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Abstract

We present several results related to van Douwen’s Problem, which asks whether there

is homogeneous compactum with cellularity exceeding c, the cardinality of the reals. For

example, just as all known homogeneous compacta have cellularity at most c, they satisfy

similar upper bounds in terms of Peregudov’s Noetherian type and related cardinal

functions defined by order-theoretic base properties. Also, assuming GCH, every point

in a homogeneous compactum X has a local base in which every element has fewer

supersets than the cellularity of X.

Our primary technique is the analysis of order-theoretic base properties. This anal-

ysis yields many results of independent interest beyond the study of homogeneous com-

pacta, including many independence results about the Noetherian type of the Stone-Čech

remainder of the natural numbers. For example, the Noetherian type of this space is at

least the splitting number, but it can consistenly be less than the additivity of the mea-

ger ideal, strictly between the unbounding number and the dominating number, equal to

c and greater than the dominating number, or equal to the successor of c. We also prove

several consistency results about Tukey classes of ultrafilters on the natural numbers

ordered by almost containment. We also characterize the spectrum of Noetherian types

of ordered compacta and mostly characterize the spectrum of Noetherian types of dyadic

compacta. Also, we show that if every point in a compactum has a well-quasiordered

local base, then some point has a countable local π-base.

Our secondary technique is an amalgam, a new quotient space construction that

allows us to transform any homogeneous compactum into a path connected homogeneous
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compactum without reducing its cellularity, as well as construct the first ZFC example

of homogeneous compactum that is not homeomorphic to a product of dyadic compacta

and first countable compacta. We also use amalgams to prove results of independent

interest about connectifications. For instance, every countably infinite product of infinite

sums of metric spaces has a metrizable connectification.
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Chapter 1

Introduction

1.1 Van Douwen’s Problem

The original motivation for this entire dissertation was Van Douwen’s Problem, an open

problem in set-theoretic topology.

Definition 1.1.1. A homeomorphism is a continuous bijection with continuous inverse.

Given a topological space X, let Aut(X) denote the group of autohomeomorphisms of

X. A space X is homogeneous if for every p, q ∈ X, there exists h ∈ Aut(X) such that

h(p) = q.

Definition 1.1.2. A compactum is a compact Hausdorff space.

Question 1.1.3 (Van Douwen’s Problem). Is there a homogeneous compactum X and a

family F of pairwise disjoint open subsets of X such that F has greater cardinality than

R?

This problem has been open (in all models of ZFC) for over thirty years [47]. To get

an idea of why problems about homogeneous compacta can be so hard, ask, given an

arbitrary list 〈Xi〉i∈I of homogeneous compacta, what can we do with them to produce a

bigger homogeneous compacta? In general, all we know how to do is form products like∏
i∈I Xi. (Actually, Chapter 2 describes a method for producing homogeneous quotients
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of certain products of homogeneous compacta, but this method does not help us build

an X solving Van Douwen’s Problem, as we shall see in Chapter 3.)

This dissertation is mostly self-contained in the following sense. Before it starts

using a definition, lemma, or theorem well-known amongst those who study set the-

ory, general topology, and cardinal functions in topology, but perhaps not well-known

amongst mathematicians in general, that definition, lemma, or theorem is usually ex-

plicitly stated. However, this first, introductory chapter is necessarily concise. For a full

introduction to the above three topics, see Kunen [40], Engelking [20], and Juhász [35],

respectively.

Four of the chapters of this dissertation have already been published as journal arti-

cles. Excepting very minor modifications, Chapter 2 is [48], Chapter 3 is [49], Chapter 5

is [50], and Chapter 6 is [51].

1.2 Ordinals and cardinals

Definition 1.2.1. A set x is transitive if z ∈ y ∈ x always implies z ∈ x.

Definition 1.2.2. A well-ordering is a linear ordering with no strictly descending infinite

sequences. Equivalently, a set is well-ordered if every subset has a minimum. An ordinal

is a transitive set that is well-ordered by the membership relation ∈. Let On denote the

class of ordinals. (We use “class” to denote collections of sets that might be “too big”

to be sets themselves. The ordinals are indeed “too big” to be a set.)

The class of ordinals is itself well-ordered by inclusion, and strict inclusion is equiv-

alent to membership, so an ordinal is the set of its predecessors. Every well-ordered set

is isomorphic to an ordinal.
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We identify the natural numbers N with ω, which denotes the least infinite ordinal,

which is also the set of all finite ordinals.

Definition 1.2.3. A cardinal is an ordinal from which there is no bijection to a lesser

ordinal. For every set A there is a unique cardinal |A| from which there are bijections

to A. This cardinal is also called the cardinality or the size of A. A set A is countable

if |A| ≤ ω.

The cardinals inherit the well-ordering of the ordinals. Moreover, there is a unique

order isomorphism from On to the class of infinite cardinals; we denote it by α 7→ ωα.

In particular, ω0 is ω and ω1 is the least cardinal greater than ω (and ω2 is the least

cardinal greater than ω1, and. . . ).

Given sets A and B, we let BA denote the set of all maps from A to B. However,

when A and B are cardinals, we also abbreviate
∣∣BA

∣∣ by BA. If α is an ordinal, then

B<α denotes
⋃
β<αB

β. We analogously define B≤α. However, for cardinals κ and λ, we

abbreviate
∣∣κ<λ∣∣ by κ<λ when there is no danger of confusion. If κ is a cardinal, then

[B]κ denotes {E ⊆ B : |E| = κ} and [B]<κ denotes
⋃
λ<κ[B]λ. We analogously define

[B]≤κ.

Unless otherwise indicated, ordinals are given the order topology. Also, given a space

X and a set A, the set XA is given the product topology (equivalently, the topology of

pointwise convergence).

Definition 1.2.4. Let c denote the cardinality of the real line, which is also the cardi-

nality of the Cantor space 2ω.

Definition 1.2.5. The cofinality cf α of an ordinal α is the least ordinal β such that

there is a map f : β → α such that for every γ < α there exists δ < β such that γ ≤ f(δ).
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An ordinal α is regular if α = cf α. Non-regular ordinals are said to be singular.

All regular ordinals are cardinals.

Definition 1.2.6. Given an ordinal α, let α + 1 and α+ respectively denote the least

ordinal greater than α and the least cardinal greater than α. (In particular, ω+
β = ωβ+1

for all β ∈ On.) Ordinals of the form α + 1 and α+ are respectively called successor

ordinals and successor cardinals. A nonzero, non-successor ordinal is called a limit

ordinal. A nonzero, non-successor cardinal is called a limit cardinal.

For all infinite cardinals κ, we have κ = κ<ω < κ+ ≤ κcf κ ≤ κκ = 2κ. The least limit

cardinal is ω; the least singular limit cardinal is ωω. Every infinite successor cardinal is

regular.

Definition 1.2.7. A weakly inaccessible cardinal is an uncountable regular limit car-

dinal. A cardinal κ is a strong limit cardinal if 2<κ = κ. An inaccessible cardinal is a

regular uncountable strong limit cardinal.

Definition 1.2.8. Given α, β ∈ On, let α + β denote the unique ordinal isomorphic to

the lexicographic ordering of ({0} × α) ∪ ({1} × β); let αβ denote the unique ordinal

isomorphic to the lexicographic ordering of β×α. When there is no danger of confusion,

we abbreviate |κλ| by κλ when κ and λ are cardinals.

For all infinite cardinals κ and all cardinals λ > 0, we have |κ+λ| = |κλ| = max{κ, λ}.

Definition 1.2.9. Given a linear order I and a linear order Ji for each i ∈ I, let∑
i∈I Ji denote

⋃
i∈I{i} × Ji with the lexicographic ordering. Given a sequence 〈κa〉a∈A

of cardinals, we will let
∑

a∈A κa denote
∣∣⋃

a∈A{a} × κa
∣∣ when there is no ambiguity.
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1.3 General topology

Definition 1.3.1. The closure A of a subset A of a space X is the minimal closed

superset of A; the interior intA of A is the maximal open subset of A; the boundary

∂A of A is A \ intA. A subset R of a space X is regular open if intR = R and regular

closed if intR = R. A neighborhood of a subset E of a space X is a set N ⊆ X such

that E ⊆ intN . A neighborhood of a point p ∈ X is a neighborhood of {p}.

Definition 1.3.2. A local base (local π-base) at a point in a space is a family of open

neighborhoods of that point (family of nonempty open subsets) such that every neigh-

borhood of the point contains an element of the family; a base (π-base) of a space is a

family of open sets that contains local bases (local π-bases) at every point.

A base characterizes a topology because a set is open if and only if it is a union of

basic sets.

Example 1.3.3. If B is a base of X and Y ⊆ X, then {U ∩ Y : U ∈ B} is a base of Y

(where Y is given the subspace topology).

Definition 1.3.4. A space X is:

• T0 if for all p, q ∈ X there is an open U ⊆ X such that |U ∩ {p, q}| = 1;

• T1 if for all distinct p, q ∈ X there is an open U ⊆ X such that p ∈ U and q 6∈ U ;

• T2, or Hausdorff, if for all distinct p, q ∈ X there are disjoint neighborhoods of p

and q;

• Urysohn if for all distinct p, q ∈ X there are disjoint closed neighborhoods of p

and q;
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• regular if for all closed C ⊆ X and p ∈ X \C, there are disjoint neighborhoods of

p and C;

• T3 if X is regular and T1.

Every regular space has a base consisting only of regular open sets.

Definition 1.3.5. We will need terms for several kinds of maps between spaces.

• A map between spaces is continuous if all preimages of open sets are open and

open if all images of open sets are open.

• A homeomorphism is a continuous open bijection.

• Spaces X and Y are homeomorphic, or X ∼= Y , if there is a homeomorphism from

X to Y .

• A (topological) embedding of X into Y is a homeomorphism from X to a subspace

of Y .

• A continuous surjection is irreducible if all images of closed proper subsets of the

domain are proper subsets of the codomain.

• A continuous surjection is a quotient map if all preimages of non-open sets are not

open. A space Y is a quotient of a space X if there is a quotient map from X to

Y .

Definition 1.3.6. Given a space X and an equivalence relation E on X, the quotient

topology of the set X/E of E-equivalence classes is defined by declaring subsets A of

X/E to be open if (and only if)
⋃
A is open in X.
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Given X and E as above, the quotient topology is the unique topology for which the

map defined by x 7→ x/E is a quotient map.

Definition 1.3.7. Given spaces X and Y , let C(X, Y ) denote the set of continuous

maps from X to Y ; let C(X) denote C(X,R).

Definition 1.3.8. A space X is:

• completely regular if for all closed C ⊆ X and p ∈ X \ C, there is an f ∈ C(X)

such that f(p) = 0 and f [C] = {1};

• T3.5 if X is completely regular and T1;

• normal if for all disjoint closed subsets A,B ⊆ X there are disjoint neighborhoods

of A and B;

• T4 if X is normal and T1.

The Urysohn Theorem states that for all normal spaces X, if A and B are disjoint

closed subsets of X, then there is an f ∈ C(X) such that f [A] = {0} and f [B] = {1}.

Definition 1.3.9. A space X is:

• κ-compact if every open cover of X has a subcover of size less than κ;

• Lindelöf if X is ω1-compact;

• compact if X is ω-compact;

• a compactum if X is compact and T2;

• a compactification of a T3.5 space Y if X is a compactum with a dense subspace

homeomorphic to Y ;
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• locally κ-compact if for every open U ⊆ X and p ∈ U , there is a κ-compact

neighborhood V of p such that V ⊆ U ;

• locally compact if X is locally ω-compact.

All compacta are T4. Continuous images of κ-compact spaces are κ-compact.

Definition 1.3.10. Given two topologies S and T on a set X, we say S is finer than

T , or T is coarser than S, if S ⊇ T or, equivalently, if the identity map from 〈X,S〉 to

〈X, T 〉 is continuous.

Every continuous bijection from a compact space to a Hausdorff space is a homeo-

morphism. In particular, if a compact topology is finer than a Hausdorff topology, then

the topologies are identical.

Given a T3.5 space X, there is a subset F of C(X, [0, 1]) that separates points and

closed sets, i.e., for every closed C ⊆ X and p ∈ X \ C, we have f(p) 6∈ f [C] for some

f ∈ F . Given any F ⊆ C(X) that separates points and closed sets, there is a topological

embedding ∆F : X → RF given by ∆F(x)(f) = f(x). Given any two F ,G ⊆ C(X, [0, 1])

that separate points and closed sets, the closures of ∆F [X] of ∆G[X] in [0, 1]F and [0, 1]G

are homeomorphic and each may be called the Čech-Stone compactification βX of X,

which is, up to homeomorphism, the unique compactification B of X such that every

continuous map from X to a compactum Y extends to a continuous map from B to Y .

Definition 1.3.11. A space X is:

• connected if its only clopen subsets are ∅ and X;

• path-connected if for all p, q ∈ X there exists f ∈ C(X, [0, 1]) such that f(0) = p

and f(1) = q;
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• totally disconnected if all connected subspaces of X are singletons;

• zero-dimensional if every open cover U has a pairwise disjoint open refinement,

meaning there is a pairwise disjoint open cover V such that every V ∈ V is a subset

of some U ∈ U .

A T3 space X has small inductive dimension 0, or indX = 0, if it has a base consisting

only of clopen sets; X has small inductive dimension ≤ n+ 1, or indX ≤ n+ 1, if X has

a base A such that every U ∈ A satisfies ind ∂U ≤ n; X has small inductive dimension

n+ 1, or indX = n+ 1, if indX ≤ n+ 1 and indX 6≤ n.

Continuous images of (path-)connected spaces are (path-)connected. A compactum

is totally disconnected if and only if indX = 0 if and only if it is zero-dimensional.

Definition 1.3.12. Let 〈B,≤, 0, 1,∧,∨, ′〉 be a boolean algebra (where a ≤ b if and

only if a ∨ b = b).

• A subset S of B is a semifilter of B if 0 6∈ S and ∀s ∈ S ∀t ≥ s t ∈ S.

• A semifilter F of B is a filter of B if ∀σ ∈ [F ]<ω
∧
σ ∈ F .

• A filter U of B is an ultrafilter of B if ∀b ∈ B (b ∈ U or b′ ∈ U).

• A subset U of the power set algebra P(I) of a set I is an ultrafilter on I if U is an

ultrafilter of P(I).

• An ultrafilter U on a set I is nonprincipal if {i} 6∈ U for all i ∈ I.

A filter is an ultrafilter if and only if it is a maximal filter. An ultrafilter on a set is

nonprincipal if and only if all its elements are infinite.
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The category of boolean algebras is dual to the category of totally disconnected

compacta. This is Stone duality ; let us spell out what it means. Given a totally discon-

nected compactum X, let Clop(X) denote the algebra of clopen subsets of X. Given a

boolean algebra B, let Ult(B) denote the set of ultrafilters of B topologized by declaring

{{U ∈ Ult(B) : a ∈ U} : a ∈ B} to be a base of Ult(B). The space Ult(B) is always a

totally disconnected compactum. Moreover, X is homeomorphic to Ult(Clop(X)) and

B is isomorphic to Clop(Ult(B)). Given a continuous map f : X → Y between com-

pacta, there is a homomorphism from Clop(Y ) to Clop(X) given by U 7→ f−1U . Given

a homomorphism g : A→ B between boolean algebras, there is a continuous map from

Ult(B) to Ult(A) given by U 7→ g−1U .

In particular, Clop(βω) is isomorphic to P(ω), so we declare βω to be the space of

ultrafilters on ω. We then identify each n < ω with the principal ultrafilter {E ⊆ ω : n ∈

E}. This makes βω \ω the compact subspace of nonprincipal ultrafilters on ω, which is

naturally homeomorphic to the space of ultrafilters of the quotient algebra P(ω)/[ω]<ω.

We will sometimes abbreviate βω \ ω by ω∗.

Definition 1.3.13. An ultrafilter U on a set I is uniform if |A| = |I| for all A ∈ U . For

all infinite cardinals κ, let βκ denote Ult(P(κ)), which is a Čech-Stone compactification

of κ with the discrete topology. Let u(κ) denote the subspace of uniform ultrafilters on

κ.

Definition 1.3.14. A set is nowhere dense if it is contained in the complement of a

dense open subset. A set is meager if it is contained in a countable union of nowhere

dense sets.
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1.4 Cardinal functions in topology

Definition 1.4.1. Given a space X, let the weight of X, or w(X), be the least κ ≥ ω

such that X has a base of size at most κ. Given p ∈ X, let the character of p, or

χ(p,X), be the least κ ≥ ω such that there is a local base at p of size at most κ. Let the

character of X, or χ(X), be the supremum of the characters of its points. Analogously

define π-weight and π-character, respectively denoting them using π and πχ.

A space is first countable if χ(X) = ω. A space is second countable if w(X) = ω.

Example 1.4.2. We have w(X) = max{ω, |ClopX|} for all totally disconnected com-

pacta X.

Arhangel′skĭı’s Theorem states that every compactum X has size at most 2χ(X). In

particular, first countable compacta have size at most c. The Čech-Pospǐsil Theorem

states that if X is a compactum and minp∈X χ(p,X) ≥ κ ≥ ω, then X ≥ 2κ. Therefore,

if X is an infinite homogeneous compactum, then |X| = 2χ(X).

For every T3.5 space X, the weight of X is also the least κ ≥ ω such that X embeds

into [0, 1]κ and the least κ ≥ ω such that some F ∈ [C(X)]κ separates points and closed

sets.

A space X is metrizable if it has a metric d such that {{q : d(p, q) < 2−n} : n < ω}

is a local base at p, for all p ∈ X. A compactum is metrizable if and only if it is

second countable. The Nagata-Smrinov metrization theorem states that a T3 space X

is metrizable if and only if it has a base that is σ-locally finite, meaning X has a base

B =
⋃
n<ω Bn such that for all n < ω and p ∈ X, there is a neighborhood of p that

intersects only finitely many elements of Bn.

If X is a compactum, A is a base of X, and B is a family of open subsets of X, then
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B is a base of X if and only if, for all U, V ∈ A, if U ⊆ V , then there is a finite F ⊆ B

such that U ⊆
⋃
F ⊆ V . This fact will be used repeatedly in Chapter 3 and will be

used in the proof of the following theorem.

Theorem 1.4.3. If g : X → Y is a continuous surjection and X and Y are compacta,

then w(X) ≥ w(Y ).

Proof. Let A be a base of X and let B be a base of Y . For every pair U, V ∈ B such that

U ⊆ V , there is, by compactness, a finite FU,V ⊆ A such that g−1U ⊆
⋃
FU,V ⊆ g−1V .

Let C be the set of all sets of the form int g [
⋃
FU,V ]. Then C is a base of Y and

|C| ≤ |A<ω| ≤ max{|A|, ω} ≤ w(X).

If X is a product space
∏

i∈I Xi, then w(X) =
∑

i∈I w(Xi), π(X) =
∑

i∈I π(Xi),

χ(X) =
∑

i∈I χ(Xi), and πχ(X) =
∑

i∈I πχ(Xi).

The following are two weakenings of the notion of base.

Definition 1.4.4. A family S of open subsets of a space X is a subbase of X if the set

of finite intersections of elements of S is a base of X. A family of subsets N of a space

X is a network of X if for every open U ⊆ X and p ∈ U , there exists N ∈ N such that

p ∈ N ⊆ U .

A map f : X → Y is continuous if and only if there is a subbase S of Y such that

f−1S is open for all S ∈ S .

Example 1.4.5. Given a product space
∏

i∈I Xi and Si is a subbase of Xi for each

i ∈ I, the set of sets of the form π−1
i S =

{
p ∈

∏
i∈I : p(i) ∈ S

}
for i ∈ I and S ∈ Si is

a subbase of
∏

i∈I Xi.
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The notion of a local base at a point naturally generalizes to neighborhood bases of

sets.

Definition 1.4.6. A neighborhood base of a subset E of a space X is a family of open

neighborhoods of E such that every neighborhood of E contains an element of the family.

The character χ(E,X) of E in X is the least κ ≥ ω such that E has a neighborhood

base of size at most κ.

The following two cardinal functions are close relatives of character.

Definition 1.4.7. The pseudocharacter ψ(E,X) of a subset E of a T1 space X is least

κ ≥ ω such that E is the intersection of a family of at most κ-many open sets. We say

E is Gδ if ψ(E,X) = ω. The pseudocharacter ψ(p,X) of a point p ∈ X is ψ({p}, X).

The pseudocharacter ψ(X) of X is supp∈X ψ(p,X).

The tightness t(p,X) of a point p ∈ X is the least κ ≥ ω such that for every A ⊆ X,

if p ∈ A, then p ∈ B for some B ∈ [A]≤κ. The tightness t(X) of X is supp∈X t(p,X).

We always have ψ(E,X) ≤ χ(E,X) and t(p,X) ≤ χ(p,X). Moreover, if X is a

compactum and E is closed, then ψ(E,X) = χ(E,X).

Definition 1.4.8. A zero subset of a space X is a set of the form f−1{0} for some

f ∈ C(X). A subset of X is cozero if it is the complement of a zero set.

Every zero set is a closed Gδ set. Moreover, if X is a compactum, then closed Gδ

subsets of X are zero sets.

Definition 1.4.9. The cellularity c(X) of a space X is the least κ ≥ ω such that every

pairwise disjoint family of open subsets of X has size at most κ. A space is ccc if its

cellularity is ω.
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A regular cardinal κ is a caliber of a space X if for every κ-sequence 〈Uα〉α<κ of open

subsets of X there exists I ∈ [κ]κ such that
⋂
α∈I Uα is not empty.

The density d(X) of a space X is the least κ ≥ ω such that X has a dense subset of

size at most κ. A space X is separable if d(X) ≤ ω.

Clearly, c(X) ≤ d(X) ≤ π(X) ≤ w(X) and c(X) < κ for all calibers κ of X.

Moreover, d(X)+, π(X)+, and w(X)+ are all calibers of X. Also notice that if f : X → Y

is a continuous surjection, then c(Y ) ≤ c(X), d(Y ) ≤ d(X), and every caliber of X is a

caliber of Y .

If c(
∏

i∈σXi) ≤ λ for all σ ∈ [I]<ω, then c(
∏

i∈I Xi) ≤ λ. If κ is a caliber of Xi

for all i ∈ I, then κ is a caliber of
∏

i∈I Xi. Every known homogeneous compacta H

is a continuous image of a product of compacta each with weight at most c; hence,

c+ is a caliber of H. This allows us to uniformly bound the cellularities of all known

homogeneous compacta by c.

1.5 Order theory

This dissertation investigates several cardinal functions defined by order-theoretic base

properties. Just like cellularity, these functions have uniform upper bounds when re-

stricted to the class of known homogeneous compacta.

Definition 1.5.1. A quasiorder is a set with a transitive reflexive binary relation (de-

noted by ≤ unless otherwise indicated). A directed set is a quasiorder in which every

finite set has an upper bound; a κ-directed set is a quasiorder in which every set of size

less than κ has an upper bound. A partially ordered set, or poset, is a quasiorder such

that p ≤ q ≤ p always implies p = q.
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Definition 1.5.2. Given a subset E of a quasiorder Q, let ↑QE = {q ∈ Q : ∃e ∈ E e ≤ q

and ↓QE = {q ∈ Q : ∃e ∈ E q ≤ e. Given q ∈ Q, let ↑Q q = ↑Q{q} and ↓Q q = ↓Q{q}.

A subset C of a quasiorder Q is cofinal if Q = ↓QC. The cofinality of Q is the smallest

cardinal κ such that Q has a cofinal subset of size κ.

Notice that this definition agrees with Definition 1.2.5 for ordinals.

Definition 1.5.3. A quasiorder is well-founded if every subset contains a minimal ele-

ment. A well-founded quasiorder is well-quasiordered if it does not contain an infinite

set of pairwise incomparable elements.

Every quasiorder has a well-founded cofinal subset.

Definition 1.5.4. Given a quasiorder 〈Q,≤〉, let Qop denote 〈Q,≥〉. A subset D of a

quasiorder Q is dense if D is cofinal in Qop.

Definition 1.5.5. Given a cardinal κ, define a poset to be κ-like (κop-like) if no element

is above (below) κ-many elements. Define a poset to be almost κop-like if it has a κop-like

dense subset.

In the context of families of subsets of a topological space, we always implicitly order

by inclusion. Consider the following order-theoretic cardinal functions.

Definition 1.5.6. Given a space X, let the Noetherian type of X, or Nt(X), be the

least κ ≥ ω such that X has a base that is κop-like. Analogously define Noetherian

π-type in terms of π-bases and denote it by πNt(X). Given a subset E of X, let the

local Noetherian type of E in X, or χNt(E,X), be the least κ ≥ ω such that there

is a κop-like neighborhood base of E. Given p ∈ X, let the local Noetherian type of

p, or χNt(p,X), be χNt({p}, X). Let the local Noetherian type of X, or χNt(X), be



16

the supremum of the local Noetherian types of its points. Let the compact Noetherian

type of X, or χKNt(X), be the supremum of the local Noetherian types of its compact

subsets. We call Nt, πNt, χNt, and χKNt Noetherian cardinal functions.

Noetherian type and Noetherian π-type were introduced by Peregudov [54]. Preced-

ing this introduction are several papers by Peregudov, Šapirovskĭı and Malykhin [42, 52,

53, 55] about min{Nt(·), ω2} and min{πNt(·), ω2} (using different terminologies). Also,

Dow and Zhou [16] showed that βω \ ω has a point with local Noetherian type ω. (An

easier construction of such a point will be given in the proof of Theorem 3.5.15, which

is a generalization of a construction of Isbell [32].)

It is also reasonable to define an order-theoretic analog of π-character.

Definition 1.5.7. Let the local Noetherian π-type πχNt(p,X) of a point p in a space X

denote the least κ ≥ ω such that p has a κop-like local π-base. Let the local Noetherian

π-type πχNt(X) of X denote the supremum of the local Noetherian π-types.

However, it is not known whether there is a space X such that πχNt(X) 6= ω.

1.6 Models of set theory

Definition 1.6.1. We will need some model theory.

• A language is a set of constant symbols, n-ary function symbols, and n-ary relation

symbols (for each n < ω).

• Given a language L, a (first order) L-structure or L-model M is a list consisting

of set M , the universe ofM, and interpretations of each symbol in L: an element

cM ∈ M for each constant symbol c ∈ L, a relation RM ⊆ Mn for each n-ary
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relation symbol R ∈ L, and a function FM : Mn → M for each n-ary function

symbol F ∈ L. We will often abbreviate M by M .

• Given languages L ⊆ L′, an L′-structureM′ is an expansion of an L-structureM

if M = M ′ and M and M ′ agree on their interpretations of symbols in L.

• Given L-models M and N , we say M is a submodel of N if M ⊆ N , cM = cN ,

FM = FN � Mn, and RM = RN ∩Mn for all constant, function, and relation

symbols c, F,R ∈ L.

• An L-term with parameters from a set A is an expression built using function

symbols in L, constant symbols in L, elements of A acting as additional constant

symbols, and variable symbols.

• An atomic L-formula with parameters from a set A is a formula of the form

R(t0, . . . , tn−1) or t0 = t1 where R is an n-ary relation symbol in L and t0, . . . , tn−1

are L-terms with parameters from A.

• An L-formula with parameters from a set A is a logical formula built using exis-

tential quantifiers, universal quantifiers, conjunctions, disjunctions, implications,

negations, bi-implications, and L-terms with parameters from A.

• An L-structureM interprets an L-formula by using its interpretations of all sym-

bols in L and interpreting quantifications ∃x and ∀x by ∃x ∈ M and ∀x ∈ M ,

respectively.

• An L-structure M satisfies an L-formula, or M |= L, if its interpretation of that

formula is a true statement.
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• An subset S of Mn is definable from a subset E of M if M satisfies a formula

ϕ(v0, . . . , vn−1) with variables v0, . . . , vn−1 and parameters from E such that for all

a0, . . . , an−1 ∈M , we have M |= ϕ(a0, . . . , an−1) if and only if 〈ai〉i<n ∈ S.

• An element a of M is definable from E if {a} is definable from E.

• A submodel M of an L-model N is an elementary submodel of N , or M≺ N , if

M and N satisfy the same L-formulae with parameters from M .

The downward Lowenheim-Skolem Theorem states that for every L-model M and

A ⊆M , there is an elementary submodel N such that A ⊆ N and |N | ≤ |A||L|ω.

The language of set theory is just a single binary relation symbol: {∈}. The standard

list of axioms of set theory is denoted by ZFC. This list is infinite, but has a finite

description. (There is a simple computer algorithm that can decide whether an arbitrary

{∈}-formula is one of the ZFC axioms.) The exact contents of ZFC are not important

here, but it should be noted that these axioms are strong enough for the formalization

of almost all of mathematics in the language of set theory.

Definition 1.6.2. Given a regular infinite cardinal θ, let Hθ denote the class of all sets

x hereditarily smaller than θ, i.e., those x for which |x| < θ, |y| < θ for all y ∈ x, |z| < θ

for all z ∈ y ∈ x, |w| < θ for all w ∈ z ∈ y ∈ x. . .

The class Hθ is actually a set of size 2<θ. Moreover, if θ is regular and uncountable,

then 〈Hθ,∈〉 satisfies every axiom of ZFC except possibly the power set axiom, which

asserts that for every set A, there is a set P(A) = {B : B ⊆ A}. (Hθ satisfies all of ZFC

if and only if θ is inaccessible.) However, proofs of statements about a fixed object A

almost always talk only about sets of size at most 2|A| or 22|A| (or occasionally some other
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upper bound). Such proofs are valid in Hθ for sufficiently large regular θ. Henceforth, θ

will denote a sufficiently large regular cardinal.

We will use elementary submodels of the {∈}-structure Hθ (with the symbol “∈”

interpreted as actual membership) to greatly simplify and shorten “closing off” argu-

ments that appear in many of our proofs. Sometimes arbitrary elementary submodels

of Hθ will not be sufficiently closed off for our purposes. One easy fix is to add constant

symbols for a small number of objects that we care about. For example, it sometimes

suffices simply to expand 〈Hθ,∈〉 to 〈Hθ,∈, C(X)〉 for some space X that we want our

elementary substructures to “know” about. When this trick does not suffice, we will use

elementary chains.

Definition 1.6.3. A sequence of models 〈Mα〉α<η such that Mα ≺Mβ for all α < β < η

is an elementary chain. An elementary chain 〈Mα〉α<η is continuous if Mα =
⋃
β<αMβ

for all limit α < η. A continuous elementary chain of {∈}-models is a continuous ∈-chain

if Mα ∈Mβ for all α < β < η.

Given an elementary chain 〈Mα〉α<η, we have Mα ≺
⋃
β<ηMβ for all α < η. If we

also have Mα ≺ N for all α < η, then
⋃
α<ηMα ≺ N . If 〈Mα〉α<η is a continuous ∈-chain

of elementary submodels of Hθ, then η ⊆
⋃
α<ηMα. If A ∈M ≺ Hθ and |A| ⊆M , then

A ⊆M .

Using elementary chains, one can prove that if κ = cf κ > ω and A is a set of size

less than κ, then there exists M ≺ Hθ such that |M | < κ, A ⊆M , and M ∩ κ ∈ κ. The

last relation is equivalent to the more useful M ∩ [Hθ]
<κ = M ∩ [M ]<κ, which says that

if B ∈M and |B| < κ, then B ⊆M .
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1.7 Forcing

Definition 1.7.1. The Continuum Hypothesis, or CH, is the assertion that 2ω = ω1.

The Generalized Continuum Hypothesis, or GCH, is the assertion that 2κ = κ+ for all

infinite cardinals κ.

Gödel proved that ZFC does not refute GCH. Cohen invented the technique of forcing

to prove that ZFC also does not prove CH. In other words, GCH and ¬CH are both

consistent with ZFC (but not with each other). Since then a flood of consistency results

have been proven using forcing. In Chapter 5, we will extensively use forcing to prove

that many (often mutually inconsistent) statements about the values of Noetherian

cardinal functions for βω \ ω are consistent with ZFC.

Definition 1.7.2. A maximum of a quasiorder Q is an element q ∈ Q such that p ≤ q

for all p ∈ Q. A forcing is a quasiorder with a distinguished maximum. This maximum

is typically denoted by 1.

In the context of forcing, a boolean algebra B refers to the forcing B \ {0}.

Given any finite list of ZFC axioms, ZFC proves that there is a countable transitive

set M such that 〈M,∈〉 satisfies them. This is all that one needs to prove all of our

consistency results, but for simplicity we posit the existence of a countable transitive

model 〈M,∈〉 of all of ZFC. There is no danger in doing so because every ZFC proof,

being finite, uses only a finite part of ZFC. (In any case, to get an actual countable

transitive model of ZFC, one need only assume the existence of an inaccessible cardinal.

This is a very mild assumption, the weakest in a grand hierarchy of “large cardinal

axioms.”)
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Definition 1.7.3. Given a subset E of a quasiorder Q, let ↑QE denote the set of q ∈ Q

for which q has a lower bound in E. A subset F of a quasiorder Q is a filter if F = ↑Q F

and every finite subset of F has a lower bound in F . A filter G of a quasiorder Q is

Q-generic over a class M if G intersects every dense subset D of Q for which D ∈M .

For every quasiorder Q and countable set M , one can easily show that there is a

Q-generic filter over M . If M is also a transitive model of ZFC, then one can say much

more.

Definition 1.7.4. Given a transitive model 〈M,∈〉 of ZFC and a set E, let M [E] denote

the intersection of all transitive models 〈N,∈〉 of ZFC for which N ⊇M ∪ {E}.

Theorem 1.7.5. Let 〈M,∈〉 be a countable transitive model of ZFC, P a forcing such

that P ∈M , and G a P-generic filter over M . Then 〈M [G],∈〉 is a countable transitive

model of ZFC with the same ordinals as M . We call M [G] a P-generic extension of M .

We can more usefully describe M [G] through names.

Definition 1.7.6. Given M , P, and G as above, the set MP of P-names in M is defined

by ∈-recursion as follows. If σ ∈ M and all elements of σ are pairs of the form 〈τ, p〉

where p ∈ P and τ is a P-name in M , then σ is a P-name in M . The interpretation σG

of a P-name σ by G is recursively defined as {τG : 〈τ, p〉 ∈ σ and p ∈ G}. Every x ∈ M

has a canonical name x̌ recursively defined as {〈y̌,1〉 : y ∈ x}; hence, x̌G = x. The

P-forcing language in M is the set of all {∈}-formulae with parameters from MP.

Theorem 1.7.7 (The Forcing Theorem). Given M , P, and G as above, M [G] = {σG :

σ ∈MP}. Moreover, there is a binary relation  that is definable in M , has domain P,

has codomain consisting of the P-forcing language in M , and has the following properties.
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• M [G] |= ϕ(σ
(0)
G , . . . , σ

(n−1)
G ) if and only if p  ϕ(σ(0), . . . , σ(n−1)) for some p ∈ G.

• 1  ϕ if ϕ is a theorem of ZFC.

• If p  ϕ and p  ϕ→ ψ, then p  ψ.

• p  ϕ ∧ ψ if and only if p  ϕ and p  ψ.

• If q ≤ p and p  ϕ, then q  ϕ.

• p  ¬ϕ if and only if q 6 ϕ for all q ≤ p.

• p  ∃x ϕ(σ(0), . . . , σ(n−1), x) if and only if p  ϕ(σ(0), . . . , σ(n−1), τ) for some τ .

We call  the forcing relation.

In Chapter 5 and sometimes in this section, instead of talking about generic exten-

sions of countable models, we will use a convenient shorthand. In set theory, V denotes

the class of all sets. However, in the context of forcing we will implicitly use V , also

referred to as the ground model, to denote a countable transitive model of ZFC. (Among

the advantages of this shorthand is that we can speak directly about an uncountable

forcing P, as opposed to the interpretation of a definition of P by some countable tran-

sitive model M .) The justification for this convention is that all of the implications in

our theorems and proofs are ZFC implications, and as such they are valid in any model

of ZFC.

Definition 1.7.8. We say elements p and q of a forcing P are incompatible and write

p ⊥ q if there is no r ∈ P such that p ≥ r ≤ q. We say a subset A of P is an antichain

if p ⊥ q for all distinct p, q ∈ A. We say P is ccc if all its antichains are countable. We

say a subset L of P is linked if no two elements of L are incompatible. We say P has



23

property (K) if every uncountable subset of P contains an uncountable linked set. We

say a subset C of P is centered if every finite subset of C has a lower bound in P. We

say P is σ-centered if it is the union of some countable family of centered sets.

Every σ-centered forcing has property (K); every forcing with property (K) is ccc. If P

is a ccc forcing andG is a P-generic over V , then V [G] preserves cardinals and cofinalities,

meaning that if α ∈ On, then the V -interpretation and V [G]-interpretation of |α| and

cf α are identical. We symbolically denote these identities by writing |α|V [G] = |α| and

(cf α)V [G] = cf α. Moreover, if A ∈ V [G] and A is an infinite subset of V , then there

is a set B ∈ V such that A ⊆ B and |A| = |B|. If P also has a dense subset of size

κ, then |λµ|V [G] ≤ (κλ)µ for all cardinals λ and infinite cardinals µ. This is because

if P is ccc and D ⊆ P is dense, then p  σ ⊆ B̌ implies that p  σ = τ for some

τ = {{b̌} × Ab : b ∈ B} where each Ab is a countable antichain contained in D.

Definition 1.7.9. Martin’s Axiom, or MA, says that for every ccc forcing P and every

family D of fewer than c-many dense subsets of P, there is already in V a filter of P that

meets every dense set in D.

CH implies that D as above must be countable, so CH implies MA. Morever, Solovay

and Tennenbaum proved that if ω < κ = κ<κ, then V [G] |= MA + c = κ for some ccc

generic extension V [G], so MA does not imply CH.

Definition 1.7.10. A map f : P→ Q between forcings is:

• order preserving if p ≤ q implies f(p) ≤ f(q);

• an order embedding if p ≤ q is equivalent to f(p) ≤ f(q);

• incompatibility preserving if p ⊥ q implies f(p) ⊥ f(q);
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• a reduction of a map g : Q→ P if ∀p ∈ P ∀q ≤ f(p) g(q) 6⊥ p;

• a complete embedding if it is order preserving, is incompatibility preserving, and

has a reduction;

• a dense embedding if it is order preserving, is incompatibility preserving, and has

dense range.

