wedge j$.

Retracts of 2^{κ} as nonlinear inverse limits Call $((X_i)_{i \in P}, \vec{f})$ an inverse lattice if:

- ► P is a lattice.
- $(X_{i \wedge j}, (f_{i \wedge j,i}, f_{i \wedge j,j})) \text{ is the colimit of } ((X_i, X_j, X_{i \vee j}), (f_{i,i \vee j}, f_{j,i \vee j})).$

 $(X_{i \lor j}, (f_{i,i \lor j}, f_{j,i \lor j})) \text{ is the limit of } ((X_i, X_j, X_{i \land j}), (f_{i \land j,i}, f_{i \land j,j})).$

P is a lattice if every pair $\{i, j\} \subseteq P$ has a greatest lower bound $i \land j$ and least upper bound $i \lor j$.

Theorem (Milovich)

Given a boolean space X, following are equivalent.

- ► X is Dugundji.
- X is ≅ the limit of an inverse lattice of second countable spaces with open maps.
- X is \cong the limit of an inverse lattice of finite spaces.

Fiber products make lattices

Given $X \xrightarrow{f} Z \xleftarrow{g} Y$, its limit is isomorphic to the fiber product $f \boxtimes g = \{(x, y) : f(x) = g(y)\}$ with three outgoing arrows π_0, π_1 , and $h = f \circ \pi_0 = g \circ \pi_1$.

Moreover, Z with the three incoming arrows f, g, and h is isomorphic to the colimit of $X \xleftarrow{\pi_0} (f \boxtimes g) \xrightarrow{\pi_1} Y$.

Therefore, the above diagram is an inverse lattice.

In category theory, the above diagram called a pullback square.

We can expand any inverse limit system (\vec{X}, \vec{f}) to an inverse semilattice by inserting the missing colimits.

However, we may not be able to expand (\vec{X}, \vec{f}) to an inverse lattice.

Why? If we insert a fiber product and the coordinate projections from this fiber product, then we are required to insert maps to this fiber product may not be quotient maps...

Binary obstructions

Given an inverse semilattice (\vec{X}, \vec{f}) , every diagonal product of the form $f_{i,k} \times f_{j,k}$ continuously maps X_k into the fiber product $f_{i \wedge j,i} \boxtimes f_{i \wedge j,j}$ but may not map X_k onto this fiber product. Call instances of this problem binary obstructions.

Example

 $S_7(2^{\omega_2}) \cong \lim((SP^7(2^C))_{C \in [P]^{\aleph_0}}, (\pi^D_{7,C})_{C \subsetneq D})$; there are no binary obstructions. In particular, $\zeta_7 \colon Z_7 \to Y_7$ is surjective.

Theorem (Milovich)

• A compactum is OG iff it is ≅ the limit of an inverse semilattice of open quotient maps between second countable compacta without binary obstructions.

• However, there is an OG boolean space not \cong any limit of an inverse semilattice of finite spaces without binary obstructions.

Pullback hypercubes

Given P a meet-semilattice, $d < \omega$, an inverse diagram $((X_i)_{i \in P}, \vec{f})$, and $D \in [P]^d$, define the *d*-ary fiber product $\bigotimes_{i \in D} X_i$:

$$\bigotimes_{i\in D} X_i = \left\{ \vec{x} \in \prod_{i\in D} X_i : \forall i,j\in D \ f_{i\wedge j,i}(x_i) = f_{i\wedge j,i}(x_j) \right\}.$$

Higher-arity obstructions

Definition

An inverse semilattice (\vec{X}, \vec{f}) has a *d*-ary obstruction if there exist distinct $i_0, \ldots, i_{d-1} < j$ such that the diagonal product $\prod_{k < d} f_{i_k, j}$ does not map X_j onto the fiber product $\bigotimes_{k < d} X_{i_k}$.

Lemma (Milovich)

Given $2 \le d < \omega$, a compactum X is OG_d iff X is \cong the limit of an inverse semilattice (\vec{X}, \vec{f}) such that

- Each X_i is a second-countable compactum.
- $\prod_{k < d-1} f_{i_k,j}$ is open for all $i_0, \ldots, i_{d-2} < j$,
- (\vec{X}, \vec{f}) has no $\leq d$ -ary obstructions.

Proof strategy for $OG_d \neq OG_{d+1}$

 \bullet Build a strict partial ordering \lhd that is directed and has countable lower cones.