Every order embedding with dense range is a dense embedding; every dense em-

bedding is a complete embedding. Every complete embedding j : P → Q induces an

embedding of names, which in turn induces an embedding of forcing languages. If we

call all these embeddings j, then, for every p ∈ P and every atomic ϕ in the P-forcing

language, p  ϕ if and only if j(p)  j(ϕ). Moreover, if H is Q-generic, then j−1H is

P-generic and V [j−1H] ⊆ V [H]. If j is a dense embedding, then V [j−1H] = V [H].

Definition 1.7.11. Let Fn(A, B, κ) denote the set of partial functions f from A to B

such that |dom f | < κ. Let Fn(A, B) denote Fn(A, B, ω). Unless otherwise indicated,

sets of this form are ordered by ⊇.

Definition 1.7.12. A subset of c of ω is Cohen over V if the indicator function χc of c

in 2ω is the union of a generic filter of Fn(ω, 2); such a c is also called a Cohen real.

There is a dense embedding from Fn(ω, 2) to B/M where B is the Borel algebra of

2ω and M is the meager ideal, i.e., the set of meager elements of B. It follows that c

as above is Cohen over V if and only if χc avoids every meager set in V . Moreover, for

every κ ≥ ω there is a dense embedding from Fn(κ, 2) to Bκ/Mκ where Bκ the Borel

algebra of 2κ andMκ is its meager ideal. (Cohen proved that if G is Fn(ω2, 2)-generic,

then V [G] |= ¬CH.) It is also useful to know that Fn(κ, 2) has property (K) and that

if I ⊆ J ⊆ κ, then the identity map is a complete embedding of Fn(I, 2) into Fn(J, 2).
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Definition 1.7.13. Given A ⊆ [ω]ω with the SFIP, define the Booth forcing for A to

be [ω]<ω × [A]<ω ordered by 〈σ0, F0〉 ≤ 〈σ1, F1〉 if and only if F0 ⊇ F1 and σ1 ⊆ σ0 ⊆

σ1∪
⋂
F1. Define a generic pseudointersection of A to be

⋃
〈σ,F 〉∈G σ where G is a generic

filter of [ω]<ω × [A]<ω.

If σ0 = σ1, then 〈σ0, F0〉 ≥ 〈σ0, F0 ∪ F1〉 ≤ 〈σ1, F1〉, so Booth forcing is always

σ-centered.

Definition 1.7.14. Hechler forcing, which is denoted by D, consists of pairs of the form

〈s, f〉 ∈ Fn(ω, ω) × ωω where 〈s′, f ′〉 ≤ 〈s, f〉 if s′ ⊇ s, f ′(n) ≥ f(n) for all n < ω,

and s′(n) ≥ f(n) for all n ∈ dom(s′ \ s). If G is a generic filter of D, then the generic

dominating real or Hechler real g =
⋃
〈s,f〉∈G s ∈ ωω dominates ωω ∩ V , meaning that

every f ∈ ωω ∩ V is eventually dominated by g.

If s = s′, then 〈s, f〉 ≥ 〈s,max{f, f ′}〉 ≤ 〈s′, f ′〉, so D is σ-centered.

Definition 1.7.15. A subset r of ω is random over V if its indicator function χr avoids

every E ∈ V such that E is a Borel subset of 2ω with Haar measure zero; a random r is

also called a random real.

If B is the Borel algebra of 2ω and N is the so-called null ideal consisting of ze-

ro-measure elements of B, then every (B\N )-generic filter G is such that
⋂
G = {x} for

some random real x. (There is a natural dense embedding from B \ N to B/N .) Since

2ω has finite Haar measure, it cannot contain uncountably many pairwise disjoint Borel

sets each with positive measure. Hence, B \ N is ccc.

In contrast with Hechler forcing, every element of ωω in a (B \N )-generic extension

of V is eventually dominated by some element of ωω ∩ V .
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Definition 1.7.16. The product P × Q of two quasiorders P and Q is defined by

〈p0, q0〉 ≤ 〈p1, q1〉 iff p0 ≤ p1 and q0 ≤ q1.

Given forcings P,Q ∈ V , there are complete embeddings i and j from P and Q to

P × Q given by i(p) = 〈p,1Q〉 and j(q) = 〈1P, q〉. Moreover, if G is a (P × Q)-generic

filter, then G = i−1G × j−1G, i−1G is P-generic over V [j−1G], j−1G is Q-generic over

V [i−1G], and V [i−1G][j−1G] = V [j−1G][i−1G] = V [G]. Furthermore, if P and Q both

have property (K), then so does P×Q.

Definition 1.7.17. Given a forcing P and P-names Q, ≤Q, 1Q such that 1Q ∈ dom Q

and 1P forces Q, ≤Q, and 1Q to form a forcing, define the two-step iterated forcing P∗Q

as the set of all pairs 〈p, q〉 ∈ P × dom Q for which p  q ∈ Q, with the ordering given

by 〈p′, q′〉 ≤ 〈p, q〉 if p′ ≤ p and p′  q′ ≤ q.

Given P and Q as above, there is a complete embedding i : P → P ∗ Q given by

i(p) = 〈p,1Q〉. Moreover, if K is (P ∗ Q)-generic over V , then G = i−1K is P-generic

over V and H = {qG : ∃p ∈ P 〈p, q〉 ∈ K} is QG-generic over V [G], and V [G][H] = V [K].

Next, we define a transfinite generalization of the two-step iteration.

Definition 1.7.18. Finite support iterations are recursively defined as follows. Given

a successor ordinal α + 1 and a finite support iteration 〈Pβ〉β≤α, we say that〈Pβ〉β≤α+1

is a finite support iteration if Pα+1 is a quasiordered set of functions all with domain

α + 1 and there is an order isomorphism from some two-step iteration Pα ∗Qα to Pα+1

given by 〈p, q〉 7→ p ∪ {〈α, q〉}. Given a limit ordinal η and a sequence 〈Pβ〉β<η such

that 〈Pγ〉γ≤β is a finite support iteration for all β < η, we say that 〈Pβ〉β≤η is a finite

support iteration if Pη is a quasiordered set of functions all with domain η and there is
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a bijection h from
⋃
β<η Pβ to Pη given by Pβ 3 p 7→ p ∪ 〈1ζ〉β≤ζ<η, such that h � Pβ is

an order embedding for all β < η.

If 〈Pδ〉δ≤γ is a finite support iteration as above, then every p ∈ Pγ satisfies p(δ) = 1δ

for all but finitely many δ < γ. We call the set of these finitely many δ < γ the support

of p, or supp(p). Also, for all ζ < δ ≤ γ there is a complete embedding from Pζ to Pδ

given by p 7→ p∪〈1ν〉ζ≤ν<δ. Indeed, this map has a natural reduction given by q 7→ q � ζ.

If 〈Pδ〉δ≤γ is a finite support iteration as above and 1Pδ forces Qδ to be ccc (have

property (K)) for all δ < γ, then Pγ is ccc (has property (K)). Conversely, if Pγ is ccc,

then 1Pδ forces Qδ to be ccc for all δ < γ.

1.8 Combinatorial set theory

Lemma 1.8.1 (Pigeonhole Principle). If f : A → B and max{|B|, κ} < |A|, then f is

constant on a set of size κ+. If f : A→ B and |B| < cf|A|, then f is constant on a set

of size |A|.

Definition 1.8.2. A subset C of a limit ordinal η is closed unbounded, or club, if it is

closed (in the order topology) and is a cofinal subset of η. A subset S of a limit ordinal

η is stationary if it intersects every club subset of η. A subset E of a set of the form [A]ω

is closed unbounded, or club, if E is cofinal in 〈[A]ω,⊆〉 and every increasing ω-sequence

〈En〉n<ω ∈ Eω has union in E . A subset S of a set of the form [A]ω is stationary if it

intersects every club subset of [A]ω.

For all regular infinite cardinals κ < λ, the set {α < λ : cf α = κ} is a stationary

subset of λ, the set {sup(M ∩ λ) : M ≺ Hθ ∧ |M | < λ} is a club subset of λ, and the set

{M : M ≺ Hθ ∧ |M | = ω} is a club subset of [Hθ]
ω.
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If S is a stationary subset of a regular uncountable cardinal κ, then S can be parti-

tioned into κ-many disjoint stationary subsets of κ. If C is a family of fewer than κ-many

club subsets of a regular uncountable cardinal κ, then
⋂
C is a club subset of κ. If C is

a countable family of club subsets of [A]ω for some A, then
⋂
C is a club subset of [A]ω.

Lemma 1.8.3 (Pressing Down Lemma). If S is a stationary subset of a regular un-

countable cardinal κ, and f : S → κ is regressive, i.e., f(α) < α for all α ∈ S, then there

is a stationary T ⊆ κ such that T ⊆ S and f � T is constant.

Definition 1.8.4. A set E is a ∆-system if there is some r such that a ∩ b = r for all

distinct a, b ∈ E. Such an r is called the root of E.

Lemma 1.8.5 (∆-System Lemma). If E is a set of finite sets and |E| ≥ κ = cf κ > ω,

then there exists a ∆-system D ∈ [E]κ.

Definition 1.8.6. Given a stationary subset S of a regular uncountable cardinal κ, let

♦(S) denote the statement that there is a sequence 〈Ξα〉α∈S such that for every A ⊆ κ

there is a stationary T ⊆ κ such that T ⊆ S and A∩α = Ξα for all α ∈ T . Let ♦ denote

♦(ω1).

Jensen first defined ♦ and proved its consistency with ZFC. ZFC proves that ♦

implies CH, but does not prove the converse.

Definition 1.8.7. A Suslin line is a linear order that is ccc with respect to the order

topology yet is not separable.

ZFC+GCH neither proves nor refutes the existence of Suslin lines. ZFC+MA+¬CH

refutes the existence of Suslin lines. ZFC + ♦ implies the existence of Suslin lines.
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Definition 1.8.8. A pseudointersection of a subset A of [ω]ω is an x ∈ [ω]ω such that

|x \ a| < ω for all a ∈ A. A subset A of [ω]ω has the strong finite intersection property,

or SFIP, if |
⋂
σ| = ω for all σ ∈ [A]<ω.

Every countable A as above has a pseudointersection if it has the SFIP. MA implies

that this implication is also true for all A ∈ [[ω]ω]<c.

Definition 1.8.9. A forcing P is proper if for every uncountable A ∈ V and for every

stationary S ⊆ [A]ω such that S ∈ V , we have that S remains a stationary subset of

[A]ω in V [G] for every P-generic filter G. The Proper Forcing Axiom, or PFA, asserts

that for every proper forcing P and every family D of ω1-many dense subsets of P, there

is already in V a filter of P that meets every dense set in D.

ZFC proves that PFA implies MA + c = ω2, but does not prove the converse. As-

suming sufficiently strong large cardinal axioms, PFA is consistent with ZFC.
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Chapter 2

Amalgams

2.1 Introduction

M. A. Maurice [44] constructed a family of homogeneous compact ordered spaces with

cellularity c. All these spaces are zero-dimensional. Indeed, it is easy to see that no com-

pact ordered space with uncountable cellularity can be path-connected. The cone over

any of Maurice’s spaces is path-connected but not homogeneous or ordered. However,

there is a path-connected homogeneous compactum with cellularity c which, though not

an ordered space, has small inductive dimension 1; we construct such a space by gluing

copies of powers of one of Maurice’s spaces together in a uniform way. Moreover, this

space is not homeomorphic to a product of dyadic compacta and first countable com-

pacta. To the best of the author’s knowledge, there is only one other known construction,

due to van Mill [46] (and generalized by Hart and Ridderbos [27]), of a homogeneous

compactum not homeomorphic to such a product, and the homogeneity all spaces so

constructed is independent of ZFC.

The above amalgamation technique also can be used to construct new connectifi-

cations, where a connected (path-connected) space Y is a connectification (pathwise

connectification) of a space X if X can be densely embedded in Y , and the connectifica-

tion is proper if the embedding can be chosen not to be surjective. Whether a space has
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a connectification is uninteresting unless we restrict to connectifications that are at least

T2. For a broad survey of connectification results, see Wilson [71]. Our focus will be on

which T2 (T3, T3.5, metric) spaces have T2 (T3, T3.5, metric) connectifications or pathwise

connectifications. Only partial characterizations are known. For example, Watson and

Wilson [70] showed that a countable T2 space has a T2 connectification if and only if it

has no isolated points. Emeryk and Kulpa [19] proved that the Sorgenfrey line has a T2

connectification, but no T3 connectification. Alas et al [1] showed that every separable

metric space without nonempty open compact subsets has a metric connectification.

Gruenhage, Kulesza, and Le Donne [26] showed that every nowhere locally compact

metric space has a metric connectification.

There are only a handful of results about pathwise connectifications. For example,

Fedeli and Le Donne [22] showed that a nonsingleton countable first countable T2 space

has a T2 pathwise connectication if and only if it has no isolated points. Druzhinina

and Wilson [17] showed that a metric space has a metric pathwise connectification if

its path components are open and not locally compact; similarly, a first countable T2

(T3) space has a T2 (T3) connectification if its path components are open and not locally

feebly compact. See also Costantini, Fedeli, and Le Donne [13] for some results about

pathwise connectifications of spaces adjoined with a free open filter.

Suppose i ∈ {1, 2, 3, 3.5} and X has a proper Ti connectification. Then X ×Z has a

proper Ti connectification for all Ti spaces Z. Thus, given one proper connectification,

this product closure property gives us a new connectification. We omit the easy proof of

this fact here because we shall prove much stronger amalgam closure properties, which

in many cases are also valid for pathwise connectifications. The reals are a pathwise

connectification of the Baire space ωω because ωω ∼= R\Q. By applying amalgam closure
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properties to this particular connectification, we shall prove the following theorem.

Theorem 2.1.1. If i ∈ {1, 2, 3, 3.5}, then every infinite product of infinite topological

sums of Ti spaces has a Ti pathwise connectification. Every countably infinite product of

infinite topological sums of metrizable spaces has a metrizable pathwise connectification.

The previously known result most similar to Theorem 2.1.1 is due to Fedeli and Le

Donne [21]: a product of T2 spaces with open components has a T2 connectification if

and only if it does not contain a nonempty proper open subset that is H-closed.

2.2 Amalgams

Definition 2.2.1. Given a topological space X, let S(X) denote the set of all subbases

of X that do not include ∅.

Let X be a nonempty T0 space and let S ∈ S(X). For each S ∈ S , let YS be a

nonempty topological space. The amalgam of 〈YS : S ∈ S 〉 is the set Y defined by

Y =
⋃
p∈X

∏
p∈S∈S

YS.

We say that X is the base space of Y . For each S ∈ S , we say that YS is a factor of Y .

Every amalgam has a natural projection π to its base space: because X is T0, we may

define π : Y → X by π−1{p} =
∏

p∈S∈S YS for all p ∈ X. Amalgams also have natural

partial projections to their factors: for each S ∈ S , define πS : π−1S → YS by y 7→ y(S).

Consider sets of the form π−1
S U where S ∈ S and U open in YS. We say such sets

are subbasic and finite intersections of such sets are basic. We topologize Y by declaring

these basic sets to be a base of open sets. Let us list some easy consequences of this

topologization.



33

• For all S ∈ S , the map πS is continuous and open and has open domain.

• The map π is continuous and open.

• If |YS| = 1 for all S ∈ S , then Y ∼= X.

• For each p ∈ X, the product topology of
∏

p∈S∈S YS is also the subspace topology

inherited from Y .

• Suppose, for each S ∈ S , that ZS is a subspace of YS. Then the topology of the

amalgam of 〈ZS : S ∈ S 〉 is also the subspace topology inherited from Y .

• Suppose, for each S ∈ S , that SS is a subbase of YS. Then the set

{π−1
S T : S ∈ S and T ∈ SS}

is a subbase of Y .

Throughout this chapter, X, S , and 〈YS〉S∈S will vary, but Y will always denote

the amalgam of 〈YS〉S∈S .

Up to homeomorphism, an amalgam is a quotient of the product of its base space

and its factors. Specifically, the map from X ×
∏

S∈S YS to Y given by

〈x, y〉 7→ y � {S ∈ S : x ∈ S}

is easily verified to be a quotient map.

We say that a class A of nonempty T0 spaces is amalgamative if an amalgam is al-

ways in A if its base space and all its factors are in A. Therefore, any class of nonempty

T0 spaces closed with respect to products and quotients is amalgamative. In particu-

lar, amalgams preserve compactness, connectedness, and path-connectedness. The next

theorem says that several other well-known productive classes are also amalgamative.
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Theorem 2.2.2. The classes listed below are amalgamative provided we exclude the

empty space. Conversely, if an amalgam is in one of these classes, then its base space

and all its factors are also in that class.

1. T0 spaces

2. T1 spaces

3. T2 spaces

4. T3 spaces

5. T3.5 spaces

6. totally disconnected T0 spaces

7. T0 spaces with small inductive dimension 0

Proof. For (1)-(3), suppose y0 and y1 are distinct elements of Y . If π(y0) = π(y1), then

there exists S ∈ dom y0 = dom y1 such that y0(S) 6= y1(S); whence, if U0 and U1 are

neighborhoods of y0(S) and y1(S) witnessing the relevant separation axiom for y0(S)

and y1(S), then π−1
S U0 and π−1

S U1 witness the the same separation axiom for y0 and y1.

If π(y0) 6= π(y1), then let U0 and U1 be neighborhoods of π(y0) and π(y1) witnessing the

relevant separation axiom for π(y0) and π(y1). Then π−1U0 and π−1U1 witness the same

separation axiom for y0 and y1.

For (4) and (5), suppose C is a closed subset of Y and y ∈ Y \ C. Then there exist

n < ω and 〈Si〉i<n ∈ (dom y)n and 〈Ui〉i<n such that Ui is an open neighborhood of

y(Si) for all i < n and
⋂
i<n π

−1
Si
Ui is disjoint from C. For each i < n, let Vi be an open

neighborhood of y(Si) such that Vi ⊆ Ui. Let U be an open neighborhood of π(y) such
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that U ⊆
⋂
i<n Si. Set V = π−1U ∩

⋂
i<n π

−1
Si
Vi. Then V is an open neighborhood of y

and we have

V ⊆
⋂
i<n

π−1Si ∩
⋂
i<n

π−1
Si
Ui =

⋂
i<n

π−1
Si
Ui;

whence, V is disjoint from C.

Now suppose there is a continuous map f : X → [0, 1] such that f(π(y)) = 1 and

f [X \ U ] = {0}. For each i < n, likewise suppose there is a continuous map fi : YSi →

[0, 1] such that fi(y(Si)) = 1 and f [YSi \ Ui] = {0}. Define g :
⋂
i<n π

−1Si → [0, 1] by

z 7→ f(π(z))f0(z(S0)) · · · fn−1(z(Sn−1)). Define h : π−1
(
X \ U

)
→ [0, 1] by z 7→ 0. By

the pasting lemma, g ∪ h is continuous and separates y and C.

For (6), suppose C is a nonempty connected subset of Y and X and YS are totally

disconnected for all S ∈ S . Then π[C] is connected; whence, π[C] = {p} for some

p ∈ X. For each S ∈ S , if p ∈ S, then πS[C] is connected; whence, |πS[C]| = 1. Thus,

|C| = 1.

For (7), suppose S ∈ S and U open in YS and y ∈ π−1
S U . Let V be a clopen

neighborhood of y(S) contained in U . Then π−1
S V is clopen in π−1S. Let W be a clopen

neighborhood of π(y) contained in S. Then π−1W ∩ π−1
S V is a clopen neighborhood of

y contained in π−1
S U .

For the converse, first note that each of the classes (1)-(7) is closed with respect to

subspaces. Second, YS can be embedded in Y for all S ∈ S because
∏

p∈S∈S YS is a

subspace of Y for all p ∈ X. Finally, X can be embedded in Y because the amalgam of

〈{f(S)}〉S∈S is homeomorhpic to X for all f ∈
∏

S∈S YS.

A countable product of metrizable spaces is metrizable; the next theorem is the

analog for amalgams.
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Theorem 2.2.3. Suppose X and YS are metrizable for all S ∈ S and there is a count-

able T ⊆ S such that |YS| = 1 for all S ∈ S \T . Then Y is metrizable.

Proof. Since Y is T3 by Theorem 2.2.2, it suffices to exhibit a σ-locally finite base for

Y . For each T ∈ T , let
⋃
n<ω UT,n be a σ-locally finite base for YT ; let

⋃
n<ω Un be a

σ-locally finite base for X. For each n < ω and τ ∈ Fn(T , ω), set Un,τ =
{
U ∈ Un :

U ⊆
⋂

dom τ
}

and

Vn,τ =
{
π−1U ∩

⋂
T∈dom τ

π−1
T UT : U ∈ Un,τ and (∀T ∈ dom τ)(UT ∈ UT,τ(T ))

}
.

Then
⋃
n<ω

⋃
τ∈Fn(T , ω) Vn,τ is easily verified to be a σ-locally finite base for Y .

In general, productiveness is logically incomparable to amalgamativeness: the class

of finite T0 spaces is amalgamative but only finitely productive; the class of powers of

2 is productive but not amalgamative. However, all amalgamative classes are finitely

productive because if X ∈ S and |YS| = 1 for all S ∈ S \ {X}, then Y ∼= X × YX .

Given Theorem 2.2.2, it is tempting to conjecture that amalgams are really subspaces

of products in disguise. This conjecture is false. To see this, consider the class of

nonempty Urysohn spaces. This class is closed with respect to arbitrary products and

subspaces, yet, as demonstrated by the following example, this class is not amalgamative.

Example 2.2.4. Let X = Q with the topology generated by {Q \ K} and the order

topology of Q where K = {2−n : n < ω}. Then X is Urysohn. Let Q \K ∈ S and, for

all S ∈ S , let |YS| = 1 if S 6= Q\K. Set YQ\K = 2 (with the discrete topology). Then all

the factors of Y are Urysohn. For each i < 2, define yi ∈ Y by {yi} = π−1{0}∩π−1
Q\K{i}.

Suppose U0 and U1 are disjoint closed neighborhoods of y0 and y1, respectively. Then

π[U0] and π[U1] are neighborhoods of 0. Therefore, 2−n ∈ π[U0] ∩ π[U1] for some n < ω.
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If 2−n ∈ S ∈ S , then |YS| = 1; hence, {π−1S : 2−n ∈ S ∈ S } is a local subbase for y2

where {y2} = π−1{2−n}. Since 2−n ∈ π[U0] ∩ π[U1], every finite intersection of elements

of this local subbase will intersect U0 and U1. Hence, y2 ∈ U0 ∩ U1 = U0 ∩ U1, which is

absurd. Therefore, Y is not Urysohn.

Question 2.2.5. A space is said to be realcompact if it is homeomorphic to a closed

subspace of a power of R. Is the class of nonempty realcompact spaces amalgamative?

Despite Example 2.2.4, there is a sense in which Y is almost homeomorphic to a

subspace of the product of its factors. For each S ∈ S , let ZS be YS with an added

point qS whose only neighborhood is ZS. Then Y is easily seen to be homeomorphic to

the set ⋃
p∈X

{
z ∈

∏
S∈S

ZS : (∀S ∈ S )(z(S) = qS ⇔ p 6∈ S)
}

with the subspace topology inherited from
∏

S∈S ZS. Moreover, this result still holds if

we make qS isolated for all clopen S ∈ S .

Let us make some auxiliary definitions relating amalgams to continuous maps and

subspaces.

Definition 2.2.6. Suppose, for each S ∈ S , that ZS is a nonempty space and fS : YS →

ZS. Let Z be the amalgam of 〈ZS〉S∈S . Then the amalgam of 〈fS〉S∈S is the map f

defined by

f =
⋃
p∈X

∏
p∈S∈S

fS.

In the above definition, it is immediate that f is a map from Y to Z. Moreover, if

fS is continuous for each S ∈ S , then f is a continuous map from Y to Z. Similarly,

an amalgam of homeomorphisms is a homeomorphism.
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Definition 2.2.7. Suppose W is a subspace of X. The reduced amalgam of 〈YS〉S∈S

over W is the space Z defined as follows. Set T = {S ∩ W : S ∈ S } \ {∅}. Then

T ∈ S(W ). Given S0, S1 ∈ S , declare S0 ∼ S1 if S0 ∩W = S1 ∩W . For each T ∈ T ,

let ε(T ) be the unique E that is an equivalence class of ∼ for which W ∩
⋂

E = T . For

all T ∈ T , set ZT =
∏

S∈ε(T ) YS. Let Z be the amalgam of 〈ZT 〉T∈T .

In the above definition, Z is homeomorphic to
⋃
p∈W

∏
p∈S∈S YS with the subspace

topology inherited from Y .

2.3 Connectifiable amalgams

Theorems 2.2.2 and 2.2.3 demonstrate similarities between products and amalgams. Of

course, amalgams would not be very interesting if there were no major differences be-

tween them and products. Such differences arise for connectedness: unlike a product, an

amalgam can be connected even if all its factors are not; connectedness of the base space

is sufficient in most cases. Path-connectedness of an amalgam with a path-connected

base space is harder to guarantee, but not by much. Some new positive connectification

results fall out as corollaries.

Theorem 2.3.1. Suppose X is connected (path-connected) and there is a finite E ⊆ X

such that for all S ∈ S we have E 6⊆ S or YS is connected (path-connected). Then Y is

connected (path-connected).

Proof. Proceed by induction on |E|. If E = ∅, then Y is connected (path-connected)

because it is a quotient of the product of its base space and its factors, all of which are

connected (path-connected).
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Now suppose E 6= ∅ and the theorem holds for all smaller E. Choose e ∈ E and

set E ′ = E \ {e}. For each S ∈ S , set ZS = YS if e ∈ S and choose ZS ∈ [YS]1 if

e 6∈ S. Hence, if E ′ ⊆ S ∈ S , then ZS is connected (path-connected) because either

E ⊆ S, which implies ZS connected (path-connected) by assumption, or e 6∈ S, which

implies |ZS| = 1. Let Z be the amalgam of 〈ZS〉S∈S . By the induction hypothesis,

Z is a connected (path-connected) subspace of Y . Suppose y ∈ Y and choose f ∈∏
S∈S YS extending y. Let F be the amalgam of 〈{f(S)}〉S∈S . Then y ∈ F ∼= X and

〈f(S)〉e∈S∈S ∈ F ∩ Z; hence, the component (path component) of y contains Z. Since

y was chosen arbitrarily, Y is connected (path-connected).

Example 2.3.2. Suppose X = [0, 1] and S = {U ⊆ [0, 1] : U open} and |YS| = 1 for

all S ∈ S \ {[0, 1)}. Then Y is homeomorphic to the cone over Y[0,1). If 1 ∈ S ∈ S ,

then |YS| = 1; hence, Theorem 2.3.1 implies Y is path-connected. Thus, Theorem 2.3.1

may be interpreted as constructing a class of generalized cones.

Corollary 2.3.3. Suppose i ∈ {1, 2, 3, 3.5} and X has a proper Ti connectification X̃

and YS is Ti for all S ∈ S . Then Y has a proper Ti connectification Ỹ . Moreover, if X̃

is path-connected, then we may choose Ỹ to be path-connected.

Proof. Fix p ∈ X̃ \X. For each S ∈ S , let Φ(S) be an open subset of X̃ \{p} such that

Φ(S) ∩X = S. Extend Φ[S ] to some S̃ ∈ S(X̃). For all S ∈ S , set ỸΦ(S) = YS. For

all S ∈ S̃ \Φ[S ], set ỸS = 1. Let Ỹ be the amalgam of 〈ỸS〉S∈S̃ . By Theorem 2.2.2, Ỹ

is Ti; by Theorem 2.3.1, Ỹ is connected, for |ỸS| = 1 if p ∈ S ∈ S̃ . Define f : Y → Ỹ as

follows. Given y ∈ Y , let π(f(y)) = π(y); set f(y)(Φ(S)) = y(S) for all S ∈ dom y; set

f(y)(S) = 0 for all S ∈ S̃ \Φ[dom y] such that π(y) ∈ S. Then f is an embedding of Y

into Ỹ with dense range π−1X; hence, Ỹ is a proper Ti connectification of Y . Finally,
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by Theorem 2.3.1, Ỹ is path-connected if X̃ is.

The previously known result most similar to Corollary 2.3.3 is due to Druzhinina

and Wilson [17]: if all the path components of a T2 (T3, metric) space are open and have

proper pathwise connectifications, then the space has a T2 (T3, metric) proper pathwise

connectification.

Proof of Theorem 2.1.1. Every infinite product is an infinite product of countably infi-

nite subproducts; every infinite topological sum is a countably infinite topological sum

of topological sums. Moreover, products preserve the property of having a Ti pathwise

connectification; topological sums preserve the Ti axiom and metrizability. Therefore,

we only need to prove the theorem for all countably infinite products of countably infi-

nite topological sums. Set X = ωω with the product topology. For each m,n < ω, let

Zm,n be a nonempty Ti space and let Sm,n = {p ∈ X : p(m) = n}; set YSm,n = Zm,n.

Set S = {Sm,n : m,n < ω} ∈ S(X). Then Y ∼=
∏

m<ω

⊕
n<ω Zm,n is witnessed by the

map 〈〈y(Sm,π(y)(m))〉m<ω〉y∈Y . Since X ∼= R \ Q, there is a proper metrizable pathwise

connectification of X, namely a copy of R. By Corollary 2.3.3, Y has a proper Ti path-

wise connectification. For the metrizable case, construct a connectification Ỹ of Y as

in the proof of Corollary 2.3.3, with X̃ chosen to be homeomorphic to R. Since S is

countable, the space Ỹ is metrizable by Theorem 2.2.3.

If we care about connectedness but not path-connectedness, then Theorem 2.3.1 and

Corollary 2.3.3 can be considerably strengthened.

Theorem 2.3.4. Suppose X is connected and either X 6∈ S or YX is connected. Then

Y is connected.
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Proof. Let y0, y1 ∈ Y . It suffices to show y1 is in the closure of the component of y0. Let U

be a basic open neighborhood of y1. Then there exist n < ω and 〈Si〉i<n ∈ (dom y1)n and

〈Ui〉i<n such that Ui is an open neighborhood of y1(Si) for all i < n and U =
⋂
i<n π

−1
Si
Ui.

Then there exists E ⊆ X such that E is finite and E 6⊆ S for all S ∈ {Si : i < n} \ {X}.

Choose f ∈
∏

S∈S YS extending y0. For each S ∈ S , set ZS = YS if YS is connected or

S ∈ {Si : i < n}; otherwise, set ZS = {f(S)}. Let Z be the amalgam of 〈ZS〉S∈S . Then

Z is connected by Theorem 2.3.1. Moreover, y0 ∈ Z and Z ∩ U 6= ∅. Thus, y1 is in the

closure of the component of y0.

Corollary 2.3.5. Suppose i ∈ {1, 2, 3, 3.5} and X has a Ti connectification and YS is

Ti for all S ∈ S . Further suppose X has a proper Ti connectification or X 6∈ S or YX

is connected. Then Y has a Ti connectification.

Proof. If X has a proper Ti connectification, then so does Y by Corollary 2.3.3. If

X is Ti and connected but has no proper Ti connectification, then Y is connected by

Theorem 2.3.4.

2.4 A new homogeneous compactum

Definition 2.4.1. We say that a homogeneous compactum is exceptional if it is not

homeomorphic to a product of dyadic compacta and first countable compacta.

In the previous section, we constructed a machine for strengthening connectifica-

tion results. Next, we construct a machine that takes a homogeneous compactum and

produces a path-connected homogeneous compactum. Applying this machine to a partic-

ular homogeneous compactum with cellularity c, we get a path-connected homogeneous
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compactum with cellularity c. Moreover, more careful analysis of the latter space’s

connectedness properties shows that it is exceptional.

All compact groups are dyadic (Kuz′minov [41]), and most other known examples of

homogeneous compacta are products of first countable compacta (see Kunen [37] and

van Mill [46]). Besides the exceptional homogeneous compactum we shall construct,

there is, to the best of the author’s knowledge, only one known construction of an

exceptional homogeneous compactum, and its soundness is independent of ZFC. In [46],

van Mill constructed a compactum K satisfying π(K) = ω (where π(·) here denotes

π-weight) and χ(K) = ω1. Clearly, χ(Z) = ω ≤ π(Z) for all first countable spaces Z.

Moreover, Efimov [18] and Gerlits [24] independently proved that πχ(Z) = w(Z) for

all dyadic compacta Z. Hence, χ(Z) ≤ π(Z) for all Z homeomorphic to products of

dyadic compacta and first countable compacta; hence, K is not homeomorphic to such a

product. Under the assumption p > ω1 (which follows from MA+¬CH), van Mill proved

that K is homogeneous. However, van Mill also noted that all homogeneous compacta

Z satisfy 2χ(Z) ≤ 2π(Z) as a corollary of a result of Van Douwen [15]. In particular, if

2ω < 2ω1 , then K is not homogeneous.

Remark 2.4.2. Hart and Ridderbos’ [27] generalization of van Mill’s construction pro-

duces only compacta that have the properties of K listed above. However, van Mill’s K

is infinite dimensional, while Hart and Ridderbos produce a zero-dimensional example.

It is not clear whether there is a consistently homogeneous compactum Z satisfying

0 < indZ < ω and π(Z) < χ(Z). Our machine for producing path-connected homoge-

neous compacta will get us 0 < indZ < ω, but it will also be easy to see that it entails

πχ(Z) ≥ c.

Definition 2.4.3. Given a group G acting on a set A with element a, let the stabilizer
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of a in G denote {g ∈ G : ga = a}.

Definition 2.4.4. Given a topological space Z, let Aut(Z) denote the group of auto-

homeomorphisms of Z. Let Aut(Z) act on Z in the natural way: gz = g(z) for all z ∈ Z

and g ∈ Aut(Z). Let Aut(Z) act on P(P(Z)) such that gE = {g[E] : E ∈ E} for all

E ⊆ P(Z) and g ∈ Aut(Z).

Lemma 2.4.5. Let G be the stabilizer of S in Aut(X). Suppose Z is a homogeneous

space and YS = Z for all S ∈ S . Further suppose G acts transitively on X. Then Y is

homogeneous.

Proof. Let y0, y1 ∈ Y . Choose g ∈ G such that g(π(y0)) = π(y1). Define f : Y → Y as

follows. Given y ∈ Y , let π(f(y)) = g(π(y)) and f(y)(gS) = y(S) for all S ∈ dom y.

Then f ∈ Aut(Y ) because f [π−1
S U ] = π−1

gSU and f−1(π−1
S U) = π−1

g−1SU for all S ∈ S

and U open in Z. Since y1, f(y0) ∈ Zdom y1 , there exists 〈hS〉S∈S ∈ Aut(Z)S such that(∏
S∈dom y1

hS
)
(f(y0)) = y1. Let h be the amalgam of 〈hS〉S∈S . Then h ∈ Aut(Y ) and

h(f(y0)) = y1. Thus, Y is homogeneous.

Lemma 2.4.6. Suppose X and YS are T3 and indYS = 0 for all S ∈ S . Then indY =

indX.

Proof. Set n = indX. By (7) of Theorem 2.2.2, we may assume n > 0. We may also

assume the lemma holds if X is replaced by a T3 space with small inductive dimension

less than n. First, Y is T3 by Theorem 2.2.2. Next, given any f ∈
∏

S∈S YS, the

amalgam of 〈{f(S)}〉S∈S is homeomorphic to X; hence, indY ≥ n. Let y ∈ Y and let

U be an open neighborhood of y. Then y ∈ V0 ⊆ U where V0 =
⋂
i<m π

−1
Si
Ui for some

m < ω and 〈Si〉i<m ∈ (dom y)m and 〈Ui〉i<m such that Ui is a clopen neighborhood of
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y(Si) for all i < m. Let W be an open neighborhood of π(y) such that W ⊆
⋂
i<m Si

and ind ∂W < n. Set V1 = V0 ∩ π−1W .

It suffices to show that ind ∂V1 < n. Set V2 = π−1∂W . Then ∂V1 = V0 ∩ V2; hence,

it suffices to show that indV2 < n. Let Z be the reduced amalgam of 〈YS〉S∈S over ∂W .

Then Z ∼= V2 and indZ = ind ∂W because ind ∂W < n and every factor of Z, being a

product of factors of Y , has small inductive dimension 0.

Theorem 2.4.7. There is a path-connected homogeneous compact Hausdorff space Y

with cellularity c, weight c, and small inductive dimension 1. Moreover, Y is not home-

omorphic to a product of compacta that all have character less than c or have cf(c) a

caliber. In particular, Y is exceptional.

Proof. LetX be the unit circle {〈x, y〉 ∈ R2 : x2+y2 = 1}. Let S be the set of open semi-

circles contained in X. Let γ be an indecomposable ordinal (i.e., not a sum of two lesser

ordinals) strictly between ω and ω1. For each S ∈ S , let YS be 2γ with the topology in-

duced by its lexicographic ordering. It is easily seen that YS is zero-dimensional compact

Hausdorff and w(YS) = c(YS) = c. Moreover, YS is homogeneous [44]. Since |S | = c, we

have w(Y ) = c(Y ) = c. Moreover, Y is compact Hausdorff by Theorem 2.2.2. Since no

S ∈ S contains a pair of antipodes, Y is path-connected by Theorem 2.3.1. The stabi-

lizer of S in Aut(X) contains all the rotations of X and therefore acts transitively on X;

hence, Y is homogeneous by Lemma 2.4.5. Also, by Lemma 2.4.6, indY = indX = 1.

Seeking a contradiction, suppose Y is homeomorphic to a product of compacta that

all have character less than c or have cf(c) a caliber. Then there exist a compactum Z

with cf(c) a caliber, a sequence of nonsingleton compacta 〈Wi〉i∈I all with character less

than c, and a homeomorphism ϕ from Z ×
∏

i∈IWi to Y . Clearly, Wi is path-connected

for all i ∈ I. Choose p ∈ X. Then ϕ−1π−1{p} is a Gδ-set; hence, there exist a nonempty
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Z0 ⊆ Z and J ∈ [I]≤ω and q ∈
∏

j∈JWj such that Z0 × {q} ×
∏

i∈I\JWi ⊆ ϕ−1π−1{p}.

Since π−1{p} =
∏

p∈S∈S YS, which is zero-dimensional, Z0 × {q} ×
∏

i∈I\JWi is also

zero-dimensional; hence,
∏

i∈I\JWi is also zero-dimensional. Hence, Wi is not connected

for all i ∈ I \ J ; hence, I = J ; hence, I is countable. Set W =
∏

i∈IWi. Then χ(W ) < c

because cf(c) > ω.

Let H ⊆ X be an open arc subtending π/2 radians. Set T = {S ∈ S : H ⊆ S}.

Then |T | = c. Choose a nonempty open box U×V ⊆ Z×W such that U×V ⊆ ϕ−1π−1H

and U =
⋃
n<ω Un where Un is open and Un ⊆ Un+1 for all n < ω. Choose r ∈ V and

set κ = χ(r,W ) < c. Let 〈Vα〉α<κ enumerate a local base at r. By compactness, we may

choose, for each α < κ and n < ω, a finite set σn,α of basic open subsets of Y such that

Un×{r} ⊆ ϕ−1
⋃
σn,α ⊆ Un+1×Vα. Set G =

⋃
n<ω

⋂
α<κ

⋃
σn,α. Since κ < c, there exist

nonempty R ⊆ T and E ⊆
⋃
x∈H

∏
x∈S∈S \R YS such that G = E ×

∏
S∈R YS. Hence,

c(G) = c. Since ϕ−1G = U ×{r}, we have c(U) = c. Since U is an open subset of Z, we

have c(Z) ≥ c, which yields our desired contradiction, for cf(c) ∈ cal(Z).

Remark 2.4.8. If there is a homogeneous compactum with cellularity κ > c (that is,

if Van Douwen’s Problem (see Kunen [37]) has a positive solution), then the proof of

Theorem 2.4.7 is easily modified to produce a path-connected homogeneous compactum

with cellularity κ.

It is also easy to modify the above proof so that the unit circle is replaced with an

n-dimensional sphere or torus, thereby producing a Y as in Theorem 2.4.7 except it is

n-dimensional. The unit circle can also be replaced by its ωth power so as to produce a

Y as in Theorem 2.4.7 except it is infinite dimensional.
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Chapter 3

Noetherian types of homogeneous

compacta and dyadic compacta

3.1 Introduction

Van Douwen’s Problem (see Kunen [37]) asks whether there is a homogeneous com-

pactum of cellularity exceeding c. A homogeneous compactum of cellularity c exists by

Maurice [44], but Van Douwen’s Problem remains open in all models of ZFC.

By Arhangel′skĭı’s Theorem, first countable compacta have size at most c; dyadic

compacta (such as compact groups [41]) are ccc. Since the cellularity of a product space

equals the supremum of the cellularities of its finite subproducts (see p. 107 of [35]), all

nonexceptional homogeneous compacta have cellularity at most c. To the best of the

author’s knowledge, there are only two classes of examples of exceptional homogeneous

compacta; these two kinds of spaces have cellularities ω and c.

(In particular, Hart and Kunen [28] have observed that by a result of Uspenskii [69],

not only is every compact group dyadic, but every space (such as a compact quasigroup)

that is acted on continuously and transitively by some ω-bounded group is Dugundji,

which is stronger than being dyadic.)

We investigate several cardinal functions defined in terms of order-theoretic base



47

properties. Just like cellularity, these functions have upper bounds when restricted to

the class of known homogeneous compacta. Moreover, GCH implies that one of these

functions is a lower bound on cellularity when restricted to homogeneous compacta.

Observation 3.1.1. Every known homogeneous compactum X satisfies the following.

1. Nt(X) ≤ c+.

2. πNt(X) ≤ ω1.

3. χNt(X) = ω.

4. χKNt(X) ≤ c.

We justify this observation in Section 3.2, except that we postpone the case of ho-

mogeneous dyadic compacta to Section 3.3, where we investigate Noetherian cardinal

functions on dyadic compacta in general. The results relevant to Observation 3.1.1 are

summarized by the following theorem.

Theorem 3.1.2. Suppose X is a dyadic compactum. Then πNt(X) = χKNt(X) = ω.

Moreover, if X is homogeneous, then Nt(X) = ω.

Also in Section 3.3, we generalize the above theorem to continuous images of products

of compacta with bounded weight; we also prove the following:

Theorem 3.1.3. The class of Noetherian types of dyadic compacta includes ω, excludes

ω1, includes all singular cardinals, and includes κ+ for all cardinals κ with uncountable

cofinality.

Section 3.4 generalizes our results about dyadic compacta to the proper superclass

of k-adic compacta.
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Finally, in Section 3.5, we prove several results about the local Noetherian types of

all homogeneous compacta, known and unknown, including the following theorem.

Theorem 3.1.4 (GCH). If X is a homogeneous compactum, then χNt(X) ≤ c(X).

3.2 Observed upper bounds on Noetherian cardinal

functions

First, we note some very basic facts about Noetherian cardinal functions.

Definition 3.2.1. Given a subset E of a product
∏

i∈I Xi and σ ∈ [I]<ω, we say that

E has support σ, or supp(E) = σ, if E = π−1
σ πσ[E] and E 6= π−1

τ πτ [E] for all τ ( σ.

Theorem 3.2.2. Given a point p and a compact subset K of a product space X =∏
i∈I Xi, we have the following relations.

Nt(X) ≤ sup
i∈I

Nt(Xi)

πNt(X) ≤ sup
i∈I

πNt(Xi)

χNt(p,X) ≤ sup
i∈I

χNt(p(i), Xi)

χNt(K,X) ≤ sup
σ∈[I]<ω

χNt(πσ[K], πσ[X])

Proof. See Peregudov [54] for a proof of the first relation. That proof can be easily

modified to demonstrate the next two relations. Let us prove the last relation. For

each σ ∈ [I]<ω, set κσ = χNt(πσ[K], πσ[X]) and let Aσ be a κop
σ -like neighborhood base

of πσ[K]. For each σ ∈ [I]<ω, let Bσ denote the set of sets of the form π−1
σ U where

U ∈ Aσ and supp(U) = σ. Note that if U ∈ Aσ and supp(U) ( σ, then there exists
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τ ( σ and V ∈ Aτ such that π−1
τ V ⊆ π−1

σ U . Moreover, for any minimal such τ , we have

π−1
τ V ∈ Bτ .

Set B =
⋃
σ∈[I]<ω Bσ. By compactness, B is a neighborhood base of K. Moreover, if

σ, τ ∈ [I]<ω and Bσ 3 U ⊆ V ∈ Bτ , then σ = supp(U) ⊇ supp(V ) = τ ; hence, given U ,

there are at most (supτ⊆σ κτ )-many possibilities for V . Thus, B is (supσ∈[I]<ω κσ)op-like

as desired.

Lemma 3.2.3. Every poset P is almost |P |op-like.

Proof. Let κ = |P | and let 〈pα〉α<κ enumerate P . Define a partial map f : κ → P as

follows. Suppose α < κ and we have a partial map fα : α → P . If ran fα is dense in

P , then set fα+1 = fα. Otherwise, set β = min{δ < κ : pδ 6≥ q for all q ∈ ran fα} and

let fα+1 be the smallest map extending fα such that fα+1(α) = pβ. For limit ordinals

γ ≤ κ, set fγ =
⋃
α<γ fα. Then fκ is nonincreasing; hence, ran fκ is κop-like. Moreover,

ran fκ is dense in P .

Theorem 3.2.4. For any space X with point p, we have

• χNt(p,X) ≤ χ(p,X),

• πNt(X) ≤ π(X),

• Nt(X) ≤ w(X)+, and

• χKNt(X) ≤ w(X).

Proof. The first two relations immediately follow from Lemma 3.2.3; the third relation

is trivial. For the last relation, note that if K is a compact subset of X, then it has a

neighborhood base of size at most w(X); apply Lemma 3.2.3.
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Given Theorem 3.2.2, justifying Observation 3.1.1 for Nt(·), πNt(·), and χNt(·)

amounts to justifying it for first countable homogeneous compacta, dyadic homogeneous

compacta, and the two known kinds of exceptional homogeneous compacta. The first

countable case is the easiest. By Arhangel′skĭı’s Theorem, first countable compacta have

weight at most c, and therefore have Noetherian type at most c+. Moreover, every point

in a first countable space clearly has an ωop-like local base. The only nontrivial bound

is the one on Noetherian π-type. For that, the following theorem suffices.

Definition 3.2.5. Give a space X, let πsw(X) denote the least κ such that X has a

π-base A such that
⋂
B = ∅ for all B ∈ [A]κ

+
.

Theorem 3.2.6. If X is a compactum, then πNt(X) ≤ πsw(X)+ ≤ t(X)+ ≤ χ(X)+.

Proof. Only the second relation is nontrivial; it is a theorem of Šapirovskĭı [60].

For dyadic homogeneous compacta, it is trivially seen that Theorem 3.1.2 implies

Observation 3.1.1; we will prove this theorem in Section 3.3. Now consider the two

known classes of exceptional homogeneous compacta. They are constructed by two

techniques, resolutions and amalgams. First we consider the exceptional resolution.

Definition 3.2.7. Suppose X is a space, 〈Yp〉p∈X is a sequence of nonempty spaces, and

〈fp〉p∈X ∈
∏

p∈X C(X \ {p}, Yp). Then the resolution Z of X at each point p into Yp by

fp is defined by setting Z =
⋃
p∈X({p} × Yp) and declaring Z to have weakest topology

such that, for every p ∈ X, open neighborhood U of p in X, and open V ⊆ Yp, the set

U ⊗ V is open in Z where

U ⊗ V = ({p} × V ) ∪
⋃

q∈U∩f−1
p V

({q} × Yq).
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The resolution of concern to us in constructed by van Mill [46]. It is a compactum

with weight c, π-weight ω, and character ω1. Moreover, assuming MA + ¬CH (or just

p > ω1), this space is homogeneous. (It is not homogeneous if 2ω < 2ω1 .) Clearly, this

space has sufficiently small Noetherian type and π-type. We just need to show that it

has local Noetherian type ω. Van Mill’s space is a resolution of 2ω at each point into

Tω1 where T is the circle group R/Z.

Notice that T is metrizable. The following lemma proves that every metric com-

pactum has Noetherian type ω, along with some results that will be useful in Section 3.3.

Lemma 3.2.8. Let X be a metric compactum with base A. Then there exists B ⊆ A

satisfying the following.

1. B is a base of X.

2. B is ωop-like.

3. If U, V ∈ B and U ( V , then U ⊆ V .

4. For all Γ ∈ [B]<ω, there are only finitely many U ∈ B such that Γ contains {V ∈

B : U ( V }.

Proof. Construct a sequence 〈Bn〉n<ω of finite subsets of A as follows. For each n < ω,

let En be the union of the set of all singletons in
⋃
m<n Bm. Let Cn be the set of all

U ∈ A for which U ∩ En = ∅ and

2−n ≥ diamU < min

{
diamV : V ∈

⋃
m<n

Bm and 0 < diamV

}

and U ⊆ V for all V ∈
⋃
m<n Bm strictly containing U . Then

⋃
Cn = X \ En. Let Bn

be a minimal finite subcover of Cn. Set B =
⋃
n<ω Bn. To prove (3), suppose U ∈ Bn
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and V ∈ Bm and U ( V . Then m 6= n by minimality of Bn. Also, 0 < diamV because

∅ 6= U ( V . Hence, if m > n, then diamV < diamU , in contradiction with U ( V .

Hence, m < n; hence, U ⊆ V .

For (1), let p ∈ X and n < ω, and let V be the open ball with radius 2−n and center

p. Then we just need to show that there exists U ∈ B such that p ∈ U ⊆ V . Hence, we

may assume {p} 6∈ B. Hence, p 6∈ En+1; hence, there exists U ∈ Bn+1 such that p ∈ U .

Since diamU ≤ 2−n−1, we have U ⊆ V .

For (2), let n < ω and U ∈ Bn. If U is a singleton, then every superset of U in B is

in
⋃
m≤n Bm. If U is not a singleton, then U has diamater at least 2−m for some m < ω;

whence, every superset of U in B is in
⋃
l≤m Bl.

For (4), suppose Γ ∈ [B]<ω and there exist infinitely many U ∈ B such that {V ∈

B : U ( V } ⊆ Γ. We may assume Γ contains no singletons. Choose an increasing

sequence 〈kn〉n<ω in ω such that, for all n < ω, there exists Un ∈ Bkn such that {V ∈

B : Un ( V } ⊆ Γ. For each n < ω, choose pn ∈ Un. Since {Un : n < ω} is infinite,

we may choose 〈pn〉n<ω such that {pn : n < ω} is infinite. Let p be an accumulation

point of {pn : n < ω}. Choose m < ω such that 2−m < diamV for all V ∈ Γ. Since p

is not an isolated point, there exists W ∈ Bm such that p ∈ W . Then W 6∈ Γ; hence,

W does not strictly contain Un for any n < ω. Choose q ∈ W \ {p} such that W

contains {x : d(p, x) ≤ d(p, q)}; set r = d(p, q). Let B be the open ball of radius r/2

centered about p. Then there exists n < ω such that 2−kn < r/2 and pn ∈ B. Hence,

diamUn < r/2 and Un ∩ B 6= ∅; hence, Un ⊆ W and q 6∈ Un; hence, Un ( W , which

is absurd. Therefore, for each Γ ∈ [B]<ω, there are only finitely many U ∈ B such that

{V ∈ B : U ( V } ⊆ Γ.

We have Nt(2ω) = Nt(Tω1) = ω by Lemma 3.2.8 and Theorem 3.2.2. Therefore, the
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following theorem implies that van Mill’s space has local Noetherian type ω.

Lemma 3.2.9 ([46]). Suppose X, 〈Yp〉p∈X , 〈fp〉p∈X , and Z are as in Definition 3.2.7.

Suppose U is a local base at a point p in X and V is a local base at a point y in Yp. Then

{U ⊗ V : 〈U, V 〉 ∈ U × (V ∪ {Yp})} is a local base at 〈p, y〉 in Z.

Theorem 3.2.10. Suppose X, 〈Yp〉p∈X , 〈fp〉p∈X , and Z are as in Definition 3.2.7. Then

χNt(〈p, y〉, Z) ≤ Nt(X)χNt(y, Yp) for all 〈p, y〉 ∈ Z.

Proof. Set κ = Nt(X)χNt(y, Yp). Let A be a κop-like base of X and let B be a κop-like

local base at y in Yp; we may assume Yp ∈ B. Set C = {U ∈ A : p ∈ U}. Set

D = {U ⊗ V : 〈U, V 〉 ∈ C × B}, which is a local base at 〈p, y〉 in Z by Lemma 3.2.9. If

there exists U ⊗ V ∈ D such that U ∩ f−1
p V = ∅, then U ⊗ V is homeomorphic to V ;

whence, χNt(〈p, y〉, Z) = χNt(y, Yp) ≤ κ. Hence, we may assume U ∩ f−1
p V 6= ∅ for all

U ⊗ V ∈ D.

It suffices to show that D is κop-like. Suppose Ui ⊗ Vi ∈ D for all i < 2 and

U0⊗ V0 ⊆ U1⊗ V1. Then V0 ⊆ V1 and ∅ 6= U0 ∩ f−1
p V0 ⊆ U1 ∩ f−1

p V1. Since B is κop-like,

there are fewer than κ-many possibilities for V1 given V0. Since A is a κop-like base,

there are fewer than κ-many possibilities for U1 given U0 and V0. Hence, there are fewer

than κ-many possibilities for U1 ⊗ V1 given U0 ⊗ V0.

Definition 3.2.11. Let p denote the least κ for which some A ∈ [[ω]ω]κ has the strong

finite intersection property but does not have a nontrivial pseudointersection. By a

theorem of Bell [10], p is also the least κ for which there exist a σ-centered poset P and

a family D of κ-many dense subsets of P such that P does not have a filter that meets

every set in D.
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Definition 3.2.12. Given a space X, let Aut(X) denote the set of its autohomeomor-

phisms.

Van Mill’s construction has been generalized by Hart and Ridderbos [27]. They

show that one can produce an exceptional homogeneous compactum with weight c and

π-weight ω by carefully resolving each point of 2ω into a fixed space Y satisfying the

following conditions.

1. Y is a homogeneous compactum.

2. ω1 ≤ χ(Y ) ≤ w(Y ) < p.

3. ∃d ∈ Y ∃η ∈ Aut(Y ) {ηn(d) : n < ω} = Y .

4. If γω is a compactification of ω and γω \ ω ∼= Y , then Y is a retract of γω.

By Theorem 3.2.10, to show that such resolutions have local Noetherian type ω, it

suffices to show that every such Y has local Noetherian type ω. Theorem 3.2.15 will

accomplish this.

Theorem 3.2.13. Suppose X is a compactum and πχ(p,X) = χ(q,X) for all p, q ∈ X.

Then χNt(p,X) = ω for some p ∈ X. In particular, if X is a homogeneous compactum

and πχ(X) = χ(X), then χNt(X) = ω.

The proof of Theorem 3.2.13 will be delayed until Section 3.5.

The following lemma is essentially a generalization of a similar result of Juhász [36].

Lemma 3.2.14. Suppose X is a compactum and ω = d(X) ≤ w(X) < p. Then there

exists p ∈ X such that χ(p,X) ≤ π(X).
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Proof. Let A be a base of X of size at most w(X). Let B be a π-base of X of size at

most π(X). For each 〈U, V 〉 ∈ B2 satisfying U ⊆ V , choose a closed Gδ-set Φ(U, V ) such

that U ⊆ Φ(U, V ) ⊆ V . Then ran Φ, ordered by ⊆, is σ-centered because d(X) = ω.

Since |A| < p, there is a filter G of ran Φ such that for all disjoint U, V ∈ A some K ∈ G

satisfies U ∩K = ∅ or V ∩K = ∅. Hence, there exists a unique p ∈
⋂
G. Hence, p has

pseudocharacter, and therefore character, at most |G|, which is at most π(X).

Theorem 3.2.15. If X is a homogeneous compactum and ω = d(X) ≤ w(X) < p, then

χNt(X) = ω.

Proof. By Lemma 3.2.14, χ(X) ≤ π(X) = πχ(X)d(X) = πχ(X). Hence, by Theo-

rem 3.2.13, χNt(X) = ω.

Recall the most basic definitions and notation for amalgams.

Definition 3.2.16. Suppose X is a T0 space, S is a subbase of X such that ∅ 6∈ S ,

and 〈YS〉S∈S is a sequence of nonempty spaces. The amalgam Y of 〈YS : S ∈ S 〉 is

defined by setting Y =
⋃
p∈X

∏
p∈S∈S YS and declaring Y to have the weakest topology

such that, for each S ∈ S and open U ⊆ YS, the set π−1
S U is open in Y where π−1

S U =

{p ∈ Y : S ∈ dom p and p(S) ∈ U}. Define π : Y → X by {π(p)} =
⋂

dom p for all

p ∈ Y . It is easily verified that π is continuous.

Theorem 3.2.17. Suppose X, S , 〈YS〉S∈S , and Y are as in Definition 3.2.16. Then

we have the following relations for all p ∈ Y .

Nt(Y ) ≤ Nt(X) sup
S∈S

Nt(YS)

πNt(Y ) ≤ πNt(X) sup
S∈S

πNt(YS)

χNt(p, Y ) ≤ χNt(π(p), X) sup
S∈dom p

χNt(p(S), YS)
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Proof. We will only prove the first relation; the proofs of the others are almost identical.

Set κ = Nt(X) supS∈S Nt(YS). Let A be a κop-like base of X. For each S ∈ S , let BS

be a κop-like base of YS. Set

C =

{
π−1U ∩

⋂
S∈dom τ

π−1
S τ(S) : τ ∈

⋃
F∈[S ]<ω

∏
S∈F

BS \ {YS} and A 3 U ⊆
⋂

dom τ

}
.

Then C is clearly a base of Y . Let us show that C is κop-like. Suppose π−1Ui ∩⋂
S∈dom τi

π−1
S τi(S) ∈ C for all i < 2 and

π−1U0 ∩
⋂

S∈dom τ0

π−1
S τ0(S) ⊆ π−1U1 ∩

⋂
S∈dom τ1

π−1
S τ1(S).

Then U0 ⊆ U1 and dom τ0 ⊇ dom τ1 and τ0(S) ⊆ τ1(S) for all S ∈ dom τ1. Hence, there

are fewer than κ-many possibilities for U1 and τ1 given U0 and τ0.

An exceptional homogeneous compactum Y is constructed with X = T and w(YS) =

π(YS) = c and χ(YS) = ω for all S ∈ S . Hence, Nt(YS) ≤ c+ and χNt(YS) = ω

for each S ∈ S . Moreover, each YS is 2γlex (i.e., 2γ ordered lexicographically) where

γ is a fixed indecomposable ordinal in ω1 \ (ω + 1). Since cf γ = ω, it is easy to

construct an ωop-like π-base of this space. Hence, by Theorem 3.2.17, Nt(Y ) ≤ c+ and

πNt(Y ) = χNt(Y ) = ω. Thus, Observation 3.1.1 is justified for Nt(·), πNt(·), and

χNt(·).

It remains to justify Observation 3.1.1 for χKNt(·). We first note that all known

homogeneous compacta are continuous images of products of compacta each of weight at

most c. (Moreover, any Z as in Definition 3.2.16 is a continuous image of X×
∏

S∈S YS.)

Therefore, the following theorem will suffice.

Theorem 3.2.18. Suppose Y is a continuous image of a product X =
∏

i∈I Xi of

compacta. Then χKNt(Y ) ≤ supi∈I w(Xi)
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Before proving the above theorem, we first prove two lemmas.

Definition 3.2.19. Given subsets P and Q of a common poset, define P and Q to be

mutually dense if for all p0 ∈ P and q0 ∈ Q there exist p1 ∈ P and q1 ∈ Q such that

p0 ≥ q1 and q0 ≥ p1.

Lemma 3.2.20. Let κ be a cardinal and let P and Q be mutually dense subsets of a

common poset. Then P is almost κop-like if and only if Q is.

Proof. Suppose D is a κop-like dense subset of P . Then it suffices to construct a κop-like

dense subset of Q. Define a partial map f from |D|+ to Q as follows. Set f0 = ∅.

Suppose α < |D|+ and we have constructed a partial map fα from α to Q. Set E =

{d ∈ D : d 6≥ q for all q ∈ ran fα}. If E = ∅, then set fα+1 = fα. Otherwise, choose

q ∈ Q such that q ≤ e for some e ∈ E, and let fα+1 be the smallest function extending

fα such that fα+1(α) = q. For limit ordinals γ ≤ |D|+, set fγ =
⋃
α<γ fα. Set f = f|D|+ .

Let us show that ran f is κop-like. Suppose otherwise. Then there exists q ∈ ran f

and an increasing sequence 〈ξα〉α<κ in dom f such that q ≤ f(ξα) for all α < κ. By

the way we constructed f , there exists 〈dα〉α<κ ∈ Dκ such that f(ξβ) ≤ dβ 6= dα for all

α < β < κ. Choose p ∈ P such that p ≤ q. Then choose d ∈ D such that d ≤ p. Then

d ≤ dβ 6= dα for all α < β < κ, which contradicts that D is κop-like. Therefore, ran f is

κop-like.

Finally, let us show that ran f is a dense subset of Q. Suppose q ∈ Q. Choose p ∈ P

such that p ≤ q. Then choose d ∈ D such that d ≤ p. By the way we constructed f ,

there exists r ∈ ran f such that r ≤ d; hence, r ≤ q.

Lemma 3.2.21. Suppose f : X → Y is a continuous surjection between compacta and

C is closed in Y . Then χNt(f−1C,X) = χNt(C, Y ).
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Proof. Let A be a neighborhood base of C. By Lemma 3.2.20, it suffices to show that

{f−1V : V ∈ A} is a neighborhood base of f−1C. Suppose U is a neighborhood of

f−1C. By normality of Y , we have f−1C =
⋂
V ∈A f

−1V . By compactness of X, we have

f−1V ⊆ U for some V ∈ A. Thus, {f−1V : V ∈ A} is a neighborhood base of f−1C as

desired.

Proof of Theorem 3.2.18. By Lemma 3.2.21, we may assume Y = X. By Theorem 3.2.2,

we may assume I is finite. Apply Theorem 3.2.4.

How sharp are the bounds of Observation 3.1.1? (3) is trivially sharp as every

space has local Noetherian type at least ω. We will show that there is a homogeneous

compactum with Noethian type c+, namely, the double arrow space. Moreover, we will

show that Suslin lines have uncountable Noetherian π-type. It is known to be consistent

that there are homogeneous compact Suslin lines, but it is also known to be consistent

that there are no Suslin lines. It is not clear whether it is consistent that all homogeneous

compacta have Noetherian π-type ω, even if we restrict to the first countable case. Also,

it is not clear in any model of ZFC whether all homogeneous compacta have compact

Noetherian type ω, even if we restrict to the first countable case.

The following proposition is essentially due to Peregudov [54].

Proposition 3.2.22. If X is a space and π(X) < cf κ ≤ κ ≤ w(X), then Nt(X) > κ.

Proof. Suppose A is a base of X and B is π-base of X of size π(X). Then |A| ≥ κ;

hence, there exist U ∈ [A]κ and V ∈ B such that V ⊆
⋂
U . Hence, there exists W ∈ A

such that W ⊆ V ⊆
⋂
U ; hence, A is not κop-like.

Example 3.2.23. The double arrow space, defined as ((0, 1] × {0}) ∪ ([0, 1) × {1})
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ordered lexicographically, has π-weight ω and weight c, and is known to be compact and

homogeneous. By Proposition 3.2.22, it has Noetherian type c+.

Theorem 3.2.24. Suppose X is a Suslin line. Then πNt(X) ≥ ω1.

Proof. Let A be a π-base of X consisting only of open intervals. By Lemma 3.2.20,

it suffices to show that A is not ωop-like. Construct a sequence 〈Bn〉n<ω of maximal

pairwise disjoint subsets of A as follows. Choose B0 arbitrarily. Given n < ω and Bn,

choose Bn+1 such that it refines Bn and Bn ∩ Bn+1 ⊆ [X]1.

Let E denote the set of all endpoints of intervals in
⋃
n<ω Bn. Since X is Suslin, there

exists U ∈ A \ [X]1 such that U ∩ E = ∅. For each n < ω, the set
⋃
Bn is dense in X

by maximality; whence, there exists Vn ∈ Bn such that U ∩ Vn 6= ∅. Since U ∩ E = ∅,

we have U ⊆
⋂
n<ω Vn. Thus, A is not ωop-like.

MA+¬CH implies there are no Suslin lines. It is not clear whether it further implies

every homogeneous compactum has Noetherian π-type ω. However, the next theorem

gives us a partial result. First, we need a lemma very similar to the result that MA+¬CH

implies all Aronszajn trees are special.

Lemma 3.2.25. Assume MA. Suppose Q is an ωop
1 -like poset of size less than c. Then

Q is almost ωop-like or Q has an uncountable centered subset.

Proof. Set P = [Q]<ω and order P such that σ ≤ τ if and only if σ ∩ ↑Q τ = τ . A

sufficiently generic filter G of P will be such that
⋃
G is a dense ωop-like subset of Q.

Hence, if P is ccc, then Q is almost ωop-like. Hence, we may assume P has an antichain

A of size ω1. We may assume A is a ∆-system with root ρ. Since Q is ωop
1 -like, we

may assume σ ∩ ↑Q ρ = ρ for all σ ∈ A. Choose a bijection 〈aα〉α<ω1 from ω1 to A.
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We may assume there exists an n < ω such that |aα \ ρ| = n for all α < ω1. For each

α < ω1, choose a bijection 〈aα,i〉i<n from n to aα \ ρ. For each x ∈ Q and i < n, set

Ex,i = {α < ω1 : x ≤Q aα,i or aα,i ≤Q x}. For each α < ω1, since A is an antichain, we

have
⋃
i<n

⋃
j<nEaα,i,j = ω1. Choose a uniform ultrafilter U on ω1. Then we may choose

B ∈ [(
⋃
A) \ ρ]ω1 and i < n such that Ex,i ∈ U for all x ∈ B.

It suffices to show that B is centered. Let σ ∈ [B]<ω. Set E =
⋂
x∈σ Ex,i. Then

E ∈ U ; hence, |E| = ω1; hence, we may choose α ∈ E \ {β < ω1 : aβ,i ∈ ↑Q σ}. Then

aα,i <Q x for all x ∈ σ. Thus, B is centered.

Lemma 3.2.26. Suppose f : X → Y is an irreducible continuous surjection between

spaces and X is regular. Then πNt(X) = πNt(Y ).

Proof. Let A be a πNt(X)op-like π-base of X and let B be a πNt(Y )op-like π-base

of Y . By Lemma 3.2.20, we may assume A consists only of regular open sets. Set

C = {f−1U : U ∈ B}. Then C is πNt(Y )op-like. Suppose U is a nonempty open subset

of X. Then we may choose V ∈ B such that V ∩ f [X \U ] = ∅. Then f−1V ⊆ U . Thus,

C is a π-base of X; hence, πNt(X) ≤ πNt(Y ).

Set D = {Y \ f [X \ U ] : U ∈ A}. Suppose V is a nonempty open subset of Y .

Then we may choose U ∈ A such that U ⊆ f−1V . Then Y \ f [X \ U ] ⊆ V . Thus, D

is a π-base of Y . Now suppose U0, U1 ∈ A and U0 6⊆ U1. Then U0 6⊆ U1 by regularity.

By irreducibility, we may choose p ∈ Y \ f [X \ (U0 \ U1)]. Then p ∈ f [X \ U1] and

p 6∈ f [X \ U0]. Hence, Y \ f [X \ U0] 6⊆ Y \ f [X \ U1]. Thus, D is πNt(X)op-like; hence,

πNt(Y ) ≤ πNt(X).

Theorem 3.2.27. Assume MA. Let X be a compactum such that t(X) = ω and π(X) <

c. Then πNt(X) = ω.
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Proof. We may assume X is a closed subspace of [0, 1]κ for some cardinal κ. By a result

of Šapirovskĭı [60], since t(X) = ω, there is an irreducible continuous map f from X

onto a subspace of
⋃
I∈[κ]ω [0, 1]I ×{0}κ\I . Because of Lemma 3.2.26, we may replace our

hypothesis of t(X) = ω with X ⊆
⋃
I∈[κ]ω [0, 1]I × {0}κ\I . Set F = Fn(κ, (Q ∩ (0, 1])2)

and

A =

{
X ∩

⋂
α∈domσ

π−1
α (σ(α)(0), σ(α)(1)) : σ ∈ F

}
\ {∅},

which is a π-base of X. Then A witnesses that πsw(X) = ω. Hence, by Theorem 3.2.6

and Lemma 3.2.20, A contains an ωop
1 -like dense subset B, and it suffices to show that

B is almost ωop-like. Seeking a contradiction, suppose B is not almost ωop-like. By

Lemma 3.2.25, B contains an uncountable centered subset C. Let the map〈
X ∩

⋂
α∈domσβ

π−1
α (σβ(α)(0), σβ(α)(1))

〉
β<ω1

be an injection from ω1 to C. Then |
⋃
β<ω1

domσβ| = ω1. By compactness, the set

X ∩
⋂
β<ω1

⋂
α∈domσβ

π−1
α [σβ(α)(0), σβ(α)(1)]

is nonempty, in contradiction with X ⊆
⋃
I∈[κ]ω [0, 1]I × {0}κ\I .

Concerning compact Noetherian type, we note that if there is a homogeneous com-

pactum X for which χKNt(X) ≥ ω1, then X is not an ordered space.

Definition 3.2.28. A point p in a space X is Pκ-point if, for every set A of fewer than

κ-many neighborhoods of p, the set
⋂
A has p in its interior. A P -point is a Pω1-point.

Theorem 3.2.29. If X is a homogeneous ordered compactum, then χKNt(X) = ω.

Proof. We may assume X is infinite; hence, X has a point that is not a P -point. By

homogeneity, minX is not a P -point; hence, minX has countable character. By homo-

geneity, X is first countable. Let C be closed in X. Then X\C is a disjoint union of open



62

intervals
⋃
i∈I(ai, bi) such that (ai, bi) =

⋃
n<ω[ai,n, bi,n] and 〈ai,n〉n<ω is nonincreasing and

〈bi,n〉n<ω is nondecreasing for all i ∈ I. Hence, {X \
⋃
i∈domσ[ai,σ(i), bi,σ(i)] : σ ∈ Fn(I, ω)}

is an ωop-like neighborhood base of C.

It is worth noting that while products do not decrease cellularity, they can decrease

Nt(·), πNt(·), and χNt(·), as shown by the following theorem, which trivially generalizes

a result of Malykhin [42].

Theorem 3.2.30. Let p ∈ X =
∏

i∈I Xi where Xi is a nonsingleton T1 space for all

i ∈ I. If supi∈I w(Xi) ≤ |I|, then Nt(X) = ω. If supi∈I π(Xi) ≤ |I|, then πNt(X) = ω.

If supi∈I χ(p(i), Xi) ≤ |I|, then χNt(p,X) = ω.

Proof. Let us prove the first implication; the others are proved very similarly. For each

i ∈ I, let {Ui,0, Ui,1} be a nontrivial cover of X by two open sets.

In constrast, χKNt(·) is not decreased by products when the factors are compacta.

Just as is true of cellularity, the compact Noetherian type of a product of compacta is

the supremum of the compact Noetherian types of its finite subproducts.

Theorem 3.2.31. If X =
∏

i∈I Xi is a product of compacta, then

χKNt(X) = sup
σ∈[I]<ω

χKNt(
∏
i∈σ

Xi).

Proof. To prove “≤”, apply Theorem 3.2.2. To prove “≥”, apply Lemma 3.2.21.

Though cellularity and compact Noetherian type behave similarly for compacta,

they do not coincide, even assuming homogeneity. Given any indecomposable ordinal

γ strictly between ω and ω1, the space 2γlex (i.e., 2γ ordered lexicographically) is homo-

geneous and compact and has cellularity c by a result of Maurice [44]. However, by

Theorem 3.2.29, this space has compact Noetherian type ω.
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3.3 Dyadic compacta

In this section, we prove a strengthened version of Theorem 3.1.2 and generalize it to

continuous images of products of compacta with bounded weight. We also investigate

the spectrum of Noetherian types of dyadic compacta. Our approach is to start with

results about subsets of free boolean algebras and then use Stone duality to apply them

to families of open subsets of dyadic compacta.

By Lemma 3.2.3, every countable subset of a free boolean algebra is almost ωop-like.

We wish to prove this for all subsets of free boolean algebras. We achieve this by approx-

imating free boolean algebras by smaller free subalgebras using elementary submodels.

More specifically, we use elementary submodels of Hθ where θ is a regular cardinal and

Hθ is the {∈}-structure of all sets that hereditarily have size less than θ. Whenever

we use Hθ in an argument, we implicitly assume that θ is sufficiently large to make

the argument valid. As is typical with elementary submodels of Hθ, we need reflection

properties. For our purposes, the crucial reflection property of free boolean algebras is

given by the following lemma.

Lemma 3.3.1. Let B be a free boolean algebra and let {B,∧,∨} ⊆M ≺ Hθ. Then, for

all q ∈ B, there exists r ∈ B ∩M such that, for all p ∈ B ∩M , we have p ≥ q if and

only if p ≥ r. In particular, r ≥ q.

Proof. Let q ∈ B. We may assume q 6= 0. By elementarity, there exists a map g ∈ M

enumerating a set of mutually independent generators of B. Set G =
⋃
{{g(i), g(i)′} :

i ∈ dom g}. Then there exists η ∈ [[G]<ω]<ω such that q =
∨
τ∈η
∧
τ and

∧
τ 6= 0 for

all τ ∈ η. Set r =
∨
τ∈η
∧

(τ ∩M). Let p ∈ B ∩M ; we may assume p 6= 1. Then there

exists ζ ∈ [[G ∩M ]<ω]<ω such that p =
∧
σ∈ζ
∨
σ and

∨
σ 6= 1 for all σ ∈ ζ. Hence,
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p ≥ q iff, for all σ ∈ ζ and τ ∈ η, we have
∨
σ ≥

∧
τ , which is equivalent to σ ∩ τ 6= ∅,

which is equivalent to σ ∩ τ ∩M 6= ∅. Thus, p ≥ q if and only if p ≥ r.

The above lemma is not new. Fuchino proved that the conclusion of the above lemma

is equivalent to the Freese-Nation property, a property free boolean algebras are known

to have. (See section 2.2 and Theorem A.2.1 of [31] for details.)

Theorem 3.3.2. Every subset of every free boolean algebra is almost ωop-like.

Proof. Let B be a free boolean algebra; set κ = |B|. Given A ⊆ B, let ↑A denote the

smallest semifilter of B containing A; if A = {a} for some a, then set ↑a = ↑A. Let Q be

a subset of B. If Q is a countable, then Q is almost ωop-like by Lemma 3.2.3. Therefore,

we may assume that κ > ω and the theorem is true for all free boolean algebras of size

less than κ.

We will construct a continuous elementary chain 〈Mα〉α<κ of elementary submodels

of Hθ and a continuous increasing sequence of sets 〈Dα〉α<κ satisfying the following

conditions for all α < κ.

1. α ∪ {B,∧,∨, Q} ⊆Mα and |Mα| ≤ |α|+ ω.

2. Dα is a dense subset of Q ∩Mα.

3. Dα ∩ ↑q is finite for all q ∈ Q ∩Mα.

4. Dα+1 ∩ ↑q = Dα ∩ ↑q for all q ∈ Q ∩Mα.

Given this construction, set D =
⋃
α<κDα. Then D is a dense subset of Q by (2).

Moreover, if α < κ and d ∈ Dα, then d ∈ Q ∩Mα by (2); whence, d is below at most

finitely many elements of D by (3) and (4). Hence, Q is almost ωop-like.
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For stage 0, choose any M0 ≺ Hθ satisfying (1). Since Q ∩M0 ⊆ B ∩M0, we may

choose D0 to be an ωop-like dense subset of Q ∩M0, exactly what (2) and (3) require.

At limit stages, (1) and (2) are clearly preserved, and (3) is preserved because of (4).

For a successor stage α+ 1, choose Mα+1 such that Mα ≺Mα+1 ≺ Hθ and (1) holds

for stage α + 1. Since Q ∩Mα+1 ⊆ B ∩Mα+1, there is an ωop-like dense subset E of

Q∩Mα+1. Set Dα+1 = Dα ∪ (E \ ↑(Q∩Mα)). Then (4) is easily verified: if q ∈ Q∩Mα,

then

Dα+1 ∩ ↑q = (Dα ∩ ↑q) ∪ ((E ∩ ↑q) \ ↑(Q ∩Mα)) = Dα ∩ ↑q.

Let us verify (2) for stage α + 1. Let q ∈ Q ∩ Mα+1. If q ∈ ↑(Q ∩ Mα), then

q ∈ ↑Dα ⊆ ↑Dα+1 because of (2) for stage α. Suppose q 6∈ ↑(Q ∩Mα). Choose e ∈ E

such that e ≤ q. Then e 6∈ ↑(Q ∩Mα); hence, q ∈ ↑(E \ ↑(Q ∩Mα)) ⊆ ↑Dα+1.