• Simultaneously build an inverse limit system $((X_{\alpha})_{\alpha < \omega_d}, (f_{\beta,\alpha})_{\beta \triangleleft \alpha}).$

- Ensure that if $\beta_0, \ldots, \beta_{d-1} \triangleleft \alpha$ then:
 - $\prod_{i < d} f_{\beta_i, \alpha} \colon X_{\alpha} \to \bigotimes_{i < d} X_{\beta_i}$ is onto.
 - ► $\prod_{i < d-1} f_{\beta_i, \alpha}$: $X_{\alpha} \to \bigotimes_{i < d-1} X_{\beta_i}$ is open.
 - ► $\prod_{i < d} f_{\beta_i, \alpha} \colon X_{\alpha} \to \bigotimes_{i < d} X_{\beta_i}$ is "usually" not open.

How to partially order ω_d

We will simultaneously construct \triangleleft and sequences $(X_{\alpha})_{\alpha < \omega_d}$, $(f_{\beta,\alpha})_{\beta \triangleleft \alpha}$, and $(M_{\alpha})_{\alpha < \omega_d}$ such that:

$$\blacktriangleright X_0 = 2^{\omega} \cong X_{\alpha}.$$

- M_{α} is $\prec H(\theta)$ and countable.
- The sequences (X_β)_{β<α+1}, (f_{γ,β})_{γ⊲β<α}, and (M_β)_{β<α} are elements of M_α.
- $\{f_{\beta,\alpha}:\beta \triangleleft \alpha\}$ is a subset of M_{α} .

Define $\beta \triangleleft \alpha \Leftrightarrow M_{\beta} \in M_{\alpha}$ and note that

 $M_{\beta} \in M_{\alpha} \Leftrightarrow M_{\beta} \subsetneq M_{\alpha} \Leftrightarrow \beta \in \alpha \cap M_{\alpha} \Rightarrow \beta < \alpha.$

Ignoring \vec{X} and \vec{f} , a sequence \vec{M} as above is called a Davies sequence or a long ω_1 -approximation sequence. Such sequences have other applications in both set theory and topology...

Useful properties of \vec{M}

 \vec{M} is essentially a very very weak gap-*d* morass that exists in ZFC.

- \blacktriangleright \triangleleft is directed and well-founded.
- Each lower cone {β : β ⊲ α} partitions into ≤d-many countable directed sets D_{α,i} for i < ¬(α).</p>
- ► Each intersection ∩_{α∈I} M_α is a directed union ∪_{α∈J} M_α.
 ► Therefore, we won't have to think about colimits.

 X_{α} and $f_{\beta,\alpha} \colon X_{\alpha} \to X_{\beta}$ are of the following form if $\alpha > 0$.

$$(Y_{\alpha,i},(g_{\beta})_{\beta\in D_{\alpha,i}}) = \lim((X_{\beta})_{\beta\in D_{\alpha,i}}, \vec{f} \upharpoonright D_{\alpha,i}).$$

► $X_{\alpha} = C_0 \oplus C_1$ where $\{C_0, C_1\}$ is a closed cover of $\boxtimes_{i < \neg(\alpha)} Y_{\alpha, i}$.

•
$$f_{\beta,\alpha}(\vec{y},j) = g_{\beta}(y_i)$$
 for $\beta \in D_{\alpha,i}$.

Sufficient criteria for witnessing $OG_d \Rightarrow OG_{d+1}$

Again, X_{α} and $f_{\beta,\alpha} \colon X_{\alpha} \to X_{\beta}$ are of the following form if $\alpha > 0$.

$$(Y_{\alpha,i},(g_{\beta})_{\beta\in D_{\alpha,i}}) = \lim((X_{\beta})_{\beta\in D_{\alpha,i}}, \vec{f} \upharpoonright D_{\alpha,i}).$$

• $X_{\alpha} = C_0 \oplus C_1$ where $\{C_0, C_1\}$ is a closed cover of $\boxtimes_{i < \exists (\alpha)} Y_{\alpha, i}$.

•
$$f_{\beta,\alpha}(\vec{y},j) = g_{\beta}(y_i)$$
 for $\beta \in D_{\alpha,i}$.

We additionally require:

1. $X_{\alpha} \ni (\vec{y}, j) \mapsto \vec{y} \upharpoonright s$ defines an open map to $\bigotimes_{i \in s} Y_{\alpha, i}$ for all $s \in [\neg(\alpha)]^{\leq d}$.

2. $X_{\alpha} \ni (\vec{y}, j) \mapsto y$ defines a non-open map if $\exists (\alpha) = d$. Finally:

- X_{∞} will be OG_d thanks to 1.
- X_∞ will not be OG_{d+1} thanks to 2. More precisely, given any inverse limit system (Ξ, ξ), where Ξ_∞ ≃ X_∞ and each Ξ_i is second countable, we can use 2 to find i₀,... i_{d-1} < j such that ∏_{k<d} ξ_{i_k,j} is not open.