It remains only to verify (3) for stage α + 1. Let q ∈ Q ∩Mα+1. Then E ∩ ↑q is

finite; hence, by the definition of Dα+1, it suffices to show that Dα ∩ ↑q is finite. By

Lemma 3.3.1, there exists r ∈ B ∩Mα such that r ≥ q and Mα ∩ ↑q = Mα ∩ ↑r; hence,

Dα ∩ ↑q = Dα ∩ ↑r. Since q ∈ Q, we have r ∈ Mα ∩ ↑Q. By elementarity, there exists

p ∈ Q ∩Mα such that p ≤ r; hence, Dα ∩ ↑r ⊆ Dα ∩ ↑p. By (2) for stage α, we have

Dα ∩ ↑p is finite; hence, Dα ∩ ↑q is finite.

Theorem 3.3.3. Let X be a dyadic compactum and let U be a family of subsets of X

such that for all U ∈ U there exists V ∈ U such that V ∩X \ U = ∅. Then U is almost

ωop-like.

Proof. Let f : 2κ → X be a continuous surjection for some cardinal κ. Set B = Clop(2κ).

Then B is a free boolean algebra. Set V = {f−1U : U ∈ U}. Then it suffices to show

that V is almost ωop-like. Let Q denote the set of all B ∈ B such that V ⊆ B for some
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V ∈ V . By Theorem 3.3.2, Q is almost ωop-like. Hence, by Lemma 3.2.20, it suffices

to show that Q and V are mutually dense. By definition, every Q ∈ Q contains some

V ∈ V ; hence, it suffices to show that every V ∈ V contains some Q ∈ Q. Suppose

V ∈ V . Choose U ∈ U such that U ∩X \ f [V ] = ∅. Then there exists B ∈ B such that

f−1U ⊆ B ⊆ V ; hence, V ⊇ B ∈ Q.

The following corollary is immediate and it implies the first half of Theorem 3.1.2.

Corollary 3.3.4. Let X be a dyadic compactum. Then, for all closed subsets C of X,

every neighborhood base of C contains an ωop-like neighborhood base of C. Moreover,

every π-base of X contains an ωop-like π-base of X.

Remark 3.3.5. The first half of the above corollary can also be proved simply by citing

Theorem 3.2.18 and Lemma 3.2.20.

Next we state the natural generalizations of Lemma 3.3.1, Theorem 3.3.2, The-

orem 3.3.3, and Corollary 3.3.4 to continuous images of products of compacta with

bounded weight. We will only remark briefly about the proofs of these generalizations,

for they are easy modifications of the corresponding old proofs.

Lemma 3.3.6. Let κ be a regular uncountable cardinal and let B be a coproduct
∐

i∈I Bi

of boolean algebras all of size less than κ; let {B,∧,∨, 〈Bi〉i∈I} ⊆M ≺ Hθ and M ∩ κ ∈

κ + 1. Then, for all q ∈ B, there exists r ∈ B ∩M such that, for all p ∈ B ∩M , we

have p ≥ q if and only if p ≥ r. In particular, r ≥ q.

Proof. Note that the subalgebra B ∩M is the subcoproduct
∐

i∈I∩M Bi naturally em-

bedded in B. Then proceed as in the proof of Lemma 3.3.1 with
⋃
i∈I Bi, naturally

embedded in B, playing the role of G.
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Theorem 3.3.7. Let κ ≥ ω and B be a coproduct of boolean algebras all of size at most

κ. Then every subset of B is almost κop-like.

Proof. The proof is essentially the proof of Theorem 3.3.2. Instead of using Lemma 3.3.1,

use the instance of Lemma 3.3.6 for the regular uncountable cardinal κ+.

Theorem 3.3.8. Let κ ≥ ω and let X be Hausdorff and a continuous image of a product

of compacta all of weight at most κ; let U be a family of subsets of X such that, for all

U ∈ U , there exists V ∈ U such that V ∩X \ U = ∅. Then U is almost κop-like.

Proof. Let h :
∏

i∈I Xi → X be a continuous surjection where each Xi is a compactum

with weight at most κ. Each Xi embeds into [0, 1]κ and is therefore a continuous image

of a closed subspace of 2κ. Hence, we may assume
∏

i∈I Xi is totally disconnected.

The rest of the proof is just the proof of Theorem 3.3.3 with Theorem 3.3.7 replacing

Theorem 3.3.2.

The following corollary is immediate.

Corollary 3.3.9. Let κ ≥ ω and let X be Hausdorff and a continuous image of a

product of compacta all of weight at most κ. Then, for all closed subsets C of X, every

neighborhood base of C contains a κop-like neighborhood base of C. Moreover, every

π-base of X contains a κop-like π-base of X.

Remark 3.3.10. Again, the first half of the above corollary can also proved simply by

citing Theorem 3.2.18 and Lemma 3.2.20.

In contrast to Corollary 3.3.4, not all dyadic compacta have ωop-like bases. The

following proposition is essentially due to Peregudov (see Lemma 1 of [54]). It makes it

easy to produce examples of dyadic compacta X such that Nt(X) > ω.
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Proposition 3.3.11. Suppose a point p in a space X satisfies πχ(p,X) < cf κ = κ ≤

χ(p,X). Then Nt(X) > κ.

Proof. Let A be a base of X. Let U0 and V0 be, respectively, a local π-base at p of size

at most πχ(p,X) and a local base at p of size χ(p,X). For each element of U0, choose

a subset in A, thereby producing a local π-base U at p that is a subset of A of size at

most πχ(p,X). Similarly, for each element of V0, choose a smaller neighborhood of p in

A, thereby producing a local base V at p that is a subset of A of size χ(p,X). Every

element of V contains an element of U . Hence, some element of U is contained in κ-many

elements of V ; hence, A is not κop-like.

Example 3.3.12. Let X be the discrete sum of 2ω and 2ω1 . Let Y be the quotient of

X resulting from collapsing a point in 2ω and a point in 2ω1 to a single point p. Then

πχ(p, Y ) = ω and χ(p, Y ) = ω1; hence, Nt(Y ) > ω1.

As we shall see in Theorem 3.3.21, if we make an additional assumption about a

dyadic compactum X, namely, that all its points have π-character equal to its weight,

then X has an ωop-like base. Also, we may choose this ωop-like base to be a subset of an

arbitrary base of X. To prove this, we approximate such an X by metric compacta. Each

such metric compactum is constructed using the following technique due to Bandlow [6].

Definition 3.3.13. Suppose X is a space and F is a set. For all p ∈ X, let p/F denote

the set of q ∈ X satisfying f(p) = f(q) for all f ∈ F ∩ C(X). For each f ∈ F , define

f/F : X/F → R by (f/F)(p/F) = f(p) for all p ∈ X.

Lemma 3.3.14. Suppose X is a compactum and F ⊆ C(X). Then X/F (with the

quotient topology) is a compactum and its topology is the coarsest topology for which
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f/F is continuous for all f ∈ F . Further suppose {X \ f−1{0} : f ∈ F} is a base of X

and F ∈M ≺ Hθ. Then {(X \ f−1{0})/(F ∩M) : f ∈ F ∩M} is a base of X/(F ∩M).

Proof. If f ∈ F , then f/F is clearly continuous with respect to the quotient topology

of X/F . Therefore, the compact quotient topology on X/F is finer than the Hausdorff

topology induced by {f/F : f ∈ F}. If a compact topology T0 is finer than a Hausdorff

topology T1, then T0 = T1. Hence, the quotient topology on X/F is the topology induced

by {f/F : f ∈ F}.

Set A = {X \ f−1{0} : f ∈ F}. Suppose A is a base of X and F ∈M ≺ Hθ. Let us

show that {(X \ f−1{0})/(F ∩M) : f ∈ F ∩M} is a base of X/(F ∩M). Let U denote

the set of preimages of open rational intervals with respect to elements of F ∩M . Let

V denote the set of nonempty finite intersections of elements of U . Then V ⊆ M and

{V/(F ∩M) : V ∈ V} is base of X/(F ∩M). Suppose p ∈ V0 ∈ V . Then it suffices to

find W ∈ A ∩M such that p ∈ W ⊆ V0. Choose V1 ∈ V such that p ∈ V1 ⊆ V 1 ⊆ V0.

Then there exist n < ω and W0, . . . ,Wn−1 ∈ A such that V 1 ⊆
⋃
i<nWi ⊆ V0. By

elementarity, we may assume W0, . . . ,Wn−1 ∈ M . Hence, there exists i < n such that

p ∈ Wi ⊆ V0 and Wi ∈ A ∩M .

Given a suitable dyadic compactum X, we will construct an ωop-like base of X by

applying Lemma 3.2.8 to metrizable quotient spaces X/(F ∩ M) where F ⊆ C(X)

and M ranges over a transfinite sequence of countable elementary submodels of Hθ.

This sequence is constructed such that, loosely speaking, each submodel in the sequence

knows about the preceding submodels.

Definition 3.3.15. Let κ be a regular uncountable cardinal and let 〈Hθ, . . .〉 be an

expansion of the {∈}-structure Hθ to an L-structure for some language L of size less
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than κ. Then a κ-approximation sequence in 〈Hθ, . . .〉 is an ordinally indexed sequence

〈Mα〉α<η such that for all α < η we have {κ, 〈Mβ〉β<α} ⊆ Mα ≺ 〈Hθ, . . .〉 and |Mα| ⊆

Mα ∩ κ ∈ κ.

The following lemma is a generalization of a technique of Jackson and Mauldin [34]

of approximating a model by a tree of elementary submodels.

Lemma 3.3.16. If κ and 〈Hθ, . . .〉 are as in Definition 3.3.15, then there exists a

{κ}-definable map Ψ that sends every κ-approximation sequence 〈Mα〉α<η in 〈Hθ, . . .〉

to a sequence 〈Σα〉α≤η such that we have the following for all α ≤ η.

1. Σα is a finite set.

2. |N | ⊆ N ≺ 〈Hθ, . . .〉 for all N ∈ Σα.

3.
⋃

Σα =
⋃
β<αMβ.

4. If α < η, then Σα ∈Mα.

5. Σα is an ∈-chain.

6. If N0, N1 ∈ Σα and N0 ∈ N1, then |N0| > |N1|.

7. 〈Σβ〉β≤α = Ψ(〈Mβ〉β<α).

Moreover, |Σλ| = 1 and {α < λ : |Σα| = 1} is closed unbounded in λ for all infinite

cardinals λ ≤ η.

Proof. Let Ω denote the class of 〈γi〉i<n ∈ On<ω \ {∅} for which κ ≤ |γi| > |γj| for all

i < j < n and |γn−1| < κ. Order Ω lexicographically and let Υ be the order isomorphism

from On to Ω. Given any σ = 〈γi〉i<n ∈ On<ω and i < n, set φi(σ) = 〈γ0, . . . , γi−1, 0〉
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and φn(σ) = σ. Let 〈Mα〉α<η be a κ-approximation sequence in 〈Hθ, . . .〉. For all α ≤ η

and i ∈ dom Υ(α), set

Nα,i =
⋃
{Mβ : φi(Υ(α)) ≤ Υ(β) < φi+1(Υ(α))};

set Σα = {Nα,i : i ∈ dom Υ(α)} \ {∅}. Then Ψ is {κ}-definable and it is easily verified

that |Σλ| = 1 and {α < λ : |Σα| = 1} is closed unbounded in λ for all infinite cardinals

λ ≤ η. Let us prove (1)-(7). (1), (3), (4), and (7) immediately follow from the relevant

definitions. Let α ≤ η and 〈βi〉i<n = Υ(α). We may assume n > 0. For all σ ∈ Ω and

i < n − 1, we have φi(Υ(α)) ≤ σ < φi+1(Υ(α)) if and only if σ is the concatenation of

〈βj〉j<i and some τ ∈ Ω satisfying τ < 〈βi, 0〉. Therefore, |Nα,i| = |βi| for all i < n − 1.

For all σ ∈ Ω, we have φn−1(Υ(α)) ≤ σ < φn(Υ(α)) if and only if σ = 〈β0, . . . , βn−2, γ〉

for some γ < βn−1. Hence, |Nα,n−1| < κ; hence, |Nα,i| > |Nα,j| for all i < j < n. Let

Υ(αi) = φi(Υ(α)) for all i < n. If i < j < n, then {Nα,k : k < j} = Σαj−1
; whence,

either Nα,j = ∅ or Nα,i ∈ Mαj−1
⊆ Nα,j, depending on whether βj = 0. Thus, (5) and

(6) hold.

Finally, let us prove (2). Proceed by induction on α. Suppose βn−1 > 0. Since {Nα,i :

i < n − 1} = Σαn−1 and αn−1 + βn−1 = α, it suffices to show that |Nα,n−1| ⊆ Nα,n−1 ≺

〈Hθ, . . .〉. If βn−1 ∈ Lim, then Nα,n−1 is the union of the ∈-chain 〈Nαn−1+γ,n−1〉γ<βn−1 ;

hence, |Nα,n−1| ⊆ Nα,n−1 ≺ 〈Hθ, . . .〉. If βn−1 6∈ Lim, then Nα,n−1 = Nα−1,n−1 ∪Mα−1 =

Mα−1 because Nα−1,n−1 ∈ Mα−1 and |Nα−1,n−1| < κ; hence, |Nα,n−1| ⊆ Nα,n−1 ≺

〈Hθ, . . .〉.

Therefore, we may assume βn−1 = 0. Hence, Σα = {Nα,i : i < n − 1}; hence, we

may assume n > 1. Since {Nα,i : i < n − 2} = Σαn−2 and αn−2 < α, it suffices to show

that |Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉. If βn−2 = κ, then Nα,n−2 is the union of the ∈-chain

〈Nαn−2+γ,n−2〉γ<κ; hence, |Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉. Hence, we may assume βn−2 >
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κ. Let Υ(δγ) = 〈β0, . . . , βn−3, γ, 0〉 for all γ ∈ [κ, βn−2). If βn−2 ∈ Lim, then Nα,n−2 is

the union of the ∈-chain 〈Nδγ ,n−2〉κ≤γ<βn−2 ; hence, |Nα,n−2| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉. Hence,

we may let βn−2 = ε + 1. Suppose |ε| = κ. Then Nα,n−2 = Nδε,n−2 ∪
⋃
γ<κMδε+γ. If

γ < κ, then φn−1(Υ(δε + γ)) = Υ(δε); whence, δε and γ are definable from δε + γ and

κ; whence, γ ∪
⋃
ρ<γMδε+ρ ⊆ Mδε+γ. Hence, |Nδε,n−2| = κ ⊆

⋃
γ<κMδε+γ ≺ 〈Hθ, . . .〉.

Moreover, since Nδε,n−2 ∈ Mδε , we have Nδε,n−2 ⊆
⋃
γ<κMδε+γ; hence, |Nα,n−2| = κ ⊆

Nα,n−2 ≺ 〈Hθ, . . .〉.

Therefore, we may assume |ε| > κ. Let Υ(ζγ) = 〈β0, . . . , βn−3, ε, κ + γ, 0〉 for all

γ < |ε|. Then Nα,n−2 = Nδε,n−2 ∪
⋃
γ<|ε|Nζγ ,n−1. If γ < |ε|, then Υ(ζγ)(n − 1) =

κ + γ; whence, γ ∈ Mζγ ⊆ Nζγ+1,n−1. Hence, |ε| ⊆
⋃
γ<|ε|Nζγ ,n−1 ≺ 〈Hθ, . . .〉. Since

|Nδε,n−2| = |ε| and Nδε,n−2 ∈ Mδε ⊆ Nζ0,n−1, we have Nδε,n−2 ⊆
⋃
γ<|ε|Nζγ ,n−1. Hence,

|Nα,n−2| = |ε| ⊆ Nα,n−2 ≺ 〈Hθ, . . .〉.

Proposition 3.3.17. If X is a topological space, then every base of X contains a base

of size at most w(X).

Proof. Let A be an arbitrary base of X; let B be a base of X of size at most w(X). Since

X is hereditarily w(X)+-compact, we may choose, for each U ∈ B, some AU ∈ [A]≤w(X)

such that U =
⋃
AU . Then

⋃
{AU : U ∈ B} is a base of X and in [A]≤w(X).

Lemma 3.3.18. Let X be a dyadic compactum such that πχ(p,X) = w(X) for all

p ∈ X. Let A be a base of X consisting only of cozero sets. Then A contains an ωop-like

base of X.

Proof. Set κ = w(X); by Proposition 3.3.17, we may assume |A| = κ. Choose F ⊆ C(X)

such that A = {X \ g−1{0} : g ∈ F}. Let h : 2λ → X be a continuous surjection for

some cardinal λ. Let B be the free boolean algebra Clop(2λ). By Lemma 3.2.8, we
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may assume κ > ω. Let 〈Mα〉α<κ be an ω1-approximation sequence in 〈Hθ,∈,F , h〉; set

〈Σα〉α≤κ = Ψ(〈Mα〉α<κ) as defined in Lemma 3.3.16.

For each α < κ, set Aα = A ∩Mα and Fα = F ∩Mα. For every H ⊆ Aα, let H/Fα

denote {U/Fα : U ∈ H}. By Lemma 3.3.14, Aα/Fα is a base of X/Fα. Since X/Fα

is a metric compactum, there exists Wα ⊆ Aα such that Wα/Fα is a base of X/Fα

satisfying (2), (3), and (4) of Lemma 3.2.8. By (2) of Lemma 3.2.8, we may choose, for

each U ∈ Wα, some Eα,U ∈ B ∩Mα such that h−1U ⊆ Eα,U ⊆ h−1V for all V ∈ Wα

satisfying U ⊆ V . Set Gα = {Eα,U : U ∈ Wα}.

Suppose Gα is not ωop-like. Then there exist U ∈ Wα and 〈Vn〉n<ω ∈ Wω
α such

that Eα,U ( Eα,Vn 6= Eα,Vm for all m < n < ω. Set Γ = {W ∈ Wα : U ( W}.

By (2) of Lemma 3.2.8, Γ is finite; hence, by (4) of Lemma 3.2.8, there exists n < ω

such that {W ∈ Wα : Vn ( W} 6⊆ Γ. Hence, there exists W ∈ Wα such that W

strictly contains Vn but not U . Hence, by (3) of Lemma 3.2.8, Eα,Vn ⊆ h−1W ; hence,

h−1U ⊆ Eα,U ( Eα,Vn ⊆ h−1W ; hence, U ( W , which is absurd. Therefore, Gα is

ωop-like.

Let Vα denote the set of V ∈ Wα satisfying U 6⊆ V for all nonempty open U ∈
⋃

Σα.

Let us show that Vα/Fα is a base of X/Fα. If V ∈ Vα, then P(V )∩Wα ⊆ Vα; hence, it

suffices to show that Vα covers X. Since |
⋃

Σα| < κ, every point of X has a neighborhood

in A that does not contain any nonempty open subset of X in
⋃

Σα. By compactness,

there is a cover of X by finitely many such neighborhoods, say, W0, . . . ,Wn−1. By

elementarity, we may assume W0, . . . ,Wn−1 ∈ Aα. Then {Wi : i < n} has a refining

cover S ⊆ Wα. Hence, S ⊆ Vα; hence, Vα covers X as desired.

Let Uα denote the set of U ∈ Vα such that U ⊆ V for some V ∈ Vα. Then Uα/Fα is

clearly a base of X/Fα. Set Eα = {Eα,U : U ∈ Uα}. Then Eα is ωop-like because it is a
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subset of Gα.

For all I ⊆ P(2κ), set ↑I = {H ⊆ 2κ : H ⊇ I for some I ∈ I}. For all H ⊆ 2κ,

set ↑H = ↑{H}. Set U =
⋃
α<κ Uα and C = B ∩ ↑{h−1U : U ∈ U}. For all α ≤ κ, set

Dα =
⋃
β<α Eβ. Then we claim the following for all α ≤ κ.

1. Dα is a dense subset of C ∩
⋃

Σα.

2. Dα ∩ ↑H is finite for all H ∈ C ∩
⋃

Σα.

3. If α < κ, then Dα+1 ∩ ↑H = Dα ∩ ↑H for all H ∈ C ∩
⋃

Σα.

We prove this claim by induction. For stage 0, the claim is vacuous. For limit stages,

(1) is clearly preserved, and (2) is preserved because of (3). Suppose α < κ and (1) and

(2) hold for stage α. Then it suffices to prove (3) for stage α and to prove (1) and (2)

for stage α + 1.

Let us verify (3). Seeking a contradiction, suppose H ∈ C ∩
⋃

Σα and Dα+1 ∩ ↑H 6=

Dα ∩ ↑H. Then Eα ∩ ↑H 6= ∅; hence, there exists U ∈ Uα such that H ⊆ Eα,U . By (1),

there exist β < α and W ∈ Uβ such that Eβ,W ⊆ H. By definition, there exists V ∈ Vα

such that U ⊆ V . Hence, h−1W ⊆ Eβ,W ⊆ H ⊆ Eα,U ⊆ h−1V ; hence, W ⊆ V . Since

W ∈Mβ ⊆
⋃

Σα and V ∈ Vα, we have W 6⊆ V , which yields our desired contradiction.

Let us verify (1) for stage α + 1. By (1) for stage α, we have

Dα+1 = Dα ∪ Eα ⊆
(
C ∩

⋃
Σα

)
∪ (C ∩Mα) = C ∩

⋃
Σα+1,

so we just need to show denseness. Let H ∈ C∩
⋃

Σα+1. If H ∈
⋃

Σα, then H ∈ ↑Dα, so

we may assume H ∈ Mα. By elementarity, there exists U0 ∈ Uα such that h−1U0 ⊆ H.

Choose U1 ∈ Uα such that U1 ⊆ U0. Then Eα,U1 ⊆ h−1U0; hence, Eα,U1 ⊆ H. Hence,

H ∈ ↑Dα+1.
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To complete the proof of the claim, let us verify (2) for stage α+ 1. By (1) for stage

α + 1, it suffices to prove Dα+1 ∩ ↑H is finite for all H ∈ Dα+1. By (3), if H ∈ Dα,

then Dα+1 ∩ ↑H = Dα ∩ ↑H, which is finite by (1) and (2) for stage α. Hence, we may

assume H ∈ Eα. Since Eα is ωop-like, it suffices to show that Dα ∩ ↑H is finite. Since

Dα ⊆
⋃

Σα, it suffices to show that Dα ∩N ∩ ↑H is finite for all N ∈ Σα. Let N ∈ Σα.

By Lemma 3.3.1, there exists G ∈ B∩N such that G ⊇ H and B∩N∩↑H = B∩N∩↑G;

hence, Dα∩N ∩↑H = Dα∩N ∩↑G. Since G ⊇ H ∈ C, we have G ∈ C. By (2) for stage

α, the set Dα ∩N ∩ ↑G is finite; hence, Dα ∩N ∩ ↑H is finite.

Since U ⊆ A, it suffices to prove that U is an ωop-like base of X. Suppose p ∈ V ∈ A.

Then there exists α < κ such that V ∈ Aα. Hence, there exists U ∈ Uα such that

p/Fα ∈ U/Fα ⊆ V/Fα; hence, p ∈ U ⊆ V . Thus, U is a base of X.

Let us show that U is ωop-like. Suppose not. Then there exists α < κ and U0 ∈ Uα

such that there exist infinitely many V ∈ U such that U0 ⊆ V . Choose U1 ∈ Uα such

that U1 ⊆ U0. Suppose β < κ and U0 ⊆ V ∈ Uβ. Then Eα,U1 ⊆ h−1U0 ⊆ h−1V ⊆ Eβ,V .

By (1) and (2), Dκ is ωop-like; hence, there are only finitely many possible values for

Eβ,V . Therefore, there exist 〈γn〉n<ω ∈ κω and 〈Vn〉n<ω ∈
∏

n<ω Uγn such that Vm 6= Vn

and Eγm,Vm = Eγn,Vn for all m < n < ω. Suppose that for some δ < κ we have γn = δ for

all n < ω. Let i < ω and set Γ = {W ∈ Wδ : Vi ( W}. By (2) and (4) of Lemma 3.2.8,

there exists j < ω such that {W ∈ Wδ : Vj ( W} 6⊆ Γ. Hence, there exists W ∈ Wδ

such that W strictly contains Vj but not Vi. By (3) of Lemma 3.2.8, V j ⊆ W . Hence,

h−1V i ⊆ Eδ,Vi = Eδ,Vj ⊆ h−1W . Hence, V i ⊆ W . Since W does not strictly contain Vi,

we must have Vi = V i = W . Hence, h−1Vi = Eδ,Vi = Eδ,V0 . Since i was arbitrary chosen,

we have Vm = Vn = h[Eδ,V0 ] for all m,n < ω, which is absurd. Therefore, our supposed

δ does not exist; hence, we may assume γ0 < γ1. By definition, there exists W ∈ Vγ1



76

such that V 1 ⊆ W . Therefore, h−1V0 ⊆ Eγ0,V0 = Eγ1,V1 ⊆ h−1W ; hence, V0 ⊆ W . Since

V0 ∈ Mγ0 ⊆
⋃

Σγ1 and W ∈ Vγ1 , we have V0 6⊆ W , which is absurd. Therefore, U is

ωop-like.

Let us show that we may remove the requirement that the base A in Lemma 3.3.18

consist only of cozero sets.

Lemma 3.3.19. Suppose X is a space with no isolated points and χ(p,X) = w(X)

for all p ∈ X. Further suppose κ = cf κ ≤ min{Nt(X), w(X)} and X has a network

consisting of at most w(X)-many κ-compact sets. Then every base of X contains an

Nt(X)op-like base of X.

Proof. Set λ = Nt(X) and µ = w(X). Let A be an arbitrary base of X; let B be a

λop-like base of X; let N be a network of X consisting of at most µ-many κ-compact

sets. By Proposition 3.3.17, we may assume |B| = µ. Let 〈〈Nα, Bα〉〉α<µ enumerate

{〈N,B〉 ∈ N × B : N ⊆ B}. Construct a sequence 〈Gα〉α<µ as follows. Suppose

α < µ and 〈Gβ〉β<α is a sequence of elements of [B]<κ. For each p ∈ Nα, we have

χ(p,X) = µ ≥ κ = cf κ; hence, we may choose Uα,p ∈ B such that p ∈ Uα,p 6∈
⋃
β<α Gβ.

Choose σα ∈
[
Nα

]<κ
such that Nα ⊆

⋃
p∈σα Uα,p. Set Gα = {Uα,p : p ∈ σα}.

For each α < µ, choose Fα ∈ [A]<κ such that Nα ⊆
⋃
Fα ⊆ Bα and Fα refines

Gα. Set F =
⋃
α<µFα, which is easily seen to be a base of X. Let us show that F

is λop-like. Suppose not. Then, since κ = cf κ ≤ λ, there exist V ∈ F , I ∈ [µ]λ, and

〈Wα〉α∈I ∈
∏

α∈I Fα such that V ⊆
⋂
α∈IWα. For each α ∈ I, there is a superset of Wα

in Gα. By induction, Gα ∩ Gβ = ∅ for all α < β < µ; hence, V has λ-many supersets in

the λop-like base B, which is absurd, for V has a subset in B.

Remark 3.3.20. If X is regular and locally κ-compact and κ ≤ w(X), then it is easily
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seen that X has a network consisting of at most w(X)-many κ-compact sets.

Theorem 3.3.21. Let X be a dyadic compactum such that πχ(p,X) = w(X) for all

p ∈ X. Then every base A of X contains an ωop-like base of X.

Proof. By Lemma 3.3.18, Nt(X) = ω. Since w(X) = πχ(p,X) ≤ χ(p,X) ≤ w(X) for

all p ∈ X, we may apply Lemma 3.3.19 to get a subset of A that is an ωop-like base of

X.

Finally, let us prove the second half of Theorem 3.1.2.

Corollary 3.3.22. Let X be a homogeneous dyadic compactum with base A. Then A

contains an ωop-like base of X.

Proof. Efimov [18] and Gerlits [24] independently proved that the π-character of every

dyadic compactum is equal to its weight. Since X is homogeneous, πχ(p,X) = w(X)

for all p ∈ X. Hence, A contains an ωop-like base of X by Theorem 3.3.21.

Note that a compactum is dyadic if and only if it is a continous image of a product

of second countable compacta. Let us prove generalizations of Theorem 3.3.21 and

Corollary 3.3.22 about continuous images of products of compacta with bounded weight.

Lemma 3.3.23. Suppose κ = cf κ > ω and X is a space such that πχ(p,X) = w(X) ≥ κ

for all p ∈ X. Further suppose X has a network consisting of at most w(X)-many

κ-compact closed sets. Then every base of X contains a w(X)op-like base of X.

Proof. Set λ = w(X) and let A be an arbitrary base of X. By Proposition 3.3.17,

we may assume |A| = λ. Let N be a network of X consisting of at most λ-many

κ-compact sets. Let 〈Mα〉α<λ be a continuous elementary chain such that for all α < λ
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we have A,N ,Mα ∈ Mα+1 ≺ Hθ. We may also require that Mα ∩ κ ∈ κ > |Mα| for

all α < κ and |Mα| = |κ + α| for all α ∈ λ \ κ. For each α < λ, set Aα = A ∩Mα.

Set B =
⋃
α<λAα+1 \ ↑Aα, which is clearly λop-like. Let us show that B is a base of

X. Suppose p ∈ U ∈ A. Choose N ∈ N such that p ∈ N ⊆ U . Choose α < λ such

that N,U ∈ Aα+1. For each q ∈ N , choose Vq ∈ A \ ↑Aα such that q ∈ Vq ⊆ U .

Then there exists σ ∈ [N ]<κ such that N ⊆
⋃
q∈σ Vq. By elementarity, we may assume

〈Vq〉q∈σ ∈ Mα+1. Choose q ∈ σ such that p ∈ Vq. Then Vq ∈ B and p ∈ Vq ⊆ U . Thus,

B is a base of X.

Theorem 3.3.24. Let κ ≥ ω and let X be Hausdorff and a continuous image of a

product of compacta each with weight at most κ. Suppose πχ(p,X) = w(X) for all

p ∈ X. Then every base of X contains a κop-like base.

Proof. Let h :
∏

i∈I Xi → X be a continuous surjection where each Xi is a compactum

with weight at most κ. Each Xi embeds into [0, 1]κ and is therefore a continuous image

of a closed subspace of 2κ. Hence, we may assume
∏

i∈I Xi is totally disconnected. Set

λ = w(X); by Lemmas 3.2.8 and 3.3.23, we may assume λ > κ. By Theorem 3.3.21,

we may assume κ > ω. Inductively construct a κ+-approximation sequence 〈Mα〉α<λ

in 〈Hθ,∈, C(X), h, 〈Clop(Xi)〉i∈I〉 as follows. For each α < λ, let 〈Nα,β〉β<κ be an

ω1-approximation sequence in

〈Hθ,∈, C(X), h, κ, 〈Clop(Xi)〉i∈I , 〈Mβ〉β<α〉.

Set 〈Γα,β〉β≤κ = Ψ(〈Nα,β〉β<κ) as defined in Lemma 3.3.16; let {Mα} = Γα,κ. Set

〈Σα〉α≤λ = Ψ(〈Mα〉α<λ). Set F = C(X) ∩
⋃

Σλ and A = {X \ f−1{0} : f ∈ F}.

Then A is a base of X. By Lemma 3.3.19, it suffices to construct a subset of A that is

a κop-like base of X.
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For each α < λ, set Fα = F ∩Mα. Let Vα denote the set of V ∈ A ∩Mα satisfying

U 6⊆ V for all nonempty open U ∈
⋃

Σα. Arguing as in the proof Lemma 3.3.18, Vα/Fα

is a base of X/Fα. For each β < κ, let Vα,β denote the set of all V ∈ Vα∩Nα,β satisfying

U 6⊆ V for all nonempty open U ∈
⋃

Γα,β. Let Rα,β denote the set of 〈U, V 〉 ∈ V2
α,β for

which U ⊆ V ; set Uα,β = domRα,β; set Uα =
⋃
β<κ Uα,β.

Let us show that Uα/Fα is also a base of X/Fα. Suppose p ∈ V ∈ Vα. Extend {V }

to a finite subcover σ of Vα such that p 6∈
⋃

(σ \{V }). Choose β < κ such that σ ∈ Nα,β.

For each q ∈ X, choose Vq,0, Vq,1 ∈ A such that q ∈ Vq,0 and there exists W ∈ σ such

that U 6⊆ V q,0 ⊆ Vq,1 ⊆ W for all nonempty open U ∈
⋃

Σα∪
⋃

Γα,β. Choose τ ∈ [X]<ω

such that X =
⋃
q∈τ Vq,0. By elementarity, we may assume 〈Vq,i〉〈q,i〉∈τ×2 ∈ Nα,β. Choose

q ∈ τ such that p ∈ Vq,0. Then Vq,0 ∈ Uα,β and p ∈ Vq,0 ⊆ V . Thus, Uα/Fα is a base of

X/Fα.

Set B = Clop
(∏

i∈I Xi

)
. For each 〈U0, U1〉 ∈

⋃
β<κRα,β, choose Eα(U0, U1) ∈ B∩Mα

such that h−1U0 ⊆ Eα(U0, U1) ⊆ h−1U1. Set Eα,β = Eα[Rα,β]. Set Eα =
⋃
β<κ Eα,β.

Let us show that Eα is κop-like. Suppose β, γ < κ and Eα,β 3 H ⊆ K ∈ Eα,γ. Then

it suffices to show that γ ≤ β. Seeking a contradiction, suppose β < γ. There exist

〈U0, U1〉 ∈ Rα,β and 〈V0, V1〉 ∈ Rα,γ such that H = Eα(U0, U1) and K = Eα(V0, V1).

Hence,
⋃

Γα,γ 3 U0 ⊆ V1 ∈ Vα,γ, in contradiction with the definition of Vα,γ.

Set U =
⋃
α<λ Uα and C = B ∩ ↑{h−1U : U ∈ U}. For all α ≤ λ, set Dα =

⋃
β<α Eβ.

Then we claim the following for all α ≤ λ.

1. Dα is a dense subset of C ∩
⋃

Σα.

2. |Dα ∩ ↑H| < κ for all H ∈ C ∩
⋃

Σα.

3. If α < λ, then Dα+1 ∩ ↑H = Dα ∩ ↑H for all H ∈ C ∩
⋃

Σα.
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We prove this claim by induction. For stage 0, the claim is vacuous. For limit stages,

(1) is clearly preserved, and (2) is preserved because of (3). Suppose α < κ and (1) and

(2) hold for stage α. Then it suffices to prove (3) for stage α and to prove (1) and (2)

for stage α + 1.

Let us verify (3). Seeking a contradiction, suppose H ∈ C ∩
⋃

Σα and Dα+1 ∩ ↑H 6=

Dα ∩ ↑H. Then Eα ∩ ↑H 6= ∅; hence, there exists V ∈ Uα such that H ⊆ h−1V . By

(1), there exist β < α and U ∈ Uβ and K ∈ Eβ such that h−1U ⊆ K ⊆ H. Hence,

U ⊆ V . Since U ∈ Mβ ⊆
⋃

Σα and V ∈ Vα, we have U 6⊆ V , which yields our desired

contradiction.

Let us verify (1) for stage α + 1. By (1) for stage α, we have

Dα+1 = Dα ∪ Eα ⊆
(
C ∩

⋃
Σα

)
∪ (C ∩Mα) = C ∩

⋃
Σα+1,

so we just need to show denseness. Let H ∈ C ∩
⋃

Σα+1. If H ∈
⋃

Σα, then H ∈ ↑Dα,

so we may assume H ∈Mα. By elementarity, there exists U ∈ Uα such that h−1U ⊆ H.

Choose β < κ such that U ∈ Uα,β; choose V ∈ Uα,β such that V ⊆ U . Then Eα(V, U) ⊆

H; hence, H ∈ ↑Dα+1.

The proof of the claim is completed by noting that (2) for stage α+ 1 can be verified

just as in the proof of Lemma 3.3.18, except that Lemma 3.3.6 is used in place of

Lemma 3.3.1.

Just as in the proof of Lemma 3.3.18, U is a base of X; hence, it suffices to show that

U is κop-like. Suppose γ < λ and δ < κ and U ∈ Uγ,δ and 〈〈ζα, ηα〉〉α<κ ∈ (λ × κ)κ and

〈Wα〉α<κ ∈
∏

α<κ Uζα,ηα and U ⊆
⋂
α<κWα. Then it suffices to show that Wα = Wβ for

some α < β < κ. Choose V ∈ Uγ,δ such that V ⊆ U . For each α < κ, choose Vα ∈ Vζα,ηα

such that Wα ⊆ Vα; set Hα = Eζα(Wα, Vα). Then Eγ(V, U) ⊆
⋂
α<κHα. By (1) and

(2), Dλ is κop-like; hence, there exists J ∈ [κ]ω1 such that Hα = Hβ for all α, β ∈ J ;
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hence, Wα ⊆ Vβ for all α, β ∈ J . If α, β ∈ J and ζα < ζβ, then
⋃

Σζβ 3 Wα ⊆ Vβ,

in contradiction with Vβ ∈ Vζβ . Hence, ζα = ζβ for all α, β ∈ J . If α, β ∈ J and

ηα < ηβ, then
⋃

Γζβ ,ηβ 3 Wα ⊆ Vβ, in contradiction with Vβ ∈ Vζβ ,ηβ . Hence, ηα = ηβ

for all α, β ∈ J . Hence, {Wα : α ∈ J} ⊆ Nζmin J ,ηmin J
; hence, Wα = Wβ for some

α < β < κ.

Lemma 3.3.25. Let κ be an uncountable regular cardinal; let X be a compactum such

that w(X) ≥ κ and X is a continuous image of a product of compacta each with weight

less than κ. Then π(X) = w(X).

Proof. It suffices to prove that π(X) ≥ κ. Seeking a contradiction, suppose A is a

π-base of X of size less than κ. Let 〈Xi〉i∈I be a sequence of compacta each with weight

less than κ and let h be a continuous surjection from
∏

i∈I Xi to X. Choose M ≺ Hθ

such that A ∪ {C(X), h, 〈C(Xi)〉i∈I} ⊆ M and |M | = |A|. Choose p ∈ M ∩
∏

i∈I Xi

and set Y = {q ∈
∏

i∈I Xi : p � (I \M) = q � (I \M)}. Then it suffices to show that

h[Y ] = X, for that implies κ ≤ w(X) ≤ w(Y ) < κ. Seeking a contradiction, suppose

h[Y ] 6= X. Then there exists U ∈ A such that U ∩ h[Y ] = ∅. By elementarity, there

exists σ ∈ [I ∩ M ]<ω and 〈Vi〉i∈σ such that Vi is a nonempty open subset of Xi for

all i ∈ σ, and
⋂
i∈σ π

−1
i Vi ⊆ h−1U . Hence, Y ∩

⋂
i∈σ π

−1
i Vi 6= ∅, in contradiction with

U ∩ h[Y ] = ∅.

Definition 3.3.26. Given any cardinal κ, set log κ = min{λ : 2λ ≥ κ}.

Lemma 3.3.27. Let κ be an uncountable regular cardinal; let X be a compactum such

that w(X) ≥ κ and X is a continuous image of a product of compacta each with weight

less than κ. Then πχ(X) = w(X).
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Proof. Let 〈Xi〉i∈I be a sequence of compacta each with weight less than κ and let h

be a continuous surjection from
∏

i∈I Xi to X. For any space Y , we have π(Y ) =

πχ(Y )d(Y ). Hence, w(X) = π(X) = πχ(X)d(X) by Lemma 3.3.25; hence, we may

assume d(X) = w(X). Arguing as in the proof of Lemma 3.3.25, if A is a π-base of X

and A∪{C(X), h, 〈C(Xi)〉i∈I} ⊆M ≺ Hθ, then X is a continuous image of
∏

i∈I∩M Xi;

hence, we may assume |I| = π(X). By 5.5 of [35], d(X) ≤ d(
∏

i∈I Xi) ≤ κ · log|I|. By

2.37 of [35], d(Y ) ≤ πχ(Y )c(Y ) for all T3 non-discrete spaces Y . Since κ is a caliber

of Xi for all i ∈ I, it is also a caliber of X; hence, |I| = π(X) = d(X) ≤ πχ(X)κ;

hence, log|I| ≤ κ ·πχ(X). Therefore, w(X) = d(X) ≤ κ ·πχ(X); hence, we may assume

w(X) = κ.

Let 〈Uα〉α<κ enumerate a base of X. For each α < κ, choose pα ∈ Uα. Since

d(X) = w(X) = κ, there is no α < κ such that {pβ : β < α} is dense in X. Since

κ is a caliber of X, we may choose p ∈ X \
⋃
α<κ {pβ : β < α}. It suffices to show

that πχ(p,X) = κ. Seeking a contradiction, suppose πχ(p,X) < κ. Then there exists

α < κ such that {Uβ : β < α} contains a local π-base at p; hence, p ∈ {pβ : β < α}, in

contradiction with how we chose p.

Theorem 3.3.28. Let 〈Xi〉i∈I be a sequence of compacta; let X be a homogeneous com-

pactum; let h :
∏

i∈I Xi → X be a continuous surjection. If there is a regular cardi-

nal κ such that w(Xi) < κ ≤ w(X) for all i ∈ I, then every base of X contains a

(supi∈I w(Xi))
op-like base. Otherwise, w(X) ≤ supi∈I w(Xi) and every base of X triv-

ially contains a (w(X)+)op-like base.

Proof. The latter case is a trivial application of Proposition 3.3.17. In the former case,

Lemma 3.3.27 implies πχ(p,X) = w(X) for all p ∈ X; apply Theorem 3.3.24.
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Every known homogeneous compactum is a continuous image of a product of com-

pacta each with weight at most c; hence, Theorem 3.3.28 provides a uniform justification

for our observation that all known homogeneous compacta have Noetherian type at most

c+. Analogously, since every known homogeneous compactum is such a continuous im-

age, it has c+ among its calibers; hence, it has cellularity at most c.

Let us now turn to the spectrum of Noetherian types of dyadic compacta and a proof

of Theorem 3.1.3.

Theorem 3.3.29. Let κ and λ be infinite cardinals such that λ < κ. Let X be the

discrete sum of 2κ and 2λ. Let Y be the quotient space induced by collapsing 〈0〉α<κ and

〈0〉α<λ to a single point p. If λ < cf κ, then Nt(Y ) = κ+. If λ ≥ cf κ, then Nt(Y ) = κ.

Proof. Clearly χ(p, Y ) = κ and πχ(p, Y ) = λ. Hence, if λ < cf κ, then κ+ ≤ Nt(Y ) ≤

w(Y )+ = κ+ by Proposition 3.3.11. Suppose λ ≥ cf κ. We still have κ ≤ Nt(Y )

by Proposition 3.3.11, so it suffices to construct a κop-like base of Y . Let ∼ be the

equivalence relation such that Y = X/∼. In building a base of Y , we proceed in the

canonical way when away from p: for each µ ∈ {κ, λ}, set

Aµ = {{x ∈ 2µ : η ⊆ x}/∼ : η ∈ Fn(µ, 2) and η−1{1} 6= ∅}.

Choose f0 : κ → cf κ such that for all α < cf κ the preimage f−1
0 {α} is bounded in κ.

Define f : [κ]<ω → cf κ by f(σ) = f0(supσ) for all σ ∈ [κ]<ω. Choose g0 : λ→ cf κ such

that for all α < cf κ the preimage g−1
0 {α} is unbounded in λ. Define g : [λ]<ω → cf κ by

g(σ) = g0(supσ) for all σ ∈ [λ]<ω. Set

Ap =
⋃

α<cf κ

{(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ] = {0}}

)
/∼ :

〈σ, τ〉 ∈ f−1{α} × g−1{α}
}
.
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Set A = Aκ∪Aλ∪Ap. Let us show that A is a κop-like base of Y . The only nontrivial

aspect of showing that A is a base of Y is verifying that Ap is a local base at p. Suppose

U is an open neighborhood of p. Then there exist σ ∈ [κ]<ω and τ ∈ [λ]<ω such that

(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ] = {0}}

)
/∼⊆ U.

Choose α < λ such that sup τ < α and g0(α) = f(σ). Set τ ′ = τ ∪ {α} and

V =
(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ′] = {0}}

)
/∼ .

Then V ⊆ U and V ∈ Ap because f(σ) = g(τ ′). Thus, A is a base of Y .

Let us show that A is κop-like. Suppose U, V ∈ A and U ⊆ V . If U ∈ Aκ, then, fixing

U , there are only finitely many possibilities for V in Aκ; the same is true if κ is replaced

by λ or p. Hence, we may assume U ∈ Ai and V ∈ Aj for some {i, j} ∈ [{κ, λ, p}]2.

Since no element of Ap is a subset of an element of Aκ ∪ Aλ, we have i 6= p. Hence,

there exists η ∈ Fn(i, 2) such that U = {x ∈ 2i : η ⊆ x}/∼. Since
⋃
Aκ ∩

⋃
Aλ = ∅, we

have j = p. Hence, there exist σ ∈ [κ]<ω and τ ∈ [λ]<ω such that

V =
(
{x ∈ 2κ : x[σ] = {0}} ∪ {x ∈ 2λ : x[τ ] = {0}}

)
/∼ .

If i = κ, then σ ⊆ η−1{0}; hence, fixing U , there are only finitely many possibilities

for σ, and at most λ-many possibilities for τ . If i = λ, then τ ⊆ η−1{0}; hence, fixing

U , there are only finitely many possibilities for τ , and at most |sup f−1
0 {g(τ)}|<ω-many

possibilities for σ given τ . Thus, there are fewer than κ-many possibilities for V given

U . Thus, A is κop-like.

Corollary 3.3.30. If κ is a cardinal of uncountable cofinality, then there is a totally

disconnected dyadic compactum with Noetherian type κ+. If κ is a singular cardinal,

then there is a totally disconnected dyadic compactum with Noetherian type κ.
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Proof. For the first case, apply Theorem 3.3.29 with λ = ω. For the second case, apply

Theorem 3.3.29 with λ = cf κ.

Combining the above corollary with the following theorem (and a trivial example

like Nt(2ω) = ω) immediately proves Theorem 3.1.3.

Theorem 3.3.31. Let X be a dyadic compactum with base A consisting only of coz-

ero sets. If Nt(X) ≤ ω1, then A contains an ωop-like base of X. Hence, no dyadic

compactum has Noetherian type ω1.

Proof. Let Q be an ωop
1 -like base of X of size w(X). Import all the notation from the

proof of Lemma 3.3.18 verbatim, except require that 〈Mα〉α<κ be an ω1-approximation

sequence in 〈Hθ,∈,F , h,Q〉. Then U is an ωop-like subset of A as before. On the other

hand, Vα/Fα is not necessarily a base of X/Fα for all α < κ. However, we will show that

U is still a base of X. In doing so, we will repeatedly use the fact that if U,Q ∈M ≺ Hθ

and U is a nonempty open subset of X, then all supersets of U in Q are in M because

{V ∈ Q : U ⊆ V } is a countable element of M .

Suppose q ∈ Q ∈ Q. Then it suffices to find U ∈ U such that q ∈ U ⊆ Q. Let β be

the least α < κ such that there exists A ∈ Aα satisfying q ∈ A ⊆ A ⊆ Q. Fix such an

A ∈ Aβ. For each p ∈ A, choose 〈Ap, Qp〉 ∈ A × Q such that p ∈ Ap ⊆ Qp ⊆ Qp ⊆ Q.

Since Mβ 3 A ⊆ Q ∈ Q, we have Q ∈ Mβ. Hence, by elementarity, we may assume

there exists σ ∈
[
A
]<ω

such that 〈〈Ap, Qp〉〉p∈σ ∈ Mβ and A ⊆
⋃
p∈σ Ap. Choose p ∈ σ

such that q ∈ Ap. Suppose Qp 6∈
⋃

Σβ. Then all nonempty open subsets of Qp are also

not in
⋃

Σβ; hence, there exist U ∈ Uβ and V ∈ Vβ such that q/Fβ ⊆ U ⊆ V ⊆ Ap ⊆ Q.

Therefore, we may assume Qp ∈
⋃

Σβ.

Choose α < β such that Qp ∈ Mα. Then Q ∈ Mα because Qp ⊆ Q. Hence, there
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exists τ ∈ [Aα]<ω such that Qp ⊆
⋃
τ ⊆

⋃
τ ⊆ Q. Choose W ∈ τ such that q ∈ W .

Then q ∈ W ⊆ W ⊆ Q, in contradiction with the minimality of β. Thus, U is a base of

X.

We note that the spectrum of Noetherian types of all compacta is trivial.

Theorem 3.3.32. Let κ be a regular uncountable cardinal. Then there exists a totally

disconnected compactum X such that Nt(X) = κ and X has a Pκ-point.

Proof. Let X be the closed subspace of 2κ consisting of all f ∈ 2κ for which f(α) = 0

or f [α] = {1} for all odd α < κ. First, let us show that X has a κop-like base. For each

σ ∈ Fn(κ, 2), set Uσ = {f ∈ X : f ⊇ σ}. Let E denote the set of σ ∈ Fn(κ, 2) for which

sup domσ is even and Uσ 6= ∅. Set A = {Uσ : σ ∈ E}, which is clearly a base of X. Let

us show that A is κop-like. Suppose σ, τ ∈ E and Uσ ⊆ Uτ . If sup dom σ < sup dom τ ,

then for each f ∈ Uσ the sequence

(f � sup dom τ) ∪ {〈sup dom τ, 1− τ(sup dom τ)〉} ∪ {〈β, 0〉 : sup dom τ < β < κ}

is in Uσ \ Uτ , which is absurd. Hence, sup dom τ ≤ sup domσ; hence, there are fewer

than κ-many possibilities for τ given σ. Thus, A is κop-like.

Finally, it suffices to show that 〈1〉α<κ is a Pκ-point of X, for a Pκ-point must have

local Noetherian type at least κ. For each α < κ, set σα = {〈2α + 1, 1〉}. Then

{Uσα : α < κ} is a local base at 〈1〉α<κ. Moreover, Uσα ) Uσβ for all α < β < κ. Since

κ is regular, it follows that 〈1〉α<κ is a Pκ-point.

Corollary 3.3.33. Every infinite cardinal is the Noetherian type of some totally discon-

nected compactum.
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Proof. By Lemma 3.2.8, all totally disconnected metric compacta have Noetherian type

ω. By Theorem 3.3.32, if κ is a regular uncountable cardinal, then there is a totally

disconnected compactum X with Noetherian type κ. If κ is a singular cardinal, then

there is a totally disconnected dyadic compactum with Noetherian type κ by Corol-

lary 3.3.30.

3.4 k-adic compacta

The results of the previous section used reflection properties of free boolean algebras—see

Lemma 3.3.1—and more generally coproducts of boolean algebras of bounded size—see

Lemma 3.3.6. Let us define a more general family of reflection properties.

Definition 3.4.1. Let B be a boolean algebra and let κ and λ be cardinals. Then we

say B has the (κ, λ)-FN if and only if, for every M such that {B,∧,∨} ⊆M ≺ Hθ and

|M | ∩ κ ⊆ M ∩ κ ∈ κ + 1, and for every b ∈ B, there exists A ∈ [B ∩M ]<λ such that

M ∩ ↑b = M ∩ ↑A.

Remark 3.4.2. For regular κ, the (κ, κ)-FN and the (κ+, κ)-FN are both equivalent to the

κ-FN as defined by Fuchino, Koppelberg, and Shelah [23]. In particular, the (ω1, ω)-FN

is equivalent to the Freese-Nation property and the (ω2, ω1)-FN is equivalent to the weak

Freese-Nation property.

The (κ, ω)-FN is equivalent to the (κ, 2)-FN for all κ: if A ∈ [B ∩M ]<ω and M∩↑b =

M ∩ ↑A, then
∧
A ∈M and M ∩ ↑b = M ∩ ↑

∧
A. Therefore, a boolean algebra has the

(ω1, ω)-FN if and only if it satisfies the conclusion of Lemma 3.3.1. Likewise, a boolean

algebra satisfies the conclusion of Lemma 3.3.6 if and only if it has the (κ, ω)-FN.
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Theorem 3.4.3. If κ ≥ ω and B has the (κ+, cf κ)-FN, then every subset of B is almost

κop-like.

Proof. Proceed as in the proof of Theorem 3.3.2. The only modifications worth noting

happen in the last paragraph. Where Lemma 3.3.1 is used to produce r ∈ B ∩Mα such

that Mα∩↑q = Mα∩↑r, instead use the (κ+, cf κ)-FN to produce A ∈ [B∩Mα]<cf κ such

that Mα ∩↑q = Mα ∩↑A. For each r ∈ A, argue as before that there exists pr ∈ Q∩Mα

such that Dα ∩ ↑r ⊆ Dα ∩ ↑pr. By an induction hypothesis, |Dα ∩ ↑pr| < κ; hence,

|Dα ∩ ↑q| ≤ |
⋃
r∈A(Dα ∩ ↑pr)| < κ.

Corollary 3.4.4. It is independent of ¬CH whether every separable compactum X

satisfies χNt(X) ≤ ω1.

Proof. Fuchino, Koppelberg, and Shelah [23] proved that P(ω) has the (ω2, ω1)-FN in

the Cohen model. Arguing as in the proof of Theorem 3.3.3, every separable compactum

X, being a continuous image of βω, satisfies χKNt(X) ≤ ω1 and πNt(X) ≤ ω1 in this

model. On the other hand, p = c implies there is a Pc-point p in βω \ ω. Assuming

p = c > ω1, let us show that this p does not have an ωop
1 -like base in the separable

compactum βω. Let U be a local base at p in βω. Choose V ∈ [U ]ω1 and U ∈ U such

that U \ω ⊆
⋂
V . For every V ∈ V , the compact set U \V is contained in ω, so U \V ⊆ n

for some n < ω. Therefore, there exist W ∈ [V ]ω1 and n < ω such that U \W ⊆ n for

all W ∈ W . Choose U0 ∈ U such that U0 ⊆ U \ n. Then U0 ⊆
⋂
W ; hence, U is not

ωop
1 -like.

Theorem 3.4.5. Let κ ≥ ω and let X be a compactum such that πχ(p,X) = w(X) for

all p ∈ X and such that X is a continuous image of a totally disconnected compactum
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Y such that Clop(Y ) has the (κ+, cf κ)-FN. Then every base of X contains an κop-like

base of X.

Proof. Proceed as in the proof of Theorem 3.3.24. Modify that proof just as the proof

of Theorem 3.3.2 was modified in the above proof of Theorem 3.4.3.

Ščepin discovered a nice characterization of the Stone spaces of boolean algebras

having the (ω1, ω)-FN.

Definition 3.4.6 (Ščepin [61]). Given a space X, let RC(X) denote the set of regular

closed subsets of X. A space X is k-metrizable if there exists ρ : X × RC(X)→ [0,∞)

such that we have the following for all C ∈ RC(X).

1. C = {x ∈ X : ρ(x,C) = 0}.

2. If C ⊇ B ∈ RC(X), then ρ(x,C) ≤ ρ(x,B) for all x ∈ X.

3. The map ρC : X → R defined by ρC(x) = ρ(x,C) is continuous.

4. For each increasing union
⋃
α<β Cα of regular closed sets, if C =

⋃
α<β Cα, then

ρ(x,C) = infα<β ρ(x,Cα).

A compactum is k-adic if it is a continuous image of k-metrizable compactum.

Remark 3.4.7. Ščepin’s notation is “κ-metrizable.” Let us use “k-metrizable” for two

reasons. First, “κ” has nothing to do with a cardinal κ; it is a Russian abbreviation for

canonical. (Canonically closed means regular closed in this context.) Second, for some

authors, κ-metrizable means something else, such as having a decreasing uniform base

of the form {Uα}α<κ.
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The following theorem is implicit in results of Ščepin [61] and more explicit in Hein-

dorf and Šapiro [31]. (See especially Section 2.9 of the latter.)

Theorem 3.4.8. A totally disconnected compactum X is k-metrizable if and only if

Clop(X) has the (ω1, ω)-FN.

Lemma 3.4.9 (Ščepin [61]). If X is a k-adic compactum, then πχ(X) = w(X).

Given the above lemma and the preceding three theorems, it is trivial to generalize

our main results from the previous section about the class of dyadic compacta, which are

continuous images of powers of 2, to the class of compacta that are continuous images

of totally disconnected k-metrizable compacta. Moreover, the next two theorems show

that the latter class properly contains the former class.

Theorem 3.4.10 (Ščepin [61]). Metrizable spaces are k-metrizable. Moreover, products

and hyperspaces (with the Vietoris topology) preserve k-metrizability. In particular, every

power of 2 is k-metrizable.

Theorem 3.4.11 (Šapiro [59]). If κ ≥ ω2, then the hyperspace of 2κ is not dyadic.

Hence, there is a totally disconnected compactum that is k-metrizable but not dyadic.

With a little more care, we can further generalize our results about dyadic compacta

to all k-adic compacta.

Definition 3.4.12. Given a space X and a set M , define πXM : X → X/M by πXM(p) =

p/M .

Lemma 3.4.13. Let X be a compactum. Then X is k-metrizable if and only if πXM is

an open map for all M satisfying C(X) ∈M ≺ Hθ.
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Proof. Ščepin [62] proved that a compactum X is k-metrizable if and only if, for all

sufficiently large regular cardinals µ, there is a closed unbounded C ⊆ [Hµ]ω such that

C(X) ∈ M ≺ Hµ and πXM is open for all M ∈ C. (Ščepin stated this result in terms

of σ-complete inverse systems of metric compacta; the above formulation is due to

Bandlow [7].) It follows at once that X is k-metrizable if πXM is open for all M satisfying

C(X) ∈ M ≺ Hθ. Conversely, suppose X is k-metrizable and C(X) ∈ M ≺ Hθ. Fix µ

and C as above. We may assume θ > µω; hence, by elementarity, we may assume C ∈M .

Choose a countable N ≺ H(2<θ)+ such that C(X), C,M ∈ N . Then M ∩ N ∩Hµ ∈ C,

so πXM∩N∩Hµ , which is equal to πXM∩N , is open. Suppose U ⊆ X is open and p ∈ U .

Since πXM∩N is open, there exists a cozero V ⊆ X such that p ∈ V ∈ M ∩ N and

V/(M ∩N) ⊆ U/(M ∩N). The last relation is equivalent to the statement that, for all

q ∈ V , there exists r ∈ U such that, for all f ∈ C(X) ∩M ∩ N , we have f(q) = f(r).

By elementarity, for every open U ⊆ X and p ∈ U , there exists a cozero V ⊆ X such

that p ∈ V ∈M and, for all q ∈ V , there exists r ∈ U such that, for all f ∈ C(X) ∩M ,

we have f(q) = f(r). Thus, p/M ∈ V/M ⊆ U/M . Since V is cozero and V ∈ M , the

set V/M is cozero. Hence, πXM is open.

Theorem 3.4.14. Let X be a k-metrizable compactum and Q a family of cozero subsets

of X such that for every U ∈ Q there exists V ∈ Q such that V ⊆ U . Then Q is almost

ωop-like.

Proof. Proceed by induction on |Q|. Argue as in the proof of Theorem 3.3.2 until the

verification of (3) for stage α+1, where we need a different argument to show that Dα∩↑q

is finite. Let U = q and choose V ∈ Q such that V ⊆ U . By Lemma 3.4.13, U/Mα is

open; hence, there exists f ∈ C(X) ∩Mα such that V/Mα ⊆ (f−1{0})/Mα ⊆ U/Mα.

Since f ∈Mα, we have V ⊆ f−1{0}. By elementarity, there exists W ∈ Q∩Mα such that
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W ⊆ f−1{0}. By (3) for stage α, it suffices to show that Dα ∩ ↑U ⊆ Dα ∩ ↑W . Suppose

Z ∈ Dα ∩ ↑U . Then W/Mα ⊆ (f−1{0})/Mα ⊆ U/Mα ⊆ Z/Mα. Since Z ∈ Dα ⊆ Mα

and Z is cozero, we have W ⊆ Z. Thus, Dα ∩ ↑U ⊆ Dα ∩ ↑W .

Corollary 3.4.15. Let X be a k-adic compactum and U be a family of subsets of X

such that for all U ∈ U there exists V ∈ U such that V ∩X \ U = ∅. Then U is almost

ωop-like. Hence, πNt(X) = χKNt(X) = ω.

Proof. Proceed as in the proof of Theorem 3.3.3. Use the above theorem instead of

Theorem 3.3.2.

Theorem 3.4.16. Let X be a homogeneous k-adic compactum with base A. Then A

contains an ωop-like base of X.

Proof. By homogeneity and Lemma 3.4.9, we have πχ(p,X) = w(X) for all p ∈ X. By

Lemma 3.3.19, we may assume A consists only of cozero sets. Proceed as in the proof of

Lemma 3.3.18. Replace 2λ with a k-metrizable compactum Y and replace B with the set

of cozero subsets of Y . For the proof of (2) for stage α+ 1, we need a different argument

that, given H ∈ Eα and N ∈ Σα, the set Dα ∩N ∩ ↑H is finite.

Choose U ∈ Uα such that H = Eα,U ; choose V ∈ Uα such that V ⊆ U . Since πYN

is open by Lemma 3.4.13, we have (h−1V )/N ⊆ (f−1{0})/N ⊆ (h−1U)/N for some

f ∈ C(Y )∩N . Since f ∈ N , we have h−1V ⊆ f−1{0}. Choose β < α such that f ∈Mβ.

By elementarity, we may choose W0 ∈ Aβ such that h−1W0 ⊆ f−1{0}. Choose W1 ∈ Vβ

such that W 1 ⊆ W0; choose W2 ∈ Uβ such that W 2 ⊆ W1. By (2) for stage α, it suffices

to prove Dα ∩N ∩ ↑Eα,U ⊆ ↑Eβ,W2 . Suppose G ∈ Dα ∩N ∩ ↑Eα,U . Then we have

(f−1{0})/N ⊆ (h−1U)/N ⊆ Eα,U/N ⊆ G/N.
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Since G ∈ N and G is cozero, we have f−1{0} ⊆ G. Hence,

Eβ,W2 ⊆ h−1W1 ⊆ h−1W0 ⊆ f−1{0} ⊆ G.

Thus, Dα ∩N ∩ ↑Eα,U ⊆ ↑Eβ,W2 as desired.

Theorem 3.4.17. Let X be a k-adic compactum. Then Nt(X) 6= ω1.

Proof. Proceed as in the proof of Theorem 3.3.31.

If still greater generality is desired, then one can easily combine the techniques of

the proofs of Theorems 3.4.3, 3.4.14, and 3.4.16 to prove the following.

Theorem 3.4.18. Let κ be an infinite cardinal and let Y be a compactum such that, for

all open U ⊆ Y and for all M satisfying C(Y ) ∈ M ≺ Hθ and κ+ ∩ |M | ⊆ κ+ ∩M ∈

κ+ + 1, the set U/M is the intersection of fewer than (cf κ)-many open subsets of Y/M .

If X is Hausdorff and a continuous image of Y , then we have the following.

1. If U ⊆ P(X) and, for all U ∈ U , there exists V ∈ U such that V ∩ X \ U = ∅,

then U is almost κop-like. Hence, πNt(X) ≤ κ and χKNt(X) ≤ κ.

2. If πχ(p,X) = w(X) for all p ∈ X, then every base of X contains a κop-like base.

On the other hand, Lemma 3.4.9 cannot be so easily generalized. For example, if

X is the Stone space of the interval algrebra generated by {[a, b) : a, b ∈ R}, then

w(X) = c and πχ(X) = π(X) = ω, despite it being shown in [23] that Clop(X) has the

(ω2, ω1)-FN.



94

3.5 More on local Noetherian type

In this section, we find two sufficient conditions for a compactum to have a point with

an ωop-like local base. The first of these conditions will be used to prove Theorem 3.1.4.

We also present some related results about local bases in terms of Tukey reducibility.

Definition 3.5.1. Given cardinals λ ≥ κ ≥ ω and a subset E in a space X, a local

〈λ, κ〉-splitter at E is a set U of λ-many open neighborhoods of E such that E is not

contained in the interior of
⋂
V for any V ∈ [U ]κ. If p ∈ X, then we call a local

〈λ, κ〉-splitter at {p} a local 〈λ, κ〉-splitter at p.

Theorem 3.5.2. Suppose X is a compactum and ω1 ≤ κ = minp∈X πχ(p,X). Then

there is a local 〈κ, ω〉-splitter at some p ∈ X.

Proof. Given any map f , let
∏
f denote {〈xi〉i∈dom f : ∀i ∈ dom f xi ∈ f(i)}. Given

any infinite open family E , let Φ(E) denote the set of 〈σ,Γ〉 ∈ [E ]<ω× ([E ]ω)<ω for which

every τ ∈
∏

Γ satisfies
⋂
σ ⊆

⋃
ran τ . Then Φ(E) = ∅ always implies E is ωop-like and

centered.

Let R denote the set of nonempty regular open subsets of X. Choose 〈Wn〉n<ω ∈ Rω

such that W n+1 ( Wn 6= X for all n < ω. Let Ω denote the class of transfinite sequences

〈〈Uα, Vα〉〉α<η of elements of R2 satisfying the following.

1. η ≥ ω and 〈〈Un, Vn〉〉n<ω = 〈〈Wn+1,Wn〉〉n<ω.

2. Uα ⊆ Vα for all α < η.

3. P(Vα) ∩
{⋂

σ \
⋃
τ : σ, τ ∈

[⋃
β<α{Uβ, Vβ}

]<ω} ⊆ {∅} for all α < η.

4. Φ
(⋃

α<η{Uα, Vα}
)

= ∅.
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Seeking a contradiction, suppose η is a limit ordinal and 〈〈Uα, Vα〉〉α<η 6∈ Ω, but

〈〈Uβ, Vβ〉〉β<α ∈ Ω for all α < η. Then (1), (2), and (3) hold for 〈〈Uα, Vα〉〉α<η, so

there exists 〈σ,Γ〉 ∈ Φ
(⋃

α<η{Uα, Vα}
)
. We may choose i ∈ dom Γ such that Γ(i) 6⊆⋃

β<α{Uβ, Vβ} for all α < η. Set Λ = Γ � (dom Γ \ {i}). We may assume dom Γ is

minimal among its possible values; hence, there exists τ ∈
∏

Λ such that
⋂
σ 6⊆

⋃
ran τ .

Choose α < η and W ∈ Γ(i) such that σ ∪ ran τ ⊆
⋃
β<α{Uβ, Vβ} and W ∈ {Uα, Vα}.

Then
⋂
σ \
⋃

ran τ 6⊆ W by (2) and (3). Since W is regular,
⋂
σ \
⋃

ran τ 6⊆ W ; hence,⋂
σ 6⊆ W ∪

⋃
ran τ , in contradiction with 〈σ,Γ〉 ∈ Φ

(⋃
α<η{Uα, Vα}

)
. Thus, Ω is closed

with respect to unions of increasing chains.

It follows from (3) that Ω ⊆ (R2)<|R|
+

. Moreover, 〈〈Wn+1,Wn〉〉n<ω ∈ Ω. Hence,

by Zorn’s Lemma, Ω has a maximal element 〈〈Uα, Vα〉〉α<η. Set B =
⋃
α<η{Uα, Vα}.

Let us show that η ≥ κ. Suppose not. For each x ∈ X, choose Yx, Zx ∈ R such

that x ∈ Yx ⊆ Y x ⊆ Zx and Zx does not contain any nonempty open set of the form⋂
σ \

⋃
τ where σ, τ ∈ [B]<ω. Choose ρ ∈ [X]<ω such that

⋃
x∈ρ Yx = X. Let us

show that Φ(B ∪ {Yx, Zx}) = ∅ for some x ∈ ρ. Seeking a contradiction, suppose

〈σx,Γx〉 ∈ Φ(B ∪ {Yx, Zx}) for all x ∈ ρ. We may assume
⋃
x∈ρ
⋃

ran Γx ⊆ B. Let Λ be

a concatenation of {Γx : x ∈ ρ} and set τ = B ∩
⋃
x∈ρ σi. Then for all ζ ∈

∏
Λ we have

⋂
τ =

⋂
y∈ρ

⋂
(σy ∩ B) =

⋃
x∈ρ

(
Yx ∩

⋂
y∈ρ

⋂
(σy ∩ B)

)
⊆
⋃
x∈ρ

⋂
σx ⊆

⋃
ran ζ.

Hence, 〈τ,Λ〉 ∈ Φ(B), in contradiction with (4). Therefore, we may choose x ∈ ρ such

that Φ(B ∪{Yx, Zx}) = ∅. But then 〈〈Uα, Vα〉〉α<η+1 ∈ Ω if we set Uη = Yx and Vη = Zx,

in contradiction with the maximality of 〈〈Uα, Vα〉〉α<η. Thus, η ≥ κ.

Set A = {Vα : α < η}. By (3), |A| = |η| ≥ κ. Set K =
⋂
α<η Uα. Then it suffices to

show that A is a local 〈|η|, ω〉-splitter at some x ∈ K. Suppose not. Then each x ∈ K
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has an open neighborhood Wx that is a subset of infinitely many elements of A. Hence,

Φ(B ∪ {Wx}) 6= ∅ for all x ∈ K. Choose ρ ∈ [K]<ω such that K ⊆
⋃
x∈ρWx. Choose an

open set W such that W ∪
⋃
x∈ρWx = X and W ∩K = ∅. By compactness, B ∪ {W}

is not centered; hence, Φ(B ∪ {W}) 6= ∅. Reusing our earlier concatenation argument,

we have Φ(B) 6= ∅, in contradiction with (4). Thus, A is a local 〈|η|, ω〉-splitter at some

x ∈ K.

Lemma 3.5.3. Suppose X is a space with a point p at which there is no finite local base.

Then χNt(p,X) is the least κ ≥ ω for which there is a local 〈χ(p,X), κ〉-splitter at p.

Moreover, if λ > χ(p,X), then p does not have a local 〈λ, κ〉-splitter at p for any κ < λ

or κ ≤ cf λ.

Proof. By Lemma 3.2.3, χ(p,X) ≥ χNt(p,X); hence, a χNt(p,X)op-like local base at

p (which necessarily has size χ(p,X)) is a local 〈χ(p,X), χNt(p,X)〉-splitter at p. To

show the converse, let λ = χ(p,X) and let 〈Uα〉α<λ be a sequence of open neighborhoods

of p. Let {Vα : α < λ} be a local base at p. For each α < λ, choose Wα ∈ {Vβ : β < λ}

such that Wα ⊆ Uα ∩ Vα. Then {Wα : α < λ} is a local base at p. Let κ < χNt(p,X).

Then there exist α < λ and I ∈ [λ]κ such that Wα ⊆
⋂
β∈IWβ. Hence, p is in the interior

of
⋂
β∈I Uβ. Hence, {Uα : α < λ} is not a local 〈λ, κ〉-splitter at p.

To prove the second half of the lemma, suppose λ > χ(p,X) and A is a set of λ-many

open neighborhoods of p. Let B be a local base at p of size χ(p,X). Then, for all κ < λ

and κ ≤ cf λ, there exist U ∈ B and C ∈ [A]κ such that U ⊆
⋂
C. Hence, A is not a

local 〈λ, κ〉-splitter at p.

Proof of Theorem 3.2.13. We may assume χ(X) ≥ ω1. By Theorem 3.5.2, there is a

local 〈χ(X), ω〉-splitter at some p ∈ X. By Lemma 3.5.3, χNt(p,X) = ω.
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Proof of Theorem 3.1.4. Let X be a homogeneous compactum. By a result of Arhan-

gel′skĭı (see 1.5 of [2]), |Y | ≤ 2πχ(Y )c(Y ) for all homogeneous T3 spaces Y . Since |X| =

2χ(X) by Arhangel′skĭı’s Theorem and the Čech-Pospǐsil Theorem, we have χ(X) ≤

πχ(X)c(X) by GCH. If πχ(X) = χ(X), then χNt(X) = ω by Theorem 3.2.13. Hence,

we may assume πχ(X) < χ(X); hence, χNt(X) ≤ χ(X) ≤ c(X) by Theorem 3.2.4.

Example 3.5.4. Consider 2ω1
lex (i.e., 2ω1 ordered lexicographically). Every point in this

space has character and local Noetherian type ω1, and some but not all points have

π-character ω.

Definition 3.5.5 (Tukey [68]). Given two quasiorders P and Q, we say f is a Tukey

map from P to Q and write f : P ≤T Q if f is a map from P to Q such that all preimages

of bounded subsets of Q are bounded in P . We say that P is Tukey reducible to Q and

write P ≤T Q if there exists f : P ≤T Q. We say that P and Q are Tukey equivalent

and write P ≡T Q if P ≤T Q ≤T P .

Tukey showed that two directed sets are Tukey equivalent if and only if they embed

as cofinal subsets of a common directed set. In particular, any two local bases at a

common point in a topological space are Tukey equivalent. Another, easily checked fact

is that P ≤T 〈[cf P ]<ω,⊆〉 for every directed set P . Also, [κ]<ω ≤T [λ]<ω if κ ≤ λ.

Lemma 3.5.6. Suppose κ ≥ ω and E is a subset of a space X with a local 〈κ, ω〉-splitter

at E. Then 〈[κ]<ω,⊆〉 ≤T 〈A,⊇〉 for every neighborhood base A of E.

Proof. Let U be a local 〈κ, ω〉-splitter at E. Let N be the set of open neighborhoods

of E. Then N is Tukey equivalent to every neighborhood base of E (with respect to

⊇), so it suffices to show that [U ]<ω ≤T 〈N ,⊇〉. Define f : [U ]<ω → N by f(σ) =
⋂
σ
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for all σ ∈ [U ]<ω. Then, for all N ∈ N , we have |f−1 ↑N | < ω because U is a local

〈κ, ω〉-splitter; whence, f−1 ↑N is bounded in [U ]<ω. Thus, f : [U ]<ω ≤T 〈N ,⊇〉.

Theorem 3.5.7. Suppose X is a compactum and ω1 ≤ κ = minp∈X πχ(p,X). Then,

for some p ∈ X, every local base A at p satisfies 〈[κ]<ω,⊆〉 ≤T 〈A,⊇〉.

Proof. Combine Theorem 3.5.2 and Lemma 3.5.6.

Lemma 3.5.8. Suppose E is a subset of a space X and E has no finite neighborhood

base. Then the following are equivalent.

1. χNt(E,X) = ω.

2. There is a local 〈χ(E,X), ω〉-splitter at E.

3. Every neighborhood base A of E satisfies 〈[χ(E,X)]<ω,⊆〉 ≡T 〈A,⊇〉.

Proof. By Lemma 3.5.3, (1) and (2) are equivalent. Let B be a neighborhood base

of E of size χ(E,X). By Lemma 3.5.6, (2) implies [χ(E,X)]<ω ≤T 〈A,⊇〉 ≡T 〈B,⊇

〉 ≤T [χ(E,X)]<ω for every neighborhood base A of E. Thus, (2) implies (3). Finally,

suppose A is a neighborhood base of E and [χ(E,X)]<ω ≡T 〈A,⊇〉. Then [χ(E,X)]<ω

and 〈A,⊇〉 embed as cofinal subsets of a common directed set. Hence, 〈A,⊆〉 is almost

ωop-like by Lemma 3.2.20. Hence, A contains an ωop-like neighborhood base of E. Thus,

(3) implies (1).

Theorem 3.5.9. Suppose X is an infinite homogeneous compactum and πχ(X) = χ(X).

Then, for all p ∈ X and for all local bases A at p, we have 〈A,⊇〉 ≡T 〈[χ(X)]<ω,⊆〉.

Proof. Combine Theorem 3.2.13 and Lemma 3.5.8.
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Definition 3.5.10. Given n < ω and ordinals α, β0, . . . , βn, let α→ (β0, . . . , βn) denote

the proposition that for all f : [α]2 → n + 1 there exist i ≤ n and H ⊆ α such that

f [[H]2] = {i} and H has order type βi.

Lemma 3.5.11. Suppose κ = cf κ > ω and P is a directed set such that [κ]<ω ≤T P .

Then P contains a set of κ-many pairwise incomparable elements.

Proof. Let Q be a well-founded, cofinal subset of P . Then P ≡T Q; let f : [κ]<ω ≤T Q.

Define g : [κ]2 → 3 by g({α < β}) = 0 if f({α}) 6≤ f({β}) 6≤ f({α}) and g({α <

β}) = 1 if f({α}) > f({β}) and g({α < β}) = 2 if f({α}) ≤ f({β}). By the

Erdös-Dushnik-Miller Theorem, κ→ (κ, ω + 1, ω + 1). Since Q is well-founded, there is

no H ∈ [κ]ω such that g[[H]2] = {1}. Since f is Tukey and all infinite subsets of [κ]<ω

are unbounded, there is no H ⊆ κ of order type ω + 1 such that g[[H]2] = {2}. Hence,

there exists H ∈ [κ]κ such that g[[H]2] = {0}; whence, f [[H]1] is a κ-sized, pairwise

incomparable subset of P .

Theorem 3.5.12. Suppose κ = cf κ > ω and X is a compactum such that every point

has a local base not containing a set of κ-many pairwise incomparable elements. Then

some point in X has π-character less than κ.

Proof. Combine Theorem 3.5.7 and Lemma 3.5.11 to prove the contrapositive of the

theorem.

Corollary 3.5.13. Suppose X is a compactum such that every point has a local base that

is well-quasiordered with respect to ⊇. Then some point in X has countable π-character.

Finally, let us present a few results about local Noetherian type and topological

embeddings.
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Lemma 3.5.14. Suppose X is a space, Y ⊆ X, and p ∈ Y satisfies χ(p, Y ) = χ(p,X).

Then χNt(p,X) ≤ χNt(p, Y ).

Proof. Set λ = χ(p, Y ) and κ = χNt(p, Y ); we may assume λ > ω by Theorem 3.2.4. By

Lemma 3.5.3, we may choose a local 〈λ, κ〉-splitter A at p in Y . For each U ∈ A, choose

an open subset f(U) of X such that f(U)∩Y = U . Set B = f [A]. Then |B| = λ because

f is bijective. Suppose C ∈ [B]κ and p is in the interior of
⋂
C with respect to X. Then

p is in the interior of Y ∩
⋂
C with respect to Y , in contradiction with how we chose A.

Thus, B is a local 〈λ, κ〉-splitter at p in X. By Lemma 3.5.3, χNt(p,X) ≤ κ.

Theorem 3.5.15. For each κ ≥ ω, there exists p ∈ u(κ) such that χNt(p, u(κ)) = ω

and χ(p, u(κ)) = 2κ.

Proof. Generalizing an argument of Isbell [32] about βω, let A be an independent family

of subsets of κ of size 2κ. Set B =
⋃
F∈[A]ω{x ⊆ κ : ∀y ∈ F |x \ y| < κ}. Since A

is independent, we may extend A to an ultrafilter p on κ such that p ∩ B = ∅. For

each x ⊆ κ, set x∗ = {q ∈ u(κ) : x ∈ q}. Then {x∗ : x ∈ A} is a local 〈2κ, ω〉-splitter

at p. Since χ(p, u(κ)) ≤ 2κ, it follows from Lemma 3.5.3 that χNt(p, u(κ)) = ω and

χ(p, u(κ)) = 2κ.

Theorem 3.5.16. Suppose κ ≥ ω and X is a space such that χ(X) = 2κ and u(κ)

embeds in X. Then there is an ωop-like local base at some point in X. Hence, χNt(X) =

ω if X is homogeneous.

Proof. Let j embed u(κ) into X. By Theorem 3.5.15, there exists p ∈ u(κ) such that

χNt(p, u(κ)) = ω and χ(p, u(κ)) = 2κ. By Lemma 3.5.14, χNt(j(p), X) = ω.

Theorem 3.5.17. Suppose p is a point in a dense subspace Y of a T3 space X. Then

χNt(p,X) ≥ χNt(p, Y ).
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Proof. Set κ = χNt(p, Y ) and let A be a κop-like local base at p in X. By Lemma 3.2.20,

we may assume A consists only of regular open sets. Set B = {U ∩ Y : U ∈ A}. Given

any U, V ∈ A such that U 6⊆ V , we have U \ V 6= ∅; whence, U ∩ Y \ V 6= ∅; whence,

U ∩ Y 6⊆ V ∩ Y . Therefore, B is κop-like; hence, χNt(p, Y ) ≤ χNt(p,X).

Example 3.5.18. Consider the sequential fan Y with ω-many spines. More explicitly,

Y is the space ω2∪{p} obtained by taking ω×(ω+1) and collapsing the subspace ω×{ω}

to a point p. It is easily checked that Y is T3.5. Choose a compactification X of Y . Then

c(X) = c(Y ) = ω and X is not homogeneous because it has isolated points. We will show

χNt(p,X) ≥ ω1, thereby demonstrating that homogeneity cannot be removed from the

hypothesis of Theorem 3.1.4. It suffices to show that χNt(p, Y ) ≥ ω1, for we can then

apply Theorem 3.5.17. Given f ∈ ωω, set Uf = {p} ∪ {〈m,n〉 ∈ ω2 : n ≥ f(m)}.

Set A = {Uf : f ∈ ωω}, which is a local base at p in Y . Suppose B ⊆ A and

B is a local base at p. Then it suffices to show that B is not ωop-like. By an easy

diagonalization argument, no local base at p is countable. Choose B0 ∈ [B]ω1 . Given

n < ω, Bn ∈ [B]ω1 , and Uf0 , . . . , Ufn−1 ∈ B, choose Bn+1 ∈ [Bn]ω1 such that g(n) = h(n)

for all Ug, Uh ∈ Bn+1. Then choose Ufn ∈ Bn+1 \ {Uf0 , . . . , Ufn−1}. For each n < ω, set

g(n) = max{f0(n), . . . , fn(n)} Then Ug ⊆ Ufn for all n < ω; hence, B is not ωop-like.

3.6 Questions

Question 3.6.1. Do there exist spaces X and Y such that χKNt(X × Y ) exceeds

χKNt(X)χKNt(Y )? [In very recent unpublished work, Santi Spadaro has shown that

there is a T3.5 space X such that such that Nt(ω1) = ω2 > ω1 = Nt(X × ω1).]

Question 3.6.2. Does ZFC prove there is a homogeneous compactum X such that
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πNt(X) ≥ ω1?

Question 3.6.3. Suppose X is a compactum and χKNt(X) ≥ ω1. Can X be homoge-

neous? first countable? both?

Question 3.6.4. Is there a dyadic compactum X such that πχ(p,X) = χ(p,X) for all

p ∈ X but X has no ωop-like base? In particular, if Y is as in Example 3.3.12 and Z is

the discrete sum of Y and 2ω2 , then does Zω1 have an ωop-like base?

Question 3.6.5. If κ is a singular cardinal with cofinality ω, then is there a dyadic com-

pactum with Noetherian type κ+? Is there a dyadic compactum with weakly inaccessible

Noetherian type?

Question 3.6.6. Is every k-adic compactum a continuous image of a totally disconnected

k-metrizable compactum?

Question 3.6.7. Is there a homogeneous compactum with a local base Tukey equivalent

to ω × ω1? For each n < ω, all the local bases in
∏

i≤n 2ωilex are Tukey equivalent to∏
i≤n ωi, but these spaces are not homogeneous for n ≥ 1 because some but not all

points have countable π-character. By Theorem 3.1.4, if a homogeneous compactum X

in a model of GCH has a local base Tukey equivalent to
∏

i≤n ωi for some n ≥ 2, then

c(X) > c in that model.
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Chapter 4

More about Noetherian type

4.1 Subsets of bases

Given a space X, does every base of X contain an Nt(X)op-like base of X? There is no

known counterexample, and Lemma 3.3.19 says the answer is yes for the wide class of

spaces X satisfying χ(p,X) = w(X) for all p ∈ X. We will present some further partial

answers to this question. In particular, it is consistent that the answer is yes for all

homogeneous compacta.

Proposition 4.1.1. If X is a space and A is a (w(X)+)op-like base of X, then |A| ≤

w(X).

Proof. Seeking a contradiction, suppose |A| > w(X). Let B be a base of X of size

w(X). Then every element of A contains an element of B. Hence, some U ∈ B is

contained in w(X)+-many elements of A. Clearly U contains some V ∈ A, so A is not

(w(X)+)op-like.

Lemma 4.1.2. If X is a compactum and πχ(p,X) < cf κ = κ ≤ w(X) for all p ∈ X,

then Nt(X) > κ.

Proof. Let A be a base of X. By Misčenko’s Lemma, there exist p ∈ X and B ∈ [A]κ

such that p ∈
⋂
B. Let C ∈ [A]<κ be a local π-base at p. Then some element of C is

contained in κ-many elements of B. Hence, A is not κop-like.
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Theorem 4.1.3. If X is a homogeneous compactum with regular weight, then every base

of X contains an Nt(X)op-like base.

Proof. If χ(X) = w(X), then just apply Lemma 3.3.19. If χ(X) < w(X), then Nt(X) =

w(X)+ by Lemma 4.1.2; whence, by Proposition 3.3.17, every base A of X contains a

base B that is Nt(X)op-like simply because |B| < Nt(X).

We can exchange the above requirement that w(X) be regular for a weak form of

GCH.

Corollary 4.1.4. Suppose every limit cardinal is strong limit. Then, for every homoge-

neous compactum X, every base of X contains an Nt(X)op-like base.

Proof. By Arhangel′skĭı’s Theorem, χ(X) ≤ w(X) ≤ 2χ(X). If χ(X) < w(X), then w(X)

is a successor cardinal; apply Theorem 4.1.3. If χ(X) = w(X), then apply Lemma 3.3.19.

Without assuming homogeneity, we still can get some weak results. Lemma 3.3.23

says that for a broad class of spaces X, if πχ(p,X) = w(X) for all p ∈ X, then

Nt(X) ≤ w(X). We also have the following.

Theorem 4.1.5. Suppose κ is a regular cardinal and X is a locally κ-compact T3 space

such that Nt(X) ≤ w(X) = κ. Then every base of X contains a κop-like base of X.

Proof. Let A be a base of X and let B be a κop-like base of X. By Proposition 3.3.17,

we may assume |A| = |B| = κ. Suppose κ = ω. Then X is a metrizable; fix a

compatible metric. Moreover, there is a sequence 〈Un〉n<ω of open subsets of X such

that X =
⋃
n<ω Un and Un is compact for all n < ω. For each 〈m,n〉 ∈ ω2, let Am,n be a

finite cover of Um by elements of A with diameter less than 2−n. Set A′ =
⋃
m<n<ωAm,n.
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Then A′ ⊆ A and A′ is a base of X. Suppose V,W ∈ A′ and V ( W . Then V contains

a ball of radius 2−n for some n < ω; hence, diamW ≥ 2−n; hence, W ∈
⋃
l<m<nAl,m.

Thus, A′ is ωop-like.

Suppose κ > ω. Let 〈Mα〉α≤κ be a continuous elementary chain such that {Mβ : β <

α}∪{A,B} ⊆Mα ≺ Hθ and |Mα| < κ and Mα∩κ ∈ κ for all α < κ. Then A∪B ⊆Mκ.

For each α < κ, let Uα denote the set of all U ∈ A∩Mα+1 for which U has a superset in

B\Mα. Set U =
⋃
α<κ Uα ⊆ A. First, let us show that U is κop-like. Suppose α < κ and

Uα 3 U ⊆ V ∈ U . Then there exist β < κ and B ∈ B \Mβ such that B ⊇ V ∈ Mβ+1.

Hence, U ⊆ B; hence, B ∈ {W ∈ B : U ⊆ W} ∈Mα+1∩ [B]<κ; hence, B ∈Mα+1; hence,

β ≤ α; hence, V ∈Mα+1. Thus, U is κop-like.

Finally, let us show that U is a base of X. Suppose p ∈ B ∈ B and B is κ-compact.

Then it suffices to find U ∈ U such that p ∈ U ⊆ B. Let β be the least α < κ such

that there exists A ∈ A ∩Mα+1 satisfying p ∈ A ⊆ A ⊆ B. Fix such an A. If B 6∈ Mβ,

then A ∈ Uβ and p ∈ A ⊆ B. Hence, we may assume B ∈ Mβ. For each q ∈ A, choose

〈Aq, Bq〉 ∈ A × B such that q ∈ Aq ⊆ Bq ⊆ Bq ⊆ B. Then there exists σ ∈
[
A
]<κ

such that A ⊆
⋃
q∈σ Aq. By elementarity, we may assume 〈〈Aq, Bq〉〉q∈σ ∈ Mβ+1; hence,

Aq, Bq ∈Mβ+1 for all q ∈ σ. Choose q ∈ σ such that p ∈ Aq. If Bq 6∈Mβ, then Aq ∈ Uβ

and p ∈ Aq ⊆ B. Hence, we may assume Bq ∈ Mβ; hence, we may choose α < β such

that Bq ∈Mα+1. Then B ∈ {W ∈ B : Bq ⊆ W} ∈Mα+1 ∩ [B]<κ; hence, B ∈Mα+1. For

each r ∈ Bq, choose Wr ∈ A such that r ∈ Wr ⊆ W r ⊆ B. Then there exists τ ∈
[
Bq

]<κ
such that Bq ⊆

⋃
r∈τ Wr. By elementarity, we may assume 〈Wr〉r∈τ ∈ Mα+1. Choose

r ∈ τ such that p ∈ Wr. Then Wr ∈ A ∩Mα+1 and p ∈ Wr ⊆ Wr ⊆ B, in contradiction

with the minimality of β. Thus, U is a base of X.

Question 4.1.6. Is there a space X with a base that does not contain an Nt(X)op-like
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base of X? Is there such a metric space? Can X = ωω?

4.2 Power homogeneous compacta

This section is joint work of Guit-Jan Ridderbos and myself.

Definition 4.2.1. A space is power homogeneous if some power of it is homogeneous.

The following theorem is due to van Mill [45].

Theorem 4.2.2. Every power homogeneous compactum X satisfies |X| ≤ 2πχ(X)c(X).

Arhangel′skĭı’s identical result for homogeneous T3 spaces was used in the proof of

Theorem 3.1.4. Given the above extension of Arhangel′skĭı’s result, it is natural to ask

to what extent Theorem 3.1.4 is true of power homogeneous compacta. Specifically,

assuming GCH, do all power homogeneous compacta X satisfy χNt(X) ≤ c(X), or

at least χNt(X) ≤ d(X)? This section presents a partial positive answer to the last

question. We show that if d(X) < cf χ(X) = maxp∈X χ(p,X), then there is a nonempty

open U ⊆ X such that χNt(p,X) = ω for all p ∈ U . (Note that χNt(X) ≤ χ(X).)

Definition 4.2.3. A sequence 〈Ui〉i∈I of neighborhoods of a point p in a space X is

λ-splitting at p if, for all J ∈ [I]λ, we have p 6∈ int
⋂
j∈J Uj.

Given an infinite cardinal κ and a point p in a space X, let splitκ(p,X) denote the

least λ such that there exists a λ-splitting sequence 〈Uα〉α<κ of neighborhoods of p. Set

splitκ(X) = supp∈X splitκ(p,X).

Remark 4.2.4. Note that if κ = χ(p,X), then χNt(p,X) = splitκ(p,X). If κ > χ(p,X),

then splitκ(p,X) = κ+. Also, if κ ≤ χ(p,X), then splitκ(p,X) ≤ χNt(p,X) ≤ χ(p,X).
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Definition 4.2.5. Given I and p, let ∆I(p) denote the constant function 〈p〉i∈I .

Definition 4.2.6. Given a subset E of a product
∏

i∈I Xi and a subset J of I, we say

that E is supported on J , or supp(E) ⊆ J , if E = (πIJ)−1
[
πIJ [E]

]
. If there is a least set

J for which E is supported on J , then we may write supp(E) = J .

Remark 4.2.7. We always have that supp(E) ⊆ A and supp(E) ⊆ B together imply

supp(E) ⊆ A∩B. If a subset E of a product space is open, closed, or finitely supported,

then there exists J such that supp(E) = J , so we may unambiguously speak of supp(E).

Definition 4.2.8. A map f from a space X to a space Y is open at a point p in X if

f(p) ∈ int f [N ] for every neighborhood N of p (where int f [N ] denotes the interior of

f [N ] in Y ).

Lemma 4.2.9. Suppose f : X → Y and p ∈ X and f is continuous at p and open at p.

Then splitκ(p,X) ≤ splitκ(f(p), Y ) for all κ.

Proof. Set λ = splitκ(f(p), Y ) and let 〈Vα〉α<κ be a λ-splitting sequence of neighborhoods

of f(p). For each α < κ, choose a neighborhood Uα of p such that Uα ⊆ f−1[Vα]. Suppose

I ∈ [κ]λ. Then f(p) 6∈ int
⋂
α∈I Vα. If p ∈ int

⋂
α∈I Uα, then f(p) ∈ int f

[⋂
α∈I Uα

]
⊆

int
⋂
α∈I Vα, which is absurd. Thus, p 6∈ int

⋂
α∈I Uα, so splitκ(p,X) ≤ λ.

Lemma 4.2.10. Suppose p is a point in a space X and n < ω. Then splitκ(∆n(p), Xn) =

splitκ(p,X) for all κ.

Proof. By Lemma 4.2.9, it suffices to show that splitκ(∆n(p), Xn) ≥ splitκ(p,X). Set

λ = splitκ(∆n(p), Xn) and let 〈Vα〉α<κ be a λ-splitting sequence of neighborhoods of

∆n(p). We may shrink each Vα to a smaller neighborhood of ∆n(p) while preserving

λ-splitting, so we may assume that each Vα is a finite product
∏

i<n Vα,i of open sets.
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Set Uα =
⋂
i<n Vα,i for all α. Suppose I ∈ [κ]λ. Then ∆n(p) 6∈ int

⋂
α∈I Vα. If p ∈

int
⋂
α∈I Uα, then ∆n(p) ∈

(
int
⋂
α∈I Uα

)n ⊆ int
⋂
α∈I Vα, which is absurd. Thus, p 6∈

int
⋂
α∈I Uα, so splitκ(p,X) ≤ λ.

Lemma 4.2.11. Suppose p is a point in a space X and γ < cf κ ≥ ω. Then

splitκ(∆γ(p), X
γ) = splitκ(p,X).

Proof. By Lemma 4.2.9, it suffices to show that splitκ(∆γ(p), X
γ) ≥ splitκ(p,X). Set

λ = splitκ(∆γ(p), X
γ) and let 〈Vα〉α<κ be a λ-splitting sequence of neighborhoods of

∆γ(p). We may assume each Vα has finite support and therefore choose σα ∈ Fn(γ, {U ⊆

X : U open}) such that Vα =
⋂
〈β,U〉∈σα π

−1
β U . Since |[γ]<ω| < cf κ, we may assume there

is some s ∈ [γ]<ω such that domσα = s for all α < κ. But then 〈πγs [Vα]〉α<κ is λ-splitting

at ∆s(p) in Xs. Thus, splitκ(∆γ(p), X
γ) ≥ splitκ(∆s(p), X

s). Apply Lemma 4.2.10.

Definition 4.2.12. Let U be an open neighborhood of a set K in a product space. We

say that U is a simple neighborhood of K if, for every open V satisfying K ⊆ V ⊆ U ,

we have supp(U) ⊆ supp(V ).

Lemma 4.2.13. If K is a compact subset of a compact product space X =
∏

i∈I Xi and

U is an open neighborhood of K, then K has a finitely supported simple neighborhood

that is contained in U .

Proof. Set σ = supp(U). By compactness of K, we may shrink U such that σ is finite.

Hence, we may further shrink U until it is minimal in the sense that if V is open and

K ⊆ V ⊆ U , then supp(V ) is not a proper subset of σ. Suppose V is open and

K ⊆ V ⊆ U ; set τ = supp(V ). Then it suffices to show that σ ⊆ τ . Suppose p ∈ K

and q ∈ X and πIσ∩τ (p) = πIσ∩τ (q). Set r = (p � τ) ∪ q � (I \ τ). Then πIτ (r) = πIτ (p), so
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r ∈ V ⊆ U . Moreover, πIσ(q) = πIσ(r), so q ∈ U . Thus, (πIσ∩τ )
−1
[
πIσ∩τ [K]

]
⊆ U . By the

Tube Lemma, there is an open W such that K ⊆ W ⊆ U and supp(W ) ⊆ σ ∩ τ . By

minimality of U , the set σ ∩ τ is not a proper subset of σ; hence, σ ⊆ τ .

Lemma 4.2.14. Suppose κ is a regular uncountable cardinal and I is a set and X =∏
i∈I Xi is a compactum and p ∈ X and h ∈ Aut(X) and splitκ(p(i), Xi) ≥ ω1 for all

i ∈ I. Further suppose {C(X), p, h} ⊆M ≺ Hθ and κ ∩M ∈ κ+ 1. Then we have

supp(h
[
(πII∩M)−1

[{
πII∩M(p)

}]]
) ⊆M.

Proof. For each i ∈ I, let Ui denote the set of open neighborhoods of p(i). For each

U ∈ Ui, let V (U, i) be a finitely supported simple neighborhood of h
[
π−1
i [{p(i)}]

]
that

is contained in h
[
π−1
i [U ]

]
(using Lemma 4.2.13); set σ(U, i) = supp(V (U, i)). By ele-

mentarity, we may assume the map V is in M , so σ ∈ M too. Let W (U, i) be an open

neighborhood of p(i) with such that π−1
i [W (U, i)] ⊆ h−1 [V (U, i)].

Fix j ∈ I. Suppose
∣∣∣⋃U∈Uj σ(U, j)

∣∣∣ ≥ κ. Then there exists 〈Uα〉α<κ ∈ Uκj such that

σ(Uα, j) 6⊆ σ(Uβ, j) for all β < α < κ. Fix E ∈ [κ]ω and an open neighborhood H

of h
[
π−1
j [{p(j)}]

]
with finite support τ . Choose α ∈ E such that σ(Uα, j) 6⊆ τ . By

simplicity, H 6⊆ V (Uα, j). Thus, h
[
π−1
j [{p(j)}]

]
6⊆ int

⋂
α∈E V (Uα, j); hence,

π−1
j [{p(j)}] 6⊆ int

⋂
α∈E

h−1 [V (Uα, j)] ⊇ int
⋂
α∈E

π−1
j [W (Uα, j)];

hence, p(j) 6∈ int
⋂
α∈EW (Uα, j). Since E was arbitrary, {W (Uα, j) : α < κ} is

ω-splitting at p(j), in contradiction with splitκ(p(j), Xj) ≥ ω1. Thus,
∣∣∣⋃U∈Uj σ(U, j)

∣∣∣ <
κ.

Hence, for each i ∈ I ∩M , we have
⋃
U∈Ui σ(U, i) ∈ [I]<κ ∩M ⊆ P(M); hence,

supp(h
[
(πII∩M)−1

[{
πII∩M(p)

}]]
) ⊆

⋃
i∈I∩M

⋃
U∈Ui

σ(U, i) ⊆M.
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Corollary 4.2.15. Let X be a compactum and κ an infinite cardinal. Suppose F is a

closed subset of X and χ(F,X) < κ and πχ(p,X) ≥ κ for all p ∈ F . Then splitκ(p,X) =

ω for some p ∈ F .

Proof. Since πχ(p,X) ≤ πχ(p, F )χ(F,X) for all p ∈ F , we have πχ(p, F ) ≥ κ for all

p ∈ F . Apply Theorem 3.5.2 to F .

The following theorem is an easy generalization of Ridderbos’ Lemma 2.2 in [57].

Theorem 4.2.16. Suppose X is a power homogeneous Hausdorff space, κ is a regular

uncountable cardinal, and D is a dense subset of X such that πχ(d,X) < κ for all d ∈ D.

Then πχ(p,X) < κ for all p ∈ X.

Theorem 4.2.17. Let κ be a regular uncountable cardinal, X be a power homogeneous

compactum, and D be a dense subset of X of size less than κ. Suppose splitκ(d,X) ≥ ω1

for all d ∈ D. Then splitκ(p,X) = splitκ(q,X) for all p, q ∈ X. Moreover, π(X) < κ.

Proof. Let us first show that splitκ(p,X) = splitκ(q,X) for all p, q ∈ X. Fix p, q ∈ X

such that splitκ(p,X) ≥ ω1 and splitκ(q,X) = minx∈X splitκ(x,X). Then it suffices to

show that that splitκ(p,X) = splitκ(q,X). By Lemmas 4.2.9 and 4.2.11, it suffices

to show that there exist A ∈ [I]<κ and f : XA → XA such that f(∆A(p)) = ∆A(q)

and f is continuous at ∆A(p) and open at ∆A(p). Choose I and h ∈ Aut(XI) such

that h(∆I(p)) = h(∆I(q)). Fix M ≺ Hθ such that |M | < κ and κ ∩ M ∈ κ and

{C(X), D, h, p} ⊆M . Set A = I∩M and Y = XA×{p}I\A ∼= XA. Set f = πIA◦(h � Y ),

which is continuous. Since f(∆I(p)) = ∆A(q), it suffices to show that f is open at ∆I(p).
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Fix a closed neighborhood C × {p}I\A of ∆I(p) in Y . By the Tube Lemma and

Lemma 4.2.14, there is an open neighborhood U of ∆A(q) in XA such that (πIA)−1U ⊆

h
[
(πIA)−1[C]

]
. Hence, it suffices to show that U ⊆ f

[
C × {p}I\A

]
. Set

E =
⋃{

Dσ × {p}I\σ : σ ∈ [I]<ω
}

and Z = πIA[E]× {p}I\A = E ∩M . Then πIA[Z] is dense in XA. Fix z ∈ πIA[Z] ∩ U . By

Lemma 4.2.14 applied to h−1 and z ∪ ∆I\A(p), we have supp(h−1
[
(πIA)−1[{z}]

]
) ⊆ A;

hence, for all x ∈ πIA
[
h−1

[
(πIA)−1[{z}]

]]
⊆ C, we have f(x ∪ ∆I\A(p)) = z. Thus,

πIA[Z] ∩ U ⊆ f
[
C × {p}I\A

]
. Hence, U ⊆ f [C × {p}I\A] = f

[
C × {p}I\A

]
.

Thus, splitκ(p,X) = splitκ(q,X) ≥ ω1 for all p, q ∈ X. By Corollary 4.2.15, X has

no closed Gδ subset K for which πχ(p,X) ≥ κ for all p ∈ K. Hence, X has no open

subset U for which πχ(p,X) ≥ κ for all p ∈ U . By Theorem 4.2.16, πχ(p,X) < κ for

all p ∈ X. Hence, π(X) ≤
∑

d∈D πχ(d,X) < κ.

Corollary 4.2.18. Let D be a dense subset of a power homogeneous compactum X and

let κ be a regular uncountable cardinal. Suppose maxp∈X χ(p,X) = κ and |D| < κ and

χNt(d,X) ≥ ω1 for all d ∈ D. Then π(X) < χ(p,X) = κ and χNt(p,X) = χNt(X)

for all p ∈ X.

Proof. Every d ∈ D either has character κ, in which case splitκ(d,X) = χNt(d,X) ≥ ω1,

or has character less than κ, in which case splitκ(d,X) = κ+ ≥ ω1. By Theorem 4.2.17,

splitκ(p,X) = splitκ(q,X) for all p, q ∈ X and π(X) < κ. If splitκ(X) = κ+, then no

point of X has character κ, which is absurd. Hence, splitκ(X) ≤ κ; hence, every point

of X has character at least κ; hence, every point has character κ; hence, χNt(p,X) =

splitκ(X) for all p ∈ X.
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Corollary 4.2.19 (GCH). There do not exist X, D, and κ as in the previous corollary.

Hence, if X is a power homogeneous compactum and maxp∈X χ(p,X) = cf χ(X) > d(X),

then there is a nonempty open U ⊆ X such that χNt(p,X) = ω for all p ∈ U .

Proof. Seeking a contradiction, suppose X, D, and κ are as in the previous corollary. By

Arhangel′skĭı’s Theorem and the Čech-Pospǐsil Theorem, |X| = 2κ. Hence, by GCH and

Theorem 4.2.2, κ ≤ πχ(X)c(X). Since, πχ(X) ≤ π(X) < κ, it follows that κ ≤ c(X).

Hence, κ ≤ c(X) ≤ π(X) < κ, which is absurd.

4.3 Noetherian types of ordered Lindelöf spaces

We will show that a Lindelöf linearly ordered topological space has an ωop-like base if

and only if it is metric. Moreover, a compact linearly ordered topological space has an

ωop
1 -like base if and only if it is metric.

Theorem 4.3.1. Every metric space has an ωop-like base.

Proof. LetX be a metric space. For each n < ω, letAn be a locally finite open refinement

of the balls of radius 2−n in X. Set A =
⋃
n<ωAn. Then A is a base of X because if

p ∈ X and n < ω, then there exists U ∈ An+1 such that p ∈ U and U is contained in

the ball of radius 2−n with center p. Let us show that A is ωop-like. Suppose m < ω

and U ∈ A and V ∈ Am and U ( V . Then there exist p ∈ U and ε0 > ε1 > 0 such

that the ε0-ball with center p is contained in U and the ε1-ball with center p intersects

only finitely many elements of An for all n < ω satisfying 2−n > ε0/2. If 2−m ≤ ε0/2,

then V is contained in the ε0-ball with center p, in contradiction with U ( V . Hence,

2−m > ε0/2; hence, there are only finitely many possibilities for m and V given U , for

V intersects the ε1-ball with center p.
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Lemma 4.3.2. Let X be a Lindelöf linearly ordered topological space with open cover

A. Then A has a countable, locally finite refinement consisting only of countable unions

of open intervals.

Proof. Let {An : n < ω} be a countable refinement ofA consisting only of open intervals.

For each n < ω, set Bn = An\
⋃
m<nAm; set B = {Bn : n < ω}. Then B is a locally finite

refinement of A. Let C be the set of open intervals of X which intersect only finitely

many elements of B. Let D be the set of U ∈ C satisfying U ⊆ V for some V ∈ C. Let

{Dn : n < ω} be a countable subcover of D. For each n < ω, set En = Dn \
⋃
m<nDm;

set E = {En : n < ω}. Then E is a locally finite refinement of C. For each n < ω,

set Fn = An \
⋃
{E ∈ E : Bn ∩ E = ∅}, which is a countable union of intervals; set

F = {Fn : n < ω}. Since E is locally finite, each Fn is open. Hence, each Fn is a

countable union of open intervals. Moreover, Bn ⊆ Fn ⊆ An for all n < ω; hence, F is

a refinement of A.

Thus, it suffices to show that F is locally finite. Since E is a locally finite cover of

X, it suffices to show that each element of E only intersects finitely many elements of

F . Let i < ω and choose V ∈ C such that Ei ⊆ V . Suppose j < ω and Ei ∩ Fj 6= ∅.

Then Ei ∩Bj 6= ∅ by definition of Fj. Hence, V ∩Bj 6= ∅; hence, there are only finitely

possibilities for Bj; hence, there are only finitely many possibilities for Fj.

Lemma 4.3.3. Let X be a nonseparable, Lindelöf, linearly ordered topological space.

Then X does not have an ωop-like base.

Proof. Let A be a base of X. Let us show that A is not ωop-like. First, let us construct

sequences of open sets 〈An,k〉n,k<ω and 〈Bn,k〉n,k<ω. Our requirements are that Bn,i ⊆

An,i ∈ A, that Bn,i is a countable union of open intervals, that {Bn,k : k < ω} is a locally
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finite cover of X and pairwise ⊆-incomparable, and that {Ai,k : k < ω} ∩ {Aj,k : k <

ω} ⊆ [X]1 for all i < j < ω and n < ω.

Suppose n < ω and we are given 〈Am,k〉k<ω and 〈Bm,k〉k<ω for all m < n and they

meet our requirements. Let p ∈ X. Set Vp =
⋂
{Bm,k : m < n and k < ω and p ∈ Bm,k}.

Then Vp is open. If |Vp| = 1, then set Up = Vp. If |Vp| > 1, then choose Up ∈ A such

that p ∈ Up ( Vp. Set U = {Up : p ∈ X}. By Lemma 4.3.2, there exists a countable,

locally finite refinement Bn of U consisting only of countable unions of open intervals.

Since Bn is locally finite, it has no infinite ascending chains; hence, we may assume Bn

is pairwise ⊆-incomparable because we may shrink Bn to its maximal elements. Let

{Bn,k : k < ω} = Bn. For each k < ω, set An,k = Up for some p ∈ X satisfying

Bn,k ⊆ Up. Suppose m < n and i, j < ω and Am,i = An,j 6∈ [X]1. Choose p ∈ X such

that An,j = Up; choose k < ω such that p ∈ Bm,k. Then Bm,i ⊆ Am,i = Up ( Vp ⊆ Bm,k,

in contradiction with the pairwise ⊆-incomparability of {Bm,l : l < ω}. Thus, {Am,l :

l < ω} ∩ {An,l : l < ω} ⊆ [X]1 for all m < n. By induction, 〈An,k〉n,k<ω and 〈Bn,k〉n,k<ω

meet our requirements.

Let {X,≤,A} ⊆ M ≺ Hθ and |M | = ω. Choose x ∈ X \ X ∩M . Then there

exists y, z ∈ X such that y < x < z and (y, z) does not intersect M . Choose U ∈ A

such that U ⊆ (y, z). By elementarity, we may assume that An,k, Bn,k ∈ M for all

n, k < ω. For each n < ω, choose in < ω such that x ∈ Bn,in . Fix n < ω. Since

x 6∈ M , we cannot have An,in = {x}; hence, An,in 6= Am,im for all m < n. Hence, it

suffices to show that U ⊆ An,in . There exist 〈uj〉j<ω, 〈vj〉j<ω ∈ (X ∪ {∞,−∞})ω ∩M

such that Bn,in =
⋃
j<ω(uj, vj). Hence, there exists j < ω such that uj < x < vj. Since

x ∈ (y, z) ∩ (uj, vj) and (y, z) does not intersect M , we have (y, z) ⊆ (uj, vj); hence,

U ⊆ An,in .
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Theorem 4.3.4. Let X be a Lindelöf linearly ordered topological space. Then the fol-

lowing are equivalent.

1. X is metric.

2. X has an ωop-like base.

3. X is separable and has an ωop
1 -like base.

Proof. By Theorem 4.3.1, (1) implies (2). By Lemma 4.3.3, (2) implies (3). Hence, it

suffices to show that (3) implies (1). Suppose X has a countable dense subset D and

an ωop
1 -like base. Then π(X) = ω; hence, by Proposition 3.2.22, w(X) = ω; hence, X is

metric.

For compact linearly ordered topological spaces, Theorem 4.3.4 can be strengthened.

Lemma 4.3.5. Suppose κ is a regular uncountable cardinal and X is a linearly ordered

compactum such that Nt(X) ≤ κ. Then d(X) < κ.

Proof. Suppose d(X) ≥ κ and A is a κop-like base of X. Let {X,≤,A} ∈ M ≺ Hθ

and |M | < κ and M ∩ κ ∈ κ. By compactness, X contains a nonempty open interval

(x, y) that is maximal among the open convex subsets of X that are disjoint from M . If

x, y ∈ M , then (x, y) ∩M is nonempty by elementarity; hence, we may assume x 6∈ M .

Therefore, by maximality of (x, y), we have x = sup([minX, x)∩M). Choose z ∈ (x, y);

choose U ∈ A such that x ∈ U ⊆ [minX, z). Then there exist u, v ∈ X such that

x ∈ (u, v) ⊆ U . Hence, there exist p0, p1, p2 ∈ M such that u < p0 < p1 < p2 < x.

Choose V ∈ A such that p1 ∈ V ⊆ (p0, p2); by elementarity, we may assume V ∈ M .

Set B = {W ∈ A : V ⊆ W}. Then U ∈ B ∈ M and |B| < κ; hence, U ∈ M . Set
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w = min([p1,maxX] \ U). Then w ∈ M and v ≤ w ≤ z; hence, w ∈ (x, y) ∩M , which

is absurd. Thus, d(X) < κ.

Theorem 4.3.6. Let X be a linearly ordered compactum. Then the following are equiv-

alent.

1. X is metric.

2. X has an ωop-like base.

3. X has an ωop
1 -like base.

4. X is separable and has an ωop
1 -like base.

Proof. By Theorem 4.3.4, (1), (2), and (4) are equivalent. Moreover, (2) trivially implies

(3). By Lemma 4.3.5, (3) implies (4).

Example 4.3.7. Theorem 4.3.6 fails for Lindelöf linearly ordered topological spaces.

Let X be (ω1 × Z) ∪ ({ω1} × {0}) ordered lexicographically. Then X is Lindelöf and

nonseparable and {{〈α, n〉} : α < ω1 and n ∈ Z} ∪ {X \ (α×Z) : α < ω1} is an ωop
1 -like

base of X.

4.4 The Noetherian spectrum of ordered compacta

Theorem 4.3.6 implies that no linearly ordered compactum has Noetherian type ω1.

What is the class of Noetherian types of linearly ordered compacta? We shall prove that

an infinite cardinal κ is the Noetherian type of a linearly ordered compactum if and only

if κ 6= ω1 and κ is not weakly inaccessible.
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Theorem 4.4.1. Let κ be an uncountable cardinal and give κ+ 1 the order topology. If

κ is regular, then Nt(κ+ 1) = κ+; otherwise, Nt(κ+ 1) = κ.

Proof. Let A be a base of κ + 1 and let λ be a regular cardinal ≤ κ. Let us show that

A is not λop-like. For every limit ordinal α < λ, choose Uα ∈ A such that α = maxUα;

choose η(α) < α such that [η(α), α] ⊆ Uα. By the Pressing Down Lemma, η is constant

on a stationary subset S of λ. Hence, A 3 {η(minS) + 1} ⊆ Uα for all α ∈ S;

hence, A is not λop-like. Hence, Nt(κ + 1) ≥ κ and Nt(κ + 1) > cf κ. Moreover,

Nt(κ+ 1) ≤ w(κ+ 1)+ = κ+. Hence, it suffices to show that κ+ 1 has a κop-like base if

κ is singular. Suppose E ∈ [κ]<κ is unbounded in κ. Let F be the set of limit points of

E in κ+ 1. Define B by

B = {(β, α] : E 3 β < α ∈ F or sup(E ∩ α) ≤ β < α ∈ κ \ F}.

Then B is a κop-like base of κ+ 1.

Definition 4.4.2. Given a poset P with ordering ≤, let P op denote the set P with

ordering ≥.

Theorem 4.4.3. Suppose κ is a singular cardinal. Then there is a linearly ordered

compactum with Noetherian type κ+.

Proof. Set λ = cf κ and X = λ++1. Partition the set of limit ordinals in λ+ into λ-many

stationary sets 〈Sα〉α<λ. Let 〈κα〉α<λ be an increasing sequence of regular cardinals with

supremum κ. For each α < λ and β ∈ Sα, set Yβ = (κα + 1)op. For each α ∈ X\
⋃
β<λ Sβ,

set Yα = 1. Set Y =
⋃
α∈X{α} × Yα ordered lexicographically. Then Nt(Y ) ≤ w(Y )+ ≤

|Y |+ = κ+. Hence, it suffices to show that Y has no κop-like base.

Seeking a contradiction, suppose A is a κop-like base of Y . For each α < λ, let Uα

be the set of all U ∈ A that have at least κα-many supersets in A. Then, for all isolated
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points p of Y , there exists α < λ such that {p} 6∈ Uα; whence, p 6∈
⋃
Uα. Since 〈α+ 1, 0〉

is isolated for all α < λ+, there exist β < λ and a set E of successor ordinals in λ+ such

that |E| = λ+ and (E × 1) ∩
⋃
Uβ = ∅. Let C be the closure of E in λ+. Then C is

closed unbounded; hence, there exists γ ∈ C ∩Sβ+1. Set q = 〈γ, κβ+1〉. Then q ∈ E × 1;

hence, q 6∈
⋃
Uβ. Since q has coinitiality κβ+1, any local base B at q will contain an

element U such that U has κβ-many supersets in B. Hence, there exists U ∈ Uβ such

that q ∈ U ; hence, q ∈
⋃
Uβ, which yields our desired contradiction.

Theorem 4.4.4. No linearly ordered compactum has weakly inaccessible Noetherian

type.

Proof. Suppose κ is weakly inaccessible and X is a linearly ordered compactum satisfying

Nt(X) ≤ κ. Then it suffices to prove Nt(X) < κ. By Lemma 4.3.5, we have π(X) =

d(X) < κ. If w(X) ≥ κ, then Nt(X) > κ by Proposition 3.2.22, in contradiction with

our assumptions about X. Hence, w(X) < κ; hence, Nt(X) ≤ w(X)+ < κ.
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Chapter 5

Splitting families and the

Noetherian type of βω \ ω

5.1 Introduction

Let ω∗ denote the space of nonprincipal ultrafilters on ω. Malykhin [42] proved that

MA implies πNt(ω∗) = c and CH implies Nt(ω∗) = c. We extend these results by

investigating Nt(ω∗), πNt(ω∗), χNt(ω∗), and πχNt(ω∗) as cardinal characteristics of

the continuum. For background on such cardinals, see Blass [11]. We also examine the

sequence 〈Nt((ω∗)1+α)〉α∈On.

Definition 5.1.1. Let b denote the minimum of |F| where F ranges over the subsets

of ωω that have no upper bound in 〈ωω〉, where ≤∗ denotes eventual domination.

Definition 5.1.2. A tree π-base of a space X is a π-base that is a tree when ordered

by containment. Let h be the minimum of the set of heights of tree π-bases of ω∗.

Balcar, Pelant, and Simon [3] proved that tree π-bases of ω∗ exist, and that h ≤

min{b, cf c}. They also proved that the above definition of h is equivalent to the more

common definition of h as the distributivity number of [ω]ω ordered by ⊆∗.

Definition 5.1.3. Given x, y ∈ [ω]ω, we say that x splits y if |y ∩ x| = |y \ x| = ω. Let

r be the minimum value of |A| where A ranges over the subsets of [ω]ω such that no
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x ∈ [ω]ω splits every y ∈ A. Let s be the minimum value of |A| where A ranges over the

subsets of [ω]ω such that every x ∈ [ω]ω is split by some y ∈ A.

It is known that b ≤ r and h ≤ s. (See Theorems 3.8 and 6.9 of [11].)

Clearly, Nt(ω∗) ≤ w(ω∗)+ = c+. We will show that also πχNt(ω∗) = ω and

πNt(ω∗) = h and s ≤ Nt(ω∗). Furthermore, Nt(ω∗) can consistently be c, c+, or

any regular κ satisfying 2<κ = c. Also, Nt(ω∗) = ω1 is relatively consistent with any

values of b and c. The relations ω1 < b = s = Nt(ω∗) < c and ω1 = b = s < Nt(ω∗) < c

are also each consistent. We also prove some relations between r and Nt(ω∗), as well as

some consistency results about the local Noetherian type of points in ω∗.

5.2 Basic results

Definition 5.2.1. For all x ∈ [ω]ω, set x∗ = {p ∈ ω∗ : p ∈ x}.

Theorem 5.2.2. It is relatively consistent with any value of c satisfying cf c > ω1 that

Nt(ω∗) = c+.

Proof. We may assume cf c > ω1. By Exercise A10 on p. 289 of Kunen [40], there is a

ccc generic extension V [G] such that č = cV [G] and, in V [G], there exists p ∈ ω∗ such

that χ(p, ω∗) = ω1. Henceforth work in V [G]. Let ϕ be a bijection from ω2 to ω. Define

ψ : ω∗ → ω∗ by

x 7→ {E ⊆ ω : {m < ω : {n < ω : ϕ(m,n) ∈ E} ∈ p} ∈ x}.

Since πχ(p, ω∗) ≤ χ(p, ω∗) = ω1, there exists 〈Eα〉α<ω1 ∈ ([ω]ω)ω1 such that every neigh-

borhood of p contains E∗α for some α < ω1. Hence, for all x ∈ ω∗, every neighborhood of

ψ(x) contains (ϕ[{m} ×Eα])∗ for some m < ω and α < ω1; whence, πχ(ψ(x), ω∗) = ω1.
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Since ψ is easily verified to be a topological embedding, χ(x, ω∗) ≤ χ(ψ(x), ω∗) for all

x ∈ ω∗. By a result of Pospǐsil [56], there exists q ∈ ω∗ such that χ(q, ω∗) = c. Hence,

πχ(ψ(q), ω∗) = ω1 and χ(ψ(q), ω∗) = c. By Proposition 3.3.11, Nt(ω∗) > χ(ψ(q), ω∗) =

c.

Definition 5.2.3. Given n < ω, let ssn (ssω) denote the least cardinal κ for which there

exists a sequence 〈fα〉α<c of functions on ω each with range contained in n (each with

finite range) such that for all I ∈ [c]κ and x ∈ [ω]ω there exists α ∈ I such that fα is not

eventually constant on x. (The notation ss was chosen with the phrase “supersplitting

number” in mind.) Note that if such an 〈fα〉α<c does not exist for any κ ≤ c, then ssn

(ssω) is by definition equal to c+.

Clearly ssn ≥ ssn+1 ≥ ssω for all n < ω. Moreover, since cf c > ω, we have ssω = ssn

for some n < ω. However, for any particular n ∈ ω \ 2, it is not clear whether ZFC

proves ssω = ssn.

Definition 5.2.4. Given λ ≥ κ ≥ ω and a space X, a 〈λ, κ〉-splitter of X is a sequence

〈Fα〉α<λ of finite open covers of X such that, for all I ∈ [λ]κ and 〈Uα〉α∈I ∈
∏

α∈I Fα,

the interior of
⋂
α∈I Uα is empty.

Lemma 5.2.5. Suppose X is a compact space with a base A of size at most w(X) such

that U ∩ V ∈ A ∪ {∅} for all U, V ∈ A. If κ ≤ w(X) and X has a 〈w(X), κ〉-splitter,

then A contains a κop-like base of X. Hence, Nt(ω∗) ≤ ssω.

Proof. Set λ = w(X) and let 〈Fα〉α<λ be a 〈λ, κ〉-splitter of X. For each α < λ,

the cover Fα is refined by a finite subcover of A; hence, we may assume Fα ⊆ A. Let

A = {Uα : α < λ}. For each α < λ, set Bα = {Uα∩V : V ∈ Fα}. Set B =
⋃
α<λ Bα\{∅}.

Then B is easily seen to be a base of X and a κop-like subset of A.
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Lemma 5.2.6. Let X be a compact space without isolated points and let ω ≤ κ ≤ λ ≤

minp∈X χ(p,X). If X has no 〈λ, κ〉-splitter, then Nt(X) > κ.

Proof. Let A be a base of X. Construct a sequence 〈Fα〉α<λ of finite subcovers of A

as follows. Suppose we have α < λ and 〈Fβ〉β<α. For each p ∈ X, choose Vp ∈ A

such that p ∈ Vp 6∈
⋃
β<αFβ. Let Fα be a finite subcover of {Vp : p ∈ X}. Then

Fα ∩ Fβ = ∅ for all α < β < λ. Suppose X has no 〈λ, κ〉-splitter. Then choose I ∈ [λ]κ

and 〈Uα〉α∈I ∈
∏

α∈I Fα such that
⋂
α∈I Uα has nonempty interior. Then there exists

W ∈ A such that W ⊆
⋂
α∈I Uα. Thus, A is not κop-like.

Definition 5.2.7. Let u denote the minimum of the set of characters of points in ω∗.

Let πu denote the minimum of the set of π-characters of points in ω∗.

By a theorem of Balcar and Simon [4], πu = r.

Theorem 5.2.8. Suppose u = c. Then Nt(ω∗) = ssω.

Proof. By Lemma 5.2.5, Nt(ω∗) ≤ ssω. Suppose κ ≤ c. Since every finite open cover

of ω∗ is refined by a finite, pairwise disjoint, clopen cover, ω∗ has a 〈c, κ〉-splitter if and

only if ssω ≤ κ. Hence, Nt(ω∗) ≥ ssω by Lemma 5.2.6.

Lemma 5.2.9. Suppose r = c. Then ss2 ≤ c.

Proof. Let 〈xα〉α<c enumerate [ω]ω. Construct 〈yα〉α<c ∈ ([ω]ω)c as follows. Given α < c

and 〈yβ〉β<α, choose yα such that yα splits every element of {xα}∪{yβ : β < α}. Suppose

I ∈ [c]c and α < c. Then xα is split by yβ for all β ∈ I \ α. Thus, 〈{yα, ω \ yα}〉α<c

witnesses ss2 ≤ c.

Theorem 5.2.10. The cardinals r and Nt(ω∗) are related as follows.
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1. If r = c, then Nt(ω∗) = ssω ≤ c.

2. If r < c, then Nt(ω∗) ≥ c.

3. If r < cf c, then Nt(ω∗) = c+.

Proof. Statement (1) follows from Lemma 5.2.9, Theorem 5.2.8, and πu = r. The proof

of Theorem 5.2.2 shows how to construct p ∈ ω∗ such that πχ(p, ω∗) = πu = r and

χ(p, ω∗) = c. Hence, (2) and (3) follow from Proposition 3.3.11.

Definition 5.2.11. Let d = cf (〈ωω,≤∗〉). Given a regular cardinal κ, κ-scale is a cofinal

subset of 〈, ωω,≤∗〉 that has order type κ.

A κ-scale exists if and only if b = d = κ.

Theorem 5.2.12. For all cardinals κ satisfying κ > cf κ > ω, it is consistent that

r = u = b = d = cf κ and Nt(ω∗) = ss2 = c = κ.

Proof. Assuming GCH in the ground model, construct a finite support iteration 〈Pα〉α≤κ

as follows. First choose some U0 ∈ ω∗. Then suppose we have α < κ and Pα and

α Uα ∈ ω∗. Let Pα+1
∼= Pα ∗ (Qα × Dα) where Qα is a Pα-name for the Booth forcing

for Uα and Dα is the Pα-name for Hechler forcing. Let xα be a Pα+1-name for the generic

pseudointersection of Uα added by Qα; let Uα+1 be a Pα+1-name for an element of ω∗

containing Uα∪{xα}. Let fα be a Pα+1-name for the generic dominating function added

by Dα. For limit α < κ, let Uα =
⋃
β<α Uβ.

Let 〈ηα〉α<cf κ be an increasing sequence of ordinals with supremum κ. The sequence

〈fηα〉α<cf κ is forced to be a cf κ-scale, so κ b = d = cf κ. Moreover, {xηα : α < cf κ}

is forced to generate an ultrafilter in the Pκ-generic extension of V . Hence, κ r ≤ u ≤

cf κ < κ = c. Therefore, by Lemma 5.2.5 and Theorem 5.2.10, it suffices to show that
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κ ss2 ≤ κ. Every nontrivial finite support iteration of infinite length adds a Cohen

real. Hence, we may choose for each α < κ a Pω(α+1)-name yα for an element of [ω]ω

that is Cohen over the Pωα-generic extension of V . Then every name S for the range of

a cofinal subsequence of 〈yα〉α<κ is such that

κ ∀z ∈ [ω]ω ∃w ∈ S w splits z.

Hence, 〈yα〉α<κ witnesses that κ ss2 ≤ κ.

Theorem 5.2.13. Nt(ω∗) ≥ s.

Proof. Suppose Nt(ω∗) = κ < s. Since Nt(ω∗) < c, we have r = c by Theorem 5.2.10.

Hence, u = c. By Theorem 5.2.8, it suffices to show that ssω > κ. Suppose 〈fα〉α<c is

a sequence of functions on ω with finite range and I ∈ [c]κ. Since κ < s, there exists

x ∈ [ω]ω such that fα is eventually constant on x for all α ∈ I. Thus, ssω > κ.

Theorem 5.2.14. πNt(ω∗) = h.

Proof. First, we show that πNt(ω∗) ≤ h. Let A be a tree π-base of ω∗ such that A

has height h with respect to containment. Then A is clearly hop-like. To show that

h ≤ πNt(ω∗), let A be as above and let B be a πNt(ω∗)op-like π-base of ω∗. Then

A and B are mutually dense; hence, by Lemma 3.2.20, A contains a πNt(ω∗)op-like

π-base C of ω∗. Since C is also a tree π-base, it has height at most πNt(ω∗). Hence,

h ≤ πNt(ω∗).

Corollary 5.2.15. If h = c, then πNt(ω∗) = Nt(ω∗) = ss2 = c.

Proof. Suppose h = c. Then r = c because h ≤ b ≤ r ≤ c. Hence, by Theorem 5.2.14,

Theorem 5.2.10, and Lemma 5.2.9, c ≤ πNt(ω∗) ≤ Nt(ω∗) = ssω ≤ ss2 ≤ c.
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5.3 Models of Nt(βω \ ω) = ω1

Adding c-many Cohen reals collapses ss2 to ω1. By Lemma 5.2.5, it therefore also

collapses Nt(ω∗) to ω1. The same result holds for random reals and Hechler reals.

Theorem 5.3.1. Suppose κω = κ and P = B(2κ)/I where B(2κ) is the Borel alegebra

of the product space 2κ and I is either the meager ideal or the null ideal (with respect to

the product measure). (In other words, P adds κ-many Cohen reals or κ-many random

reals in the usual way.) Then 1P  ω1 = ss2.

Proof. Working in a P-generic extension V [G], we have κ = c and a sequence 〈xα〉α<κ in

[ω]ω such that V [G] = V [〈xα〉α<κ] and, if E ∈ P(κ)∩V and α ∈ κ\E, then xα is Cohen

or random over V [〈xβ〉β∈E]. (See [38] for a proof.) Suppose I ∈ [κ]ω1 and y ∈ [ω]ω.

Then y ∈ V [〈xα〉α∈J ] for some J ∈ [κ]ω ∩ V ; hence, xα splits y for all α ∈ I \ J . Thus,

〈{xα, ω \ xα}〉α<κ witnesses ss2 = ω1.

Corollary 5.3.2. Every transitive model of ZFC has a ccc forcing extension that pre-

serves b, d, and c, and collapses ss2 to ω1.

Proof. Add c-many random reals to the ground model. Then every element of ωω in the

extension is eventually dominated by an element of ωω in the ground model; hence, b,

d, and c are preserved by this forcing, while ss2 becomes ω1.

Definition 5.3.3. We say that a transfinite sequence 〈xα〉α<η of subsets of ω is eventually

splitting if for all y ∈ [ω]ω there exists α < η such that for all β ∈ η \ α the set xβ splits

y.

Theorem 5.3.4. Let κ = κω. Then ss2 = ω1 is forced by the κ-long finite support

iteration of Hechler forcing.



126

Proof. Let P be the κ-long finite support iteration of Hechler forcing. Let G be a generic

filter of P. For each α < κ, let gα be the generic dominating function added at stage α;

set xα = {n < ω : gα(n) is even}. Suppose p ∈ G and I and y are names such that p

forces I ∈ [κ]ω1 and y ∈ [ω]ω. Choose q ∈ G and a name h such that q ≤ p and q forces h

to be an increasing map from ω1 to I. For each α < ω1, set Eα = {β < κ : q 6 h(α) 6= β̌};

let kα be a surjection from ω to Eα. Let q ≥ r ∈ G and n < ω and γ ≤ κ and J be a

name such that r forces J ∈ [ω1]ω1 and sup ranh = γ̌ and h(α) = kα(n)ˇ for all α ∈ J .

Set F = {kα(n) : α < ω1} ∩ γ; let j be the order isomorphism from some ordinal η

to F . Then cf η = cf γ = ω1. For all α < κ, the set xα is Cohen over V [〈gβ〉β<α];

hence, 〈xj(α)〉α<η is eventually splitting in V [〈gα〉α<γ]. By a result of Baumgartner and

Dordal [9], 〈xj(α)〉α<η is also eventually splitting in V [G]. Choose β < η such that

xj(α) splits yG for all α ∈ η \ β. Then there exist s ∈ G and α ∈ γ \ j(β) such that

r ≥ s  α̌ ∈ h[J ]. Hence, α ∈ IG and xα splits yG. Thus, 〈{xα, ω \ xα}〉α<κ witnesses

ss2 = ω1 in V [G].

Definition 5.3.5. Let add(B) denote the additivity of the ideal of meager sets of reals.

It is known that add(B) ≤ b and that it is consistent that add(B) < b. (See 5.4 and

11.7 of [11] and 7.3.D of [8]).

Corollary 5.3.6. If κ = cf κ > ω, then it is consistent that ss2 = ω1 and add(B) = c =

κ.

Proof. Starting with GCH in the ground model, perform a κ-long finite support iteration

of Hechler forcing. This forces add(B) = c = κ (see 11.6 of [11]). By Theorem 5.3.4, this

also forces ss2 = ω1.
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5.4 Models of ω1 < Nt(βω \ ω) < c

To prove the consistency of ω1 < Nt(ω∗) < c, we employ generalized iteration of forcing

along posets as defined by Groszek and Jech [25]. We will only use finite support

iterations along well-founded posets. For simplicity, we limit our definition of generalized

iterations to this special case.

Definition 5.4.1. Suppose X is a well-founded poset and P a forcing order consisting

of functions on X. Given any x ∈ X, partial map f on X, and down-set Y of X, set

P � Y = {p � Y : p ∈ P}, X � x = {y ∈ X : y < x}, X �≤ x = {y ∈ X : y ≤ x}, P � x =

P � (X � x), P �≤ x = P � (X �≤ x), f � x = f � (X � x), and f �≤ x = f � (X �≤ x).

Then P is a finite support iteration along X if there exists a sequence 〈Qx〉x∈X satisfying

the following conditions for all x ∈ X and all p, q ∈ P.

• P � x is a finite support iteration along X � x.

• Qx is a (P � x)-name for a forcing order.

• P �≤ x = {p ∪ {〈x, q〉} : 〈p, q〉 ∈ (P � x) ∗Qx}.

• 1P � x  1P(x) = 1Qx .

• P is the set of functions r on X for which r �≤ y ∈ P �≤ y for all y ∈ X and

1P�z  r(z) = 1Qz for all but finitely many z ∈ X.

• p ≤ q if and only if p � y ≤ q � y and p � y  p(y) ≤ q(y) for all y ∈ X.

Given a finite support iteration P along X and x ∈ X and a filter G of P, set

Gx = {p(x) : p ∈ G}, G � x = {p � x : p ∈ G}, and G �≤ x = {p �≤ x : p ∈ G}. Given

any down-set Y of X, set G � Y = {p � Y : p ∈ G}.
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Remark 5.4.2. If P is a finite support iteration along a well-founded poset X with

down-set Y , then P � Y is an iteration along Y , and 1P�Y = 1P � Y .

Definition 5.4.3. Suppose P is a finite support iteration along a well-founded poset

X with down-sets Y and Z such that Y ⊆ Z. Then there is a complete embedding

jZY : P � Y → P � Z given by jZY (p) = p∪ (1P � Z \ Y ) for all p ∈ P � Y . This embedding

naturally induces an embedding of the class of (P � Y )-names, which in turn naturally

induces an embedding of the class of atomic forumlae in the (P � Y )-forcing language.

Let jZY also denote these embeddings.

Proposition 5.4.4. Suppose P, Y , and Z are as in the above definition, and ϕ is

an atomic formula in the (P � Y )-forcing language. Then, for all p ∈ P � Z, we have

p  jZY (ϕ) if and only if p � Y  ϕ.

Proof. If p � Y  ϕ, then p ≤ jZY (p � Y )  jZY (ϕ). Conversely, suppose p � Y 6 ϕ.

Then we may choose q ≤ p � Y such that q  ¬ϕ. Hence, jZY (q)  ¬jZY (ϕ). Set

r = q ∪ (p � Z \ Y ). Then jZY (q) ≥ r ≤ p; hence, p 6 jZY (ϕ).

Lemma 5.4.5. Suppose P is a finite support iteration along a well-founded poset X

and x is a maximal element of X. Set Y = X \ {x}. Then there is a dense embedding

φ : P→ (P � Y )∗jYX�x(Qx) given by φ(p) = 〈p � Y, jYX�x(p(x))〉. Hence, if G is a P-generic

filter, then Gx is (Qx)G�x-generic over V [G � Y ].

Proof. First, let us show that φ is an order embedding. Suppose r, s ∈ P. Then r ≤ s

if and only if r � Y ≤ s � Y and r � x  r(x) ≤ s(x). Also, φ(r) ≤ φ(s) if and only if

r � Y ≤ s � Y and r � Y  jYX�x(r(x) ≤ s(x)). By Proposition 5.4.4, r � Y  jYX�x(r(x) ≤

s(x)) if and only if r � x  r(x) ≤ s(x); hence, r ≤ s if and only if φ(r) ≤ φ(s).
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Finally, let us show that ranφ is dense. Suppose 〈p, q〉 ∈ (P � Y ) ∗ jYX�x(Qx). Then

there exist r ≤ p and s ∈ dom
(
jYX�x(Qx)

)
such that r  s = q ∈ jYX�x(Qx). Hence,

〈r, s〉 ≤ 〈p, q〉. Also, s is a (jYX�x[P � x])-name; hence, there exists a (P � x)-name t such

that jYX�x(t) = s. Hence, r  jYX�x(t ∈ Qx); hence, r � x  t ∈ Qx. Hence, r∪{〈x, t〉} ∈ P

and φ(r ∪ {〈x, t〉}) = 〈r, s〉. Thus, ranφ is dense.

Remark 5.4.6. Proposition 5.4.4 and Lemma 5.4.5 and their proofs remain valid for

arbitrary iterations along posets as defined in [25].

Lemma 5.4.7. Let P be a forcing order, A a subset of [ω]ω with the SFIP, Q the Booth

forcing for A, x a Q-name for a generic pseudointersection of A, and B a P-name such

that 1P forces Ǎ ⊆ B ⊆ [ω]ω and forces B to have the SFIP. Let i and j be the canonical

embeddings, respectivly, of P-names and Q-names into (P ∗ Q̌)-names. Then 1P∗Q̌ forces

i(B) ∪ {j(x)} to have the SFIP.

Proof. Seeking a contradiction, suppose r0 = 〈p0, 〈σ, F 〉ˇ〉 ∈ P ∗ Q̌ and n < ω and

p0  H ∈ [B]<ω and r0  j(x)∩
⋂
i(H) ⊆ ň. Then p0 forces F̌ ∪H ⊆ B, which is forced

to have the SFIP; hence, there exist p1 ≤ p0 and m ∈ ω\n such that p1  m̌ ∈
⋂

(F̌ ∪H).

Set r1 = 〈p1, 〈σ ∪ {m}, F 〉ˇ〉. Then r0 ≥ r1  m̌ ∈ j(x) ∩
⋂
i(H), contradicting how we

chose r0.

Lemma 5.4.8. Suppose P and Q are forcing orders such that P is ccc and Q has property

(K). Then 1P forces Q̌ to have property (K).

Proof. Suppose the lemma fails. Then there exist p ∈ P and f such that p  f ∈ Q̌ω1

and p  ∀J ∈ [ω1]ω1 ∃α, β ∈ J f(α) ⊥ f(β). For each α < ω1, choose pα ≤ p and qα ∈ Q

such that pα  f(α) = q̌α. Then there exists I ∈ [ω1]ω1 such that qα 6⊥ qβ for all α, β ∈ I.
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Let J be the P-name {〈α̌, pα〉 : α ∈ I}. Then p  ∀α, β ∈ J f(α) = q̌α 6⊥ q̌β = f(β).

Hence, p  |J | ≤ ω. Since P is ccc, there exists α ∈ I such that p  J ⊆ α̌. But this

contradicts p ≥ pα  α̌ ∈ J .

Lemma 5.4.9. Suppose P is a finite support iteration along a well-founded poset X and

1P � x forces Qx to have property (K) for all x ∈ X. Then P has property (K).

Proof. We may assume the lemma holds whenever X is replaced by a poset of lesser

height. Let I ∈ [P]ω1 . We may assume {supp(p) : p ∈ I} is a ∆-system; let σ be

its root. Set Y0 =
⋃
x∈σX � x. Then P � Y0 has property (K). Let n = |σ \ Y0| and

〈xi〉i<n biject from n to σ \ Y0. Set Yi+1 = Yi ∪ {xi} for all i < n. Suppose i < n

and P � Yi has property (K). By Lemma 5.4.8, 1P�Yi forces jYiX�xi(Qxi) to have property

(K). Hence, P � Yi+1 has property (K), for it densely embeds into P � Yi ∗ jYiX�xi(Qxi) by

Lemma 5.4.5. By induction, P � Yn has property (K); hence, there exists J ∈ [I]ω1 such

that p � Yn 6⊥ q � Yn for all p, q ∈ J . Fix p, q ∈ J and choose r such that r ≤ p � Yn and

r ≤ q � Yn. Set s = r∪(p � supp(p)\Yn)∪(q � supp(q)\Yn) and t = s∪(1P � X \dom s).

Then t ≤ p, q.

Lemma 5.4.10. Suppose cf κ = κ ≤ λ = λ<κ. Then there exists a κ-like, κ-directed,

well-founded poset Ξ with cofinality and cardinality λ.

Proof. Let {xα : α < λ} biject from λ to [λ]<κ. Construct 〈yα〉α<λ ∈ ([λ]<κ)λ as follows.

Given α < λ and 〈yβ〉β<α, choose ξα ∈ λ \
⋃
β<α yβ and set yα = xα ∪ {ξα}. Let Ξ be

{yα : α < λ} ordered by inclusion. Then Ξ is cofinal with [λ]<κ; hence, Ξ is κ-directed

and has cofinality λ. Also, Ξ is well-founded because 〈yα〉α<λ is nondecreasing. Finally,

Ξ is κ-like because for all I ∈ [λ]κ we have |
⋃
α∈I yα| ≥ |{ξα : α ∈ I}| = κ; whence,

{yα : α ∈ I} has no upper bound in [λ]<κ.
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Definition 5.4.11. For all x, y ⊆ ω, define x ⊆∗ y as |x \ y| < ω. Let p denote the

minimum value of |A| where A ranges over the subsets of [ω]ω that have SFIP yet have

no pseudointersection.

Remark 5.4.12. It easily seen that ω1 ≤ p ≤ h.

Theorem 5.4.13. Suppose ω1 ≤ cf κ = κ ≤ λ = λ<κ. Then there is a property (K)

forcing extension in which

p = πNt(ω∗) = Nt(ω∗) = ss2 = b = κ ≤ λ = c.

Moreover, in this extension ω∗ has Pκ-points; whence, maxq∈ω∗ χNt(q, ω
∗) = κ.

Proof. Let Ξ be as in Lemma 5.4.10. Let 〈σα〉α<λ biject from λ to Ξ. Let 〈〈ζα, ηα〉〉α<λ

biject from λ to λ2. Given α < λ and 〈τζβ ,ηβ〉β<α ∈ Ξα, choose τζα,ηα ∈ Ξ such that

σζα < τζα,ηα 6≤ τζβ ,ηβ for all β < α. We may so choose τζα,ηα because Ξ is directed and

has cofinality λ.

Let us construct a finite support iteration P along Ξ. Since Ξ is well-founded, we

may define Qσ in terms of P � σ for each σ ∈ Ξ. Suppose σ ∈ Ξ and, for all τ < σ, we

have |P �≤ τ | < κ and 1P�τ forces Qτ to have property (K). Then P � σ has property

(K) by Lemma 5.4.9, and hence is ccc. Moreover, |P � σ| < κ because P � σ is a finite

support iteration along Ξ � σ and |Ξ � σ| < κ. Hence, 1P�σ  |c<κ| ≤ ((κω)<κ)ˇ ≤ λ.

Let Eσ be a (P � σ)-name for the set of all E in the (P � σ)-generic extension for which

E ∈ [[ω]ω]<κ and E has the SFIP. Then we may choose a (P � σ)-name fσ such that 1P�σ

forces fσ to be a surjection from λ to Eσ. We may assume we are given corresponding fτ

for all τ < σ. If there exist α, β < λ such that σ = τα,β, then let Qσ be a (P � σ)-name

for Q′σ × Fn(ω, 2) where Q′σ is a (P � σ)-name for the Booth forcing for fσα(β). If there
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are no such α and β, then let Qσ be a (P � σ)-name for a singleton poset. Then 1P�σ

forces Qσ to have property (K). Also, we may assume |Qσ| < κ. Hence, |P �≤ σ| < κ.

By induction, |P �≤ σ| < κ and 1P�σ forces Qσ to have property (K) for all σ ∈ Ξ.

Hence, P has property (K) by Lemma 5.4.9, and hence is ccc. Also, since |Ξ| ≤ λ and P

is a finite support iteration, |P| ≤ λ. Let G be a P-generic filter. Then cV [G] ≤ λω = λ.

Moreover, cV [G] ≥ λ because P adds λ-many Cohen reals.

By Theorem 5.2.14 and Lemma 5.2.5, it suffices to show that bV [G] ≤ κ ≤ pV [G], that

ss
V [G]
2 ≤ κ, and that some q ∈ (ω∗)V [G] is a Pκ-point. First, we prove κ ≤ pV [G]. Suppose

E ∈ ([[ω]ω]<κ)V [G] and E has the SFIP. Then there exists α < λ such that E ∈ V [G � σα]

because Ξ is κ-directed. Hence, there exists β < λ such that (fσα)G�σα(β) = E. Hence,

E has a pseudointersection in V [G �≤ τα,β]. Thus, κ ≤ pV [G].

Second, let us show that bV [G] ≤ κ. For each α < κ, let uα be the increasing

enumeration of the Cohen real added by the Fn(ω, 2) factor of Qτ0,α . Then it suffices

to show that {uα : α < κ} is unbounded in (ωω)V [G]. Suppose v ∈ (ωω)V [G]. Then there

exists σ ∈ Ξ such that v ∈ V [G � σ]. Since Ξ is κ-like, there exists α < κ such that

τ0,α 6≤ σ. By Lemma 5.4.5, uα enumerates a real Cohen generic over V [G � σ]; hence,

uα is not eventually dominated by v.

Third, let us prove ss
V [G]
2 ≤ κ. For each α < λ, let xα be the Cohen real added

by the Fn(ω, 2) factor of Qτ0,α . Suppose I ∈ ([λ]κ)V [G] and y ∈ ([ω]ω)V [G]. Then there

exists σ ∈ Ξ such that y ∈ V [G � σ]. Since Ξ is κ-like, there exists α ∈ I such that

τ0,α 6≤ σ. By Lemma 5.4.5, xα is Cohen generic over V [G � σ], and therefore splits y.

Thus, 〈{xα, ω \ xα}〉α<λ witnesses ss
V [G]
2 ≤ κ.

Finally, let us construct a Pκ-point q ∈ (ω∗)V [G]. Let v be an extension of the

ordering of Ξ to a well-ordering of Ξ. For each σ ∈ Ξ, set Yσ = {τ ∈ Ξ : τ @ σ}. Set
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ρ = minv Ξ and choose Uρ ∈ (ω∗)V . Suppose τ ∈ Ξ and σ is a final predecessor of τ

with respect to v and Uσ ∈ (ω∗)V [G�Yσ ]. If there are no α, β < λ such that σ = τα,β and

(fσα)G�σα(β) ⊆ Uσ, then choose Uτ ∈ (ω∗)V [G�Yτ ] such that Uτ ⊇ Uσ. Now suppose such

α and β exist. Let vσ be the pseudointersection of (fσα)G�σα(β) added by Q′σ.

By Lemmas 5.4.5 and 5.4.7, Uσ ∪ {vσ} has the SFIP; hence, we may choose Uτ ∈

(ω∗)V [G�Yτ ] such that Uτ ⊇ Uσ ∪{vσ}. For τ ∈ Ξ that are limit points with respect to v,

choose Uτ ∈ (ω∗)V [G�Yτ ] such that Uτ ⊇
⋃
σ@τ Uσ; set q =

⋃
τ∈Ξ Uτ . Then, arguing as in

the proof of κ ≤ pV [G], we have that q is a Pκ-point in (ω∗)V [G].

The forcing extension of Theorem 5.4.13 can be modified to satisfy b = s < Nt(ω∗) <

c.

Definition 5.4.14. Given a class J of posets and a cardinal κ, let MA(κ; J ) denote

the statement that, given any P ∈ J and fewer than κ-many dense subsets of P, there is

a filter of P intersecting each of these dense sets. We may replace J with a descriptive

term for J when there is no ambiguity. For example, MA(c; ccc) is Martin’s axiom.

Theorem 5.4.15. Suppose ω1 < cf κ = κ ≤ λ = λ<κ. Then there is a property (K)

forcing extension in which

ω1 = πNt(ω∗) = b = s < Nt(ω∗) = ss2 = κ ≤ λ = c.

Proof. Let P be as in the proof of Theorem 5.4.13. Set R = P × Fn(ω1, 2), which has

property (K) because P does. Let K be a generic filter of R. Let π0 and π1 be the

natural coordinate projections on R; let π0 and π1 also denote their respective natural

extensions to the class of R-names. Set G = π0[K] and H = π1[K]. Then cV [K] = λ

clearly holds. Adding ω1-many Cohen reals to any model of ZFC forces b = s = ω1, and

πNt(ω∗) = h ≤ b, so πNt(ω∗)V [K] = bV [K] = sV [K] = ω1.
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For each α < λ, let xα be the Cohen real added by the Fn(ω, 2) factor of Qτ0,α .

Suppose I ∈ ([λ]κ)V [K] and y ∈ ([ω]ω)V [K]. Then there exists σ ∈ Ξ such that y ∈

V [(G � σ)×H]. Since Ξ is κ-like, there exists α ∈ I such that τ0,α 6≤ σ. By Lemma 5.4.5,

xα is Cohen generic over V [G � σ]; hence, xα is Cohen generic over V [(G � σ)×H] and

therefore splits y. Thus, 〈{xα, ω \ xα}〉α<λwitnesses ss
V [K]
2 ≤ κ.

Therefore, it suffices to show that Nt(ω∗)V [K] ≥ κ. Suppose µ < κ and A is an

R-name for a base of ω∗. Choose an R-name q for an element of ω∗ with character λ.

Let f be a name for an injection from λ into A such that q ∈
⋂

ran f . Let g be a name

for an element of ([ω]ω)λ such that q ∈ g(α)∗ ⊆ f(α) for all α < λ. For each α < λ,

let uα be a name for g(α) such that uα = {{ň} × Aα,n : n < ω} where each Aα,n is a

countable antichain of R. Since max{ω1, µ} < λ, there exist ξ < ω1 and J ∈ [λ]µ such

that ran π1(uα) ⊆ Fn(ξ, 2) for all α ∈ J . It suffices to show that {(uα)K : α ∈ J} has a

pseudointersection in V [K].

For each α ∈ J , set vα = {〈ň, r〉 : 〈ň, 〈p, r〉〉 ∈ uα and p ∈ G}. Set H0 = H ∩

Fn(ξ, 2). By Bell’s Theorem [10], MA(p; σ-centered) is a theorem of ZFC. Hence, V [G]

satisfies MA(κ; σ-centered). By an argument of Baumgartner and Tall communicated

by Roitman [58], adding a single Cohen real preserves MA(κ; σ-centered). Since Booth

forcing for {(vα)H0 : α ∈ J} is σ-centered, {(vα)H0 : α ∈ J}, which is equal to {(uα)K :

α ∈ J}, has a pseudointersection in V [G×H0].

5.5 Local Noetherian type and π-type

Dow and Zhou [16] proved that there is a point in ω∗ that (along with satisfying some

additional properties) has an ωop-like local base. The proof of Theorem 3.5.15 is a
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simpler construction of an ωop-like local base which also naturally generalizes to every

u(κ). This construction is essentially due to Isbell [32], who was interested in actual

intersections as opposed to pseudointersections.

Definition 5.5.1. Let a denote the minimum of the cardinalities of infinite, maximal

almost disjoint subfamilies of [ω]ω. Let i denote the minimum of the cardinalities of

infinite, maximal independent subfamilies of [ω]ω.

It is known that b ≤ a and r ≤ i ≥ d ≥ s. (See 8.4, 8.12, 8.13 and 3.3 of [11].)

Because of Kunen’s result that a = ω1 in the Cohen model (see VIII.2.3 of [40]), it is

consistent that a < r. Also, Shelah [65] has constructed a model of r ≤ u < a.

In ZFC, the best upper bound of χNt(ω∗) of which we know is c by Lemma 3.2.3.

We will next prove Theorem 5.5.5, which implies that, except for c and possibly cf c, all

of the cardinal characteristics of the continuum with definitions included in Blass [11]

can consistently be simultaneously strictly less than χNt(ω∗).

Lemma 5.5.2. Suppose κ, λ, and µ are cardinals and κ ≤ cf λ = λ > µ. Then (κ×λ)op

is not almost µop-like.

Proof. Let I be a cofinal subset of κ × λ. Then it suffices to show that I is not µ-like.

If κ = λ, then I is not µ-like because it is λ-directed. Suppose κ < λ. Then there exists

α < κ such that |I ∩ ({α} × λ)| = λ; hence, I has an increasing λ-sequence; hence, I is

not µ-like.

Lemma 5.5.3. Given any infinite independent subfamily I of [ω]ω, there exists J ⊆ [ω]ω

such that if x is a generic pseudointersection of J then I ∪ {x} is independent, but

I ∪ {x, y} is not independent for any y ∈ [ω]ω ∩ V \ I.



136

Proof. See Exercise A12 on page 289 of Kunen [40].

Definition 5.5.4. We say a Pκ-point in a space is simple if it has a local base of order

type κop.

Theorem 5.5.5. Suppose ω1 ≤ cf κ = κ ≤ cf λ = λ = λ<κ. Then there is a property

(K) forcing extension satisfying p = a = i = u = κ ≤ λ = χNt(ω∗) = c.

Proof. We will construct a finite support iteration 〈Pα〉α≤λκ where λκ denotes the ordinal

product of λ and κ. It suffices to ensure that the iteration is at every stage property (K)

and of size at most λ, and that the Pλκ-generic extension of V satisfies max{a, i, u} ≤

κ ≤ p and λ ≤ χNt(ω∗). Our strategy is to interleave an iteration of length λκ and

three iterations of length κ. At every stage below λκ, add another piece of what will be

an ultrafilter base that, ordered by ⊇∗, will be isomorphic to a cofinal subset of κ × λ.

Also, at every stage we will add a pseudointersection, such that the final model satisfies

p ≥ κ. After each limit stage of cofinality λ, add an element to each of three objects

that, when completed, will be a maximal almost disjoint family of size κ, a maximal

independent family of size κ, and a base of a simple Pκ-point in ω∗.

Let ϕ : λ2 → λ be a bijection such that ϕ(α, β) ≥ α for all α, β < λ. For each

〈α, β〉 ∈ κ × λ, set Eα,β = {〈γ, δ〉 ∈ κ × λ : λγ + δ < λα + β}. Suppose 〈α, β〉 ∈ κ × λ

and we have constructed 〈Pγ〉γ≤λα+β to have property (K) and size at most λ at all of

its stages, and a sequence 〈xγ,δ〉〈γ,δ〉∈Eα,β of Pλα+β-names each forced to be in [ω]ω. Set

B = {xγ,δ : 〈γ, δ〉 ∈ Eα,β}. Let 〈Sγ〉γ<κ be a partition of λ into κ-many stationary sets

such that S0 contains all successor ordinals. Suppose we have constructed a sequence

〈ργ,δ〉〈γ,δ〉∈Eα,β ∈ λEα,β such that we always have ργ,δ ∈ Sγ and ργ,δ0 < ργ,δ1 whenever

δ0 < δ1. Set Dα,β = {〈γ, ργ,δ〉 : 〈γ, δ〉 ∈ Eα,β}. Further suppose that {〈〈γ, ργ,δ〉, xγ,δ〉 :
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〈γ, δ〉 ∈ Eα,β} is forced to be an order embedding of Dα,β into 〈[ω]ω,⊇∗〉 and that its

range B is forced to have the SFIP. Also suppose that we have the following if α > 0.

λα+β ∀σ ∈ [B]<ω ∃δ < λ
⋂

σ 6⊆∗ x0,δ (5.5.1)

For each ε < λ, set Aε = {xγ,δ : 〈γ, δ〉 ∈ Eα,β and 〈γ, ργ,δ〉 < 〈α, ε〉}.

Let yβ be a Pλα+β-name for a surjection from λ to [ω]ω. We may assume that

corresponding yγ have already been constructed for all γ < β. Let ϕ(ζ, η) = β.

Claim. If α > 0, then we may choose z ∈ {yζ(η), ω \ yζ(η)} such that

λα+β ∀σ ∈ [B]<ω ∃δ < λ z ∩
⋂

σ 6⊆∗ x0,δ.

Proof. Suppose not. Let {z0, z1} = {yζ(η), ω \ yζ(η)}. Then, working in a generic

extension by Pλα+β, there exist σ0, σ1 ∈ [B]<ω such that zi ∩
⋂
σi ⊆∗ x0,δ for all i < 2

and δ < λ. Hence,
⋂⋃

i<2 σi ⊆∗ x0,δ for all δ < λ, in contradiction with (5.5.1).

If α > 0, then choose z as in the above claim; otherwise, choose z arbitrarily. If

α = 0, then set ρα,β = β + 1. Otherwise, we may choose ρα,β ∈ Sα such that ρα,β > ρα,γ

for all γ < β and

λα+β ∀σ ∈ [Aρα,β ]<ω ∃δ < ρα,β z ∩
⋂

σ 6⊆∗ x0,δ.

Set Dα,β+1 = Dα,β∪{〈α, ρα,β〉}. Let A′ be a Pλα+β-name forced to satisfy A′ = Aρα,β∪{z}

if z splits B and A′ = Aρα,β otherwise. Let Q0 be a name for the Booth forcing for

A′ ∪ {ω \ n : n < ω}; let xα,β be a name for a generic pseudointersection of A′ ∪ {ω \ n :

n < ω}. (The purpose of {ω \ n : n < ω} is to ensure that xα,β does not almost contain

any element of [ω]ω in the Pλα+β-generic extension of V .)
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Let Fλα+β to be a Pλα+β-name for a surjection from λ to the elements of [[ω]ω]<κ that

have the SFIP. We may assume that corresponding Fγ have already been constructed

for all γ < λα + β. Let Q1 be a name for the Booth forcing for Fλα+ζ(η).

Further suppose we have constructed sequences 〈wγ〉γ<α and 〈Uγ〉γ<α of Pλα-names

such that λγ Uδ ∪ {wδ} ⊆ Uγ ∈ ω∗ for all δ < γ < α, and such that wγ is forced to be

a pseudointersection of Uγ for all γ < α. If β 6= 0, then let Q2 be a name for the trivial

forcing. If β = 0, then choose Uα such that λα
⋃
γ<α Uγ ∪ {wγ} ⊆ Uα ∈ ω∗, let Q2 be a

name for the Booth forcing for Uα, and let wα be a name for a generic pseudointersection

of Uα.

Further suppose we have constructed a sequence 〈aγ〉γ<α of Pλα-names whose range is

forced to be an almost disjoint subfamily of [ω]ω. If β 6= 0, then let Q3 be a name for the

trivial forcing. If β = 0, then let Q3 be a name for the Booth forcing for {ω\aγ : γ < α},

and let aα be a name for a generic pseudointersection of {ω \ aγ : γ < α}.

Further suppose we have constructed a sequence 〈iγ〉γ<α of Pλα-names whose range

is forced to be an independent subfamily of [ω]ω. If β 6= 0, then let Q4 be a name for the

trivial forcing. If β = 0, then set I = {iγ : γ < α} and let J and x be as in Lemma 5.5.3;

let Q4 be a name for the Booth forcing for J ; let iα be a name for x.

Set Pλα+β+1 = Pλα+β ∗
∏

n<5 Qn. We may assume |
∏

n<5 Qn| ≤ λ; hence, Pλα+β+1

has property (K) and size at most λ. Also, B ∪ {xα,β} is forced to have the SFIP by

Q0-genericity because for every b ∈ B we have that {b} ∪ A′ is forced to have the SFIP

because {b} ∪ A′ ⊆ B ∪ {z} if z splits B and {b} ∪ A′ ⊆ B otherwise. Let us also show

that (5.5.1) holds if we replace β with β + 1. We may assume α > 0. Let σ ∈ [B]<ω.

Then there exists δ < λ such that λα+β z∩
⋂

(σ∪τ) 6⊆∗ x0,δ for all τ ∈ [Aρα,β ]<ω; hence,{(⋂
σ
)
\ x0,δ

}
∪ A′ is forced to have the SFIP; hence, λα+β+1 xα,β ∩

⋂
σ 6⊆∗ x0,δ by



139

Q0-genericity. Thus, (5.5.1) holds as desired.

To complete our inductive construction of 〈Pγ〉γ≤λκ, it suffices to show that the set

{〈〈γ, ργ,δ〉, xγ,δ〉 : 〈γ, δ〉 ∈ Eα,β+1}

is forced to be an order embedding of Dα,β+1 into 〈[ω]ω,⊇∗〉. Suppose 〈γ, δ〉 ∈ Eα,β. Then

〈α, ρα,β〉 6≤ 〈γ, ργ,δ〉 and λα+β+1 xα,β 6⊇∗ xγ,δ by Q0-genericity. If 〈γ, ργ,δ〉 < 〈α, ρα,β〉,

then xγ,δ ∈ A′; whence, λα+β+1 xγ,δ )∗ xα,β. Suppose 〈γ, ργ,δ〉 6< 〈α, ρα,β〉. Then

ρα,β < ργ,δ; hence, ργ,δ ≥ ρα,β + 1 = ρ0,ρα,β ; hence, xγ,δ ⊆∗ x0,ρα,β . By construction,

A′ ∪ {ω \ x0,ρα,β} is forced to have the SFIP; hence, λα+β+1 xγ,δ ⊆∗ x0,ρα,β 6⊇∗ xα,β by

Q0-genericity. Thus, {〈〈γ, ργ,δ〉, xγ,δ〉 : 〈γ, δ〉 ∈ Eα,β+1} is forced to be an embedding as

desired.

Let us show that the Pλκ-generic extension of V satisfies λ ≤ χNt(ω∗). Let G be a

generic filter of Pλκ and set B = {(xα,β)∗G : 〈α, β〉 ∈ κ × λ}. Then B is a local base at

some p ∈ (ω∗)V [G] because every element of ([ω]ω)V [G] is handled by an appropriate Q0.

By Lemma 3.2.20, B contains a χNt(p, ω∗)op-like local base {(xα,β)∗G : 〈α, β〉 ∈ I} at p

for some I ⊆ κ× λ. Set J = {〈α, ρα,β〉 : 〈α, β〉 ∈ I}. Then J is cofinal in κ× λ; hence,

by Lemma 5.5.2, J is not ν-like for any ν < λ. Hence, χNt(ω∗)V [G] ≥ λ.

Finally, let us show that the Pλκ-generic extension of V satisfies max{a, i, u} ≤ κ ≤ p.

Working in V [G], notice that u ≤ κ because
⋃
α<κ(Uα)G ∈ ω∗ and {(wα)∗G : α < κ} is

a local base at
⋃
α<κ(Uα)G. Moreover, {(aα)G : α < κ} and {(iα)G : α < κ} witness

that a ≤ κ and i ≤ κ. For p ≥ κ, note that very element of [[ω]ω]<κ with the SFIP

is (Fλα+ζ(η))G for some α < κ and ζ, η < λ. By Q1-genericity, a pseudointersection of

(Fλα+ζ(η))G is added at stage λα + ϕ(ζ, η).

Theorem 5.5.6. πχNt(ω∗) = ω.
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Proof. Fix p ∈ ω∗. By a result of Balcar and Vojtáš [5], there exists 〈yx〉x∈p such that

yx ∈ [x]ω for all x ∈ p and {yx}x∈p is an almost disjoint family. Clearly, {y∗x}x∈p is a

pairwise disjoint—and therefore ωop-like—local π-base at p.

5.6 Powers of βω \ ω

Definition 5.6.1. A box is a subset E of a product space
∏

i∈I Xi such that there exist

σ ∈ [I]<ω and 〈Ei〉i∈σ such that E =
⋂
i∈σ π

−1
i Ei. Let Ntbox(

∏
i∈I Xi) denote the least

infinite κ such that
∏

i∈I Xi has a κop-like base of open boxes.

Lemma 5.6.2 (Peregudov [54]). In any product space X =
∏

i∈I Xi, we have Nt(X) ≤

Ntbox(X) ≤ supi∈I Nt(Xi).

Lemma 5.6.3 (Malykhin [42]). Let X =
∏

i∈I Xi where each Xi is a nonsingleton T1

space. If w(X) ≤ |I|, then Nt(X) = Ntbox(X) = ω.

Remark 5.6.4. In Lemma 5.6.3, the hypothesis that the factor spaces be nonsingleton

and T1 can be weakened to merely require that each factor space is the union of two

nontrivial open sets. Also, the conclusion of Lemma 5.6.3 may be amended with the

statement that X has a 〈|I|, ω〉-splitter: use 〈{π−1
i Ui, π

−1
i Vi}〉i∈I where each {Ui, Vi} is

a nontrivial open cover of Xi.

Theorem 5.6.5. The sequence 〈Nt((ω∗)ω+α)〉α∈On is nonincreasing and Nt((ω∗)c) = ω.

Proof. Note that if ω ≤ α ≤ β, then (ω∗)β ∼= ((ω∗)α)β. Then apply Lemmas 5.6.2 and

5.6.3.

Lemma 5.6.6. Let 0 < n < ω and X be a space. Then Ntbox(Xn) = Nt(X).
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Proof. Set κ = Ntbox(Xn). By Lemma 5.6.2, κ ≤ Nt(X). Let us show that Nt(X) ≤ κ.

Let A be a κop-like base of Xn consisting only of boxes. Let B denote the set of all

nonempty open V ⊆ X for which there exists
∏

i<n Ui ∈ A such that V =
⋂
i<n Ui.

Then B is a base of X because if p ∈ U and U is an open subset of X, then there

exists
∏

i<n Ui ∈ A such that 〈p〉i<n ∈
∏

i<n Ui ⊆ Un; whence, p ∈
⋂
i<n Ui ⊆ U and⋂

i<n Ui ∈ B.

It suffices to show that B is κop-like. Suppose not. Then there exist
∏

i<n Ui ∈ A

and 〈
∏

i<n Vα,i〉α<κ ∈ Aκ such that

∅ 6=
⋂
i<n

Ui ⊆
⋂
i<n

Vα,i 6=
⋂
i<n

Vβ,i

for all α < β < κ. Clearly,
∏

i<n Vα,i 6=
∏

i<n Vβ,i for all α < β < κ. Choose U ∈ A such

that U ⊆ (
⋂
i<n Ui)

n. Then U ⊆
∏

i<n Vα,i for all α < κ, in contradiction with how we

chose A.

Lemma 5.6.7. If 0 < n < ω and X is a compact space such that χ(p,X) = w(X) for

all p ∈ X, then Nt(X) = Nt(Xn).

Proof. By Lemma 5.6.6, it suffices to show that Ntbox(Xn) ≤ Nt(Xn). By Lemma 5.2.6,

either Xn has a 〈w(Xn), Nt(Xn)〉-splitter, or Nt(Xn) = w(Xn)+. By Lemma 5.2.5, we

may conclude Ntbox(Xn) ≤ Nt(Xn).

Theorem 5.6.8. If 0 < n < ω, then Nt(ω∗) ≥ Nt((ω∗)n) ≥ min{Nt(ω∗), c}. Moreover,

max{u, cf c} = c implies Nt(ω∗) = Nt((ω∗)n).

Proof. Lemma 5.6.2 implies Nt(ω∗) ≥ Nt((ω∗)n). To prove the rest of the theorem,

first consider the case r < c. As in the proof of Theorem 5.2.2, construct a point

p ∈ ω∗ such that πχ(p, ω∗) = r and χ(p, ω∗) = c. Then πχ(〈p〉i<n, (ω∗)n) = r and
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χ(〈p〉i<n, (ω∗)n) = c; hence, Nt((ω∗)n) ≥ c by Theorem 3.3.11. Moreover, if cf c = c,

then Nt((ω∗)n) = Nt(ω∗) = c+. If u = c, then Nt(ω∗) = Nt((ω∗)n) by Lemma 5.6.7.

Finally, in the case r = c, we have u = c, which again implies Nt(ω∗) = Nt((ω∗)n).

Corollary 5.6.9. Suppose max{u, cf c} = c. Then 〈Nt((ω∗)1+α)〉α∈On is nonincreasing.

Proof. By Theorem 5.6.8 and Lemma 5.6.2, Nt((ω∗)n) = Nt(ω∗) ≥ Nt((ω∗)α) whenever

0 < n < ω ≤ α. The rest follows from Theorem 5.6.5.

Theorem 5.6.10. Suppose u = c. Then Nt((ω∗)1+α) = Nt(ω∗) for all α < cf c.

Proof. Let λ be an arbitrary infinite cardinal less than Nt(ω∗). By Lemma 5.2.6, it

suffices to show that (ω∗)1+α does not have a 〈c, λ〉-splitter. Seeking a contradiction,

suppose 〈Fβ〉β<c is such a 〈c, λ〉-splitter. We may assume
⋃
β<cFβ consists only of open

boxes because we can replace each Fβ with a suitable refinement. Since α < cf c, there

exist σ ∈ [1 + α]<ω and I ∈ [c]c such that, for every U ∈
⋃
β∈I Fβ, there exists ϕ(U) ⊆

(ω∗)σ such that U = π−1
σ ϕ(U). Let j be a bijection from c to I. Then 〈ϕ[Fj(β)]〉β<c

is a 〈c, λ〉-splitter of (ω∗)σ. Hence, Nt((ω∗)σ) ≤ λ < Nt(ω∗) by Lemma 5.2.5. But

Nt((ω∗)σ) < Nt(ω∗) contradicts Theorem 5.6.8.

Lemma 5.6.11. Suppose a space X has a 〈cf w(X), cf w(X)〉-splitter. Then Nt(X) ≤

w(X).

Proof. Set κ = cf w(X) and λ = w(X). Let 〈Fα〉α<κ be a 〈κ, κ〉-splitter of X. Let

h : λ → κ satisfy |h−1{α}| < λ for all α < κ. Then 〈Fh(α)〉α<λ is a 〈λ, λ〉-splitter

because if I ∈ [λ]λ, then h[I] ∈ [κ]κ. By Lemma 5.2.5, Nt(X) ≤ λ.

Remark 5.6.12. The proof of the above lemma shows that for any infinite cardinal κ, a

space with a 〈cf κ, cf κ〉-splitter also has a 〈κ, κ〉-splitter.
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Theorem 5.6.13. Nt((ω∗)cf c) ≤ c.

Proof. The sequence

〈{π−1
α ({2n : n < ω}∗), π−1

α ({2n+ 1 : n < ω}∗)}〉α<cf c

is a 〈cf c, ω〉-splitter of (ω∗)cf c. Apply Lemma 5.6.11.

Theorem 5.6.14. For all cardinals κ satisfying κ > cf κ > ω1, it is consistent that

c = κ and r < cf c. The last inequality implies Nt((ω∗)1+α) = c+ for all α < cf c and

Nt((ω∗)β) = c = κ for all β ∈ c \ cf c.

Proof. Starting with c = κ in the ground model, the proof of Theorem 5.2.2 shows how

to force r = u = ω1 while preserving c. Now suppose r < cf c. Fix α < cf c and β ∈ c\cf c.

By Theorems 5.6.13 and 5.6.5, Nt((ω∗)β) ≤ c. To see that Nt((ω∗)β) ≥ c, proceed as

in the proof of Theorem 5.6.8, constructing a point with character c and π-character

|β|. Similarly prove Nt((ω∗)1+α) = c+ by constructing a point with character c and

π-character |r + α|.

Lemma 5.6.15. Suppose κ, λ, and µ are cardinals and p is a point in a product space

X =
∏

α<κXα satisfying the following for all α < κ.

1. 0 < κ < w(X) and ω ≤ λ ≤ w(X).

2. κ < cf w(X) or λ < w(X).

3. µ < λ or µ = cf λ.

4. χ(p(α), Xα) < λ or the intersection of any µ-many neighborhoods of p(α) has

nonempty interior.
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Then χ(p,X) < w(X) or Nt(X) > µ.

Proof. Let A be a base of X. Set B = {U ∈ A : p ∈ U}. For each α < κ, let Cα be a

local base at p(α) of size χ(p(α), Xα). Set F =
⋃
r∈[κ]<ω

∏
α∈r Cα. For each σ ∈ F , set

Uσ =
⋂
α∈domσ π

−1
α σ(α). For each V ∈ B, choose σ(V ) ∈ F such that p ∈ Uσ(V ) ⊆ V . We

may assume χ(p,X) = w(X); hence, by (1) and (2), there exist r ∈ [κ]<ω and D ∈ [B]λ

such that dom σ(V ) = r for all V ∈ D. Set s = {α ∈ r : χ(p(α), Xα) < λ} and t = r \ s.

By (3), there exist τ ∈
∏

α∈s Cα and E ∈ [D]µ such that σ(V ) � s = τ for all V ∈ E .

By (4),
⋂
V ∈E σ(V )(α) has nonempty interior for all α ∈ t. Hence,

⋂
E has nonempty

interior because it contains Uτ ∩
⋂
α∈t π

−1
α

⋂
V ∈E σ(V )(α). Thus, Nt(X) > µ.

Theorem 5.6.16. Suppose 0 < α < c and 〈Xβ〉β<α is a sequence of spaces each with

weight at most c. Set X =
∏

β<α(Xβ ⊕ ω∗). Then Nt(X) ≥ p.

Proof. Let ν be an arbitrary infinite cardinal less than p. Set κ = |α|, λ = ν+, and

µ = ν. Choose q ∈ ω∗ such that χ(q, ω∗) = c; set p = 〈q〉β<α. Then Lemma 5.6.15

applies because if κ ≥ cf w(X) = cf c, then λ ≤ p ≤ cf c < c = w(X). Therefore,

Nt(X) > ν.

Corollary 5.6.17. Suppose p = c. Then Nt((ω∗)1+α) = c for all α < c.

Proof. By Theorem 5.2.10, Nt(ω∗) ≤ c. Hence, by Corollary 5.6.9, Nt((ω∗)1+α) ≤ c for

all α ∈ On. By Theorem 5.6.16, Nt((ω∗)1+α) = c for all α < c.

Corollary 5.6.18. Suppose α < c and 〈Xβ〉β<α is a sequence of spaces each with weight

at most c. Then
∏

β<α(Xβ ⊕ ω∗) is not homeomorphic to a product of c-many nonsin-

gleton spaces.

Proof. Combine Theorem 5.6.16 and Lemma 5.6.3.
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5.7 Questions

Question 5.7.1. Is it consistent that Nt(ω∗) = c = cf c > d? By Theorem 5.2.10, the

above relations imply c = cf c = r > d, which can be attained by adding many random

reals. However, adding many random reals collapses Nt(ω∗) to ω1.

Question 5.7.2. Is it consistent that Nt(ω∗) = c+ and r ≥ cf c?

Question 5.7.3. Is Nt(ω∗) < ssω consistent? This inequality implies u < c. Hence, by

Theorem 5.2.10, the inequality further implies

cf c ≤ r ≤ u < c = Nt(ω∗) < ssω = c+.

More generally, does any space X have a base that does not contain an Nt(X)op-like

base?

Question 5.7.4. Is ssω < ss2 consistent?

Question 5.7.5. Letting g denote the groupwise density number (see 6.26 of [11]), is

Nt(ω∗) < g consistent? χNt(ω∗) < g? In particular, what are Nt(ω∗) and χNt(ω∗) in

the Laver model (see 11.7 of [11])?

Question 5.7.6. Is cf Nt(ω∗) < Nt(ω∗) < c consistent? cf Nt(ω∗) = ω?

Question 5.7.7. Is cf c < Nt(ω∗) < c consistent?

Question 5.7.8. What is χNt(ω∗) in the forcing extension of the proof of Theorem 5.4.15?

More generally, is it consistent that χNt(ω∗) < Nt(ω∗) ≤ c?

Question 5.7.9. Is χNt(ω∗) = ω consistent? An affirmative answer would be a strength-

ening of Shelah’s result [64] that ω∗ consistently has no P-points. If the answer is

negative, then which, if any, of p, h, s, and g are lower bounds of χNt(ω∗) in ZFC?
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Question 5.7.10. Is cf c < χNt(ω∗) consistent? cf c < χNt(ω∗) < c?

Question 5.7.11. Does any Hausdorff space have uncountable local Noetherian π-type?

(It is easy to construct such T1 spaces: give ω1 + 1 the topology {(ω1 + 1) \ (α∪σ) : α <

ω1 and σ ∈ [ω1 + 1]<ω} ∪ {∅}.)

Question 5.7.12. Is it consistent that Nt((ω∗)1+α) < min{Nt(ω∗), c} for some α < c? Is

it consistent that Nt((ω∗)1+α) < Nt(ω∗) for some α < cf c?
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Chapter 6

Tukey classes of ultrafilters on ω

6.1 Tukey classes

Definition 6.1.1 (Tukey [68]). Given directed sets P and Q and a map f : P → Q, we

say f is a Tukey map, writing f : P ≤T Q, if the f -image of every unbounded subset of

P is unbounded in Q. We say P is Tukey reducible to Q, writing P ≤T Q, if there is a

Tukey map from P to Q. If P ≤T Q ≤T P , then we say P and Q are Tukey equivalent

and write P ≡T Q.

By the next proposition, the above definition is equivalent to Definition 3.5.5.

Proposition 6.1.2 (Tukey [68]). A map f : P → Q is Tukey if and only the f -preimage

of every bounded subset of Q is bounded in P . Moreover, P ≤T Q if and only if there is

a map g : Q→ P such that the image of every cofinal subset of Q is cofinal in P .

Theorem 6.1.3 (Tukey [68]). P ≡T Q if and only if P and Q order embed as cofinal

subsets of a common third directed set. Moreover, if P ∩ Q = ∅, then we may assume

the order embeddings are identity maps onto a quasiordering of P ∪Q.

The following is a list of basic facts about Tukey reducibility.

• P ≤T Q⇒ cf(P ) ≤ cf(Q).

• For all ordinals α, β, we have α ≤T β ⇔ cf(α) = cf(β).
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• P ≤T P ×Q.

• P ≤T R ≥T Q⇒ P ×Q ≤T R.

• P × P ≡T P .

• P ≤T 〈[cf(P )]<ω,⊆〉.

• For all infinite sets A,B, we have 〈[A]<ω,⊆〉 ≤T 〈[B]<ω,⊆〉 ⇔ |A| ≤ |B|.

• Given finitely many ordinals α0, . . . , αm−1, β0, . . . , βn−1, we have∏
i<m

αi ≤T
∏
i<n

βi ⇔ {cf(αi) : i < m} ⊆ {cf(βi) : i < n}.

• Every countable directed set is Tukey equivalent to 1 or ω.

Theorem 6.1.4 (Isbell [32]). No two of 1, ω, ω1, ω × ω1, and 〈[ω1]<ω,⊆〉 are Tukey

equivalent.

Isbell [32] asked if these five Tukey classes encompass all directed sets of size ω1. In

[33], he answered “no” assuming CH. In particular, ωω, ordered by domination, is not

Tukey equivalent to any of the above five orders. Devlin, Steprāns, and Watson [14]

showed that ♦ implies there are 2ω1-many pairwise Tukey inequivalent directed sets of

size ω1. Todorčević [67] weakened the hypothesis of ♦ to CH and also showed that PFA

implies that 1, ω, ω1, ω×ω1, and 〈[ω1]<ω,⊆〉 represent the only Tukey classes of directed

sets of size ω1.

6.2 Tukey reducibility and topology

Traditionally, Tukey reducibility has mainly been connected to topology by the concept

of subnet: we say 〈xi〉i∈I is a subnet of 〈yj〉j∈J if there exists f : I → J such that the
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image of every cofinal subset of I is cofinal in J , and xi = yf(i) for all i ∈ I. In contrast,

our results are about classifying points in certain spaces by the Tukey classes of their

local bases ordered by reverse inclusion. The following theorem, which is of independent

interest, implies that the Tukey class of a local base at a point in a space is a topological

invariant.

Theorem 6.2.1. Suppose X and Y are spaces, p ∈ X, q ∈ Y , A is a local base at p in

X, B is a local base at q in Y , f : X → Y is continuous and open (or just continuous

at p and open at p), and f(p) = q. Then 〈B,⊇〉 ≤T 〈A,⊇〉.

Proof. Choose H : A → B such that H(U) ⊆ f [U ] for all U ∈ A. (Here we use that

f is open.) Suppose C ⊆ A is cofinal. For any U ∈ B, we may choose V ∈ A such

that f [V ] ⊆ U by continuity of f . Then choose W ∈ C such that W ⊆ V . Hence,

H(W ) ⊆ f [W ] ⊆ f [V ] ⊆ U . Thus, H[C] is cofinal.

Corollary 6.2.2. In the above theorem, if f is a homeomorphism, then every local base

at p is Tukey-equivalent to every local base at q.

Example 6.2.3. Consider the ordered space X = ω1 + 1 + ωop. It has a point p that is

the limit of an ascending ω1-sequence and a descending ω-sequence. Every local base at

p, ordered by ⊇, is Tukey equivalent to ω × ω1.

Next, consider Dω1 ∪ {∞}, the one-point compactification of the ω1-sized discrete

space. Glue X and Dω1 ∪ {∞} together into a new space Y by a quotient map that

identifies p and ∞. In Y , every local base at p, ordered by ⊇, is Tukey equivalent to

〈[ω1]<ω,⊆〉, which is not Tukey equivalent to ω × ω1.

Thus, we can distinguish p in X from p in Y by their associated Tukey classes,

even though other topological properties, such as character and π-character, have not
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changed. Moreover, since ω × ω1 <T [ω1]<ω, we may conclude there is no continuous

open map from X to Y that sends p to p.

6.3 Ultrafilters

By Stone duality, every ultrafilter U on ω is such that U ordered by containment, ⊇,

is Tukey-equivalent to every local base of U in βω. Likewise, U ordered by almost

containment, ⊇∗, is Tukey equivalent to every local base of U in ω∗. Therefore, let us

now restrict our attention to the Tukey classes of nonprincipal ultrafilters on ω, ordered

by ⊇ or ⊇∗. Note that the identity map on a U ∈ ω∗ is a Tukey map from 〈U ,⊇∗〉 to

〈U ,⊇〉. Moreover, since 〈[c]<ω,⊆〉 is Tukey-maximal among the directed sets of cofinality

at most c, if 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉, then 〈U ,⊇〉 ≡T 〈[c]<ω,⊆〉.

Note that a given U ∈ ω∗ is a Pκ-point if and only if 〈U ,⊇∗〉 is κ-directed. Also note

that u is the least κ such that there exists U ∈ ω∗ such that cf(〈U ,⊇∗〉) = κ; moreover,

cf(〈U ,⊇〉) = cf(〈U ,⊇∗〉) always holds.

Isbell [32], using an independent family of sets, showed that there is always some

U ∈ ω∗ such that 〈U ,⊇〉 ≡T 〈[c]<ω,⊆〉. Moreover, his proof also implicitly shows that

〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉.

Definition 6.3.1. We say I ⊆ [ω]ω is independent if for all disjoint σ, τ ∈ [I]<ω we

have
⋂
σ 6⊆∗

⋃
τ .

Lemma 6.3.2 (Hausdorff [29]). There exists an independent I ∈ [[ω]ω]c.

Theorem 6.3.3 (Isbell [32]). There exists U ∈ ω∗ such that 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉.

Proof. It suffices to show that there exists f : 〈[c]<ω,⊆〉 ≤T 〈U ,⊇∗〉. Let I ∈ [[ω]ω]c be

independent. Let F be the filter generated by I. Let J be the ideal generated by the
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set of pseudointersections of infinite subsets of I. Extend F to an ultrafilter U disjoint

from J . Define f : [c]<ω → U by σ 7→
⋂
α∈σ Iα. Then f is Tukey as desired.

There are also known constructions of various U ∈ ω∗ that satisfy 〈U ,⊇∗〉 ≡T

〈[c]<ω,⊆〉 and some additional property. See, for example, Dow and Zhou [16]. Also,

Kunen [39] proved that there exists a non-P -point U ∈ ω∗ such that U is c-OK, and the

next proposition shows that such a point must satisfy 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉.

Definition 6.3.4 (Kunen [39]). We say U ∈ ω∗ is κ-OK if for every 〈An〉n<ω ∈ Uω there

exists 〈Bα〉α<κ ∈ Uκ such that for all nonempty σ ∈ [κ]<ω we have
⋂
α∈σ Bα ⊆∗ A|σ|.

(Therefore, Keisler’s notion of κ+-good implies κ-OK.)

Proposition 6.3.5. If U is a c-OK non-P -point in ω∗, then 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉.

Proof. It suffices to show that there exists f : 〈[c]<ω,⊆〉 ≤T 〈U ,⊇∗〉. Choose 〈An〉n<ω ∈

Uω such that {An : n < ω} has no pseudointersection in U . Then choose 〈Bα〉α<c ∈ U c

as in Definition 6.3.4. Define f : [c]<ω → U by σ 7→
⋂
α∈σ Bα. Then every infinite subset

of [c]<ω has unbounded f -image; hence, f is Tukey as desired.

Isbell [32] asked if every U ∈ ω∗ satisfies 〈U ,⊇〉 ≡T 〈[c]<ω,⊆〉. It is now well-known

that it is consistent with ¬CH that u < c, which implies the existence of U ∈ ω∗ such that

〈U ,⊇〉 ≤T 〈[u]<ω,⊆〉 <T 〈[c]<ω,⊆〉. To keep Isbell’s question interesting, let us restrict

our attention to models of u = c. (Another way to keep Isbell’s question interesting to

demand a ZFC proof of the existence of U ∈ ω∗ such that 〈U ,⊇〉 6≡T 〈[c]<ω,⊆〉. This is

an open problem.)

Definition 6.3.6. Given cardinals κ and λ, let Eκ
λ denote {α < κ : cf(α) = λ}.
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Theorem 6.3.7. Assume ♦(Ec
ω) and p = c. Then there exists U ∈ ω∗ such that U is

not a P -point and c <T 〈U ,⊇∗〉 ≤T 〈U ,⊇〉 <T [c]<ω.

Proof. To simplify notation, we construct U as an ultrafilter on ω2. Indeed, we construct

Pc-points V ,W0,W1,W2, . . . ∈ ω∗ and set U = {E ⊆ ω2 : V 3 {i : Wi 3 {j : 〈i, j〉 ∈

E}}}. This immediately implies that {(ω \ n) × ω : n < ω} is a countable subset

of U with no pseudointersection in U ; whence, U is not a P -point. Our construction

proceeds in c stages such that, for each n < ω, the sequences 〈Vα〉α<c and 〈Wn,α〉α<c are

continuous increasing chains of filters such that V =
⋃
α<c Vα and Wn =

⋃
α<cWn,α. Set

Uα = {E ⊆ ω2 : Vα 3 {i :Wi,α 3 {j : 〈i, j〉 ∈ E}}} for all α < c.

Let 〈Ξα〉α∈Ec
ω

be a ♦-sequence. Let ζ : c ↔ [ω]ω and η : c ↔
[
ω2
]ω

. Set V0 =

Wn,0 = {ω \ σ : σ ∈ [ω]<ω} for all n < ω. Suppose α < c and we’ve constructed

〈Vβ〉β<α and 〈Wn,β〉〈n,β〉∈ω×α such that, for all β < α and n < ω, Vβ and Wn,β are

filters on ω; if cf(β) 6= ω and β + 1 < α, then further suppose that Vβ and Wn,β have

pseudointersections in Vβ+1 and Wn,β+1, respectively. If α is a limit ordinal, then set

Vα =
⋃
β<α Vβ andWn,α =

⋃
β<αWn,β for each n < ω. If α is the successor of an ordinal

with cofinality other than ω, then we use stage α as follows to help our filters become

ultrafilters that are Pc-points. Choose the least β < c such that ζ(β), ω \ ζ(β) 6∈ Vα−1.

Choose E ∈ {ζ(β), ω \ ζ(β)} such that {E} ∪ Vα−1 has the SFIP and let Vα be a filter

generated by Vα−1 and a pseudointersection of {E} ∪ Vα−1. Likewise, for each n < ω,

choose the least β < c such that ζ(β), ω \ ζ(β) 6∈ Wn,α−1. Choose E ∈ {ζ(β), ω \ ζ(β)}

such that {E} ∪Wn,α−1 has the SFIP and let Wn,α be a filter generated by Wn,α−1 and

a pseudointersection of {E} ∪Wn,α−1.

Finally, suppose α is the successor of an ordinal with cofinality ω. Then we use

stage α to kill a potential witness to 〈U ,⊇〉 ≡T [c]<ω. Choose, if it exists, the least
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β < c for which η(β) is contained in the intersection of an infinite subset of η[Ξα]

and {η(β)} ∪ Uα−1 has the SFIP. Let Vα be the filter generated by {F} ∪ Vα−1 where

F = {i :Wi,α−1 63 ω \ {j : 〈i, j〉 ∈ η(β)}}; for each i ∈ F , let Wi,α be the filter generated

by {{j : 〈i, j〉 ∈ η(β)}} ∪Wi,α−1; for each i ∈ ω \ F , set Wi,α = Wi,α−1. Note that this

implies η(β) ∈ Uα. If no such β exists, then set Vα = Vα−1 and Wn,α = Wn,α−1 for all

n < ω. This completes the construction.

Clearly, c ≤T 〈V ,⊇∗〉 ≤T 〈U ,⊇∗〉. Since U is not a P -point, c 6≡T 〈U ,⊇∗〉. Therefore,

it remains only to show that 〈U ,⊇〉 6≡T [c]<ω. Suppose A ∈ [U ]c. Then it suffices to

show that the intersection of an infinite subset of A is in U . By ♦(Ec
ω), there exists

M ≺ Hc+ such that |M | = ω and M ⊇ {A, 〈Vα〉α<c, 〈Wn,α〉〈n,α〉∈ω×c} and η[Ξδ] = A∩M

where δ = sup(c∩M). Hence, it suffices to show that the intersection E of some infinite

subset of A ∩M is such that {E} ∪ Uδ has the SFIP.

Let {Vn : n < ω} ⊆M generate of the filter Vδ; for each i < ω, let {Wi,j : j < ω} ⊆M

generate the filter Wi,δ. Set B0 = A. Suppose k < ω and, for all l < k, we have Al ∈

Bl+1 ∈ [Bl]c and nl < ω and Wnl 3
{
j : 〈nl, j〉 ∈ B ∩

⋂
h<lAh

}
for all B ∈ Bl+1. Since

cf(c) > ω, there exist Bk+1 ∈ [Bk]c and nk ∈
⋂
h<k(Vh \ {nh}) and σk : {nl : l < k} → ω

such that, for all l < k and B ∈ Bk+1, we have Wnk 3
{
j : 〈nk, j〉 ∈ B ∩

⋂
h<k Ah

}
and

σk(nl) ∈
⋂
h<kWnl,h and σk ⊆ B ∩

⋂
h<k Ah. Choose any Ak ∈ Bk+1 \ {Ah : h < k}. By

induction, we can repeat the above for all k < ω. Moreover, we may carry out any finite

initial segment of the construction in M . Hence, we may assume {Ai : i < ω} ⊆ M .

Finally,
⋃
i<ω σi ⊆

⋂
i<ω Ai and {

⋃
i<ω σi} ∪ Uδ has the SFIP.

Note that ♦(Ec
ω) is equivalent to ♦ under CH. Furthermore, a recent result of She-

lah [63] is that if κ is an uncountable cardinal and 2κ = κ+, then ♦(S) holds for every

stationary S disjoint from Eκ+

cf(κ). Hence, we could drop the hypothesis ♦(Ec
ω) under the
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assumption that c = κ+ for some cardinal κ of uncountable cofinality. (We would have

2κ = κ+ because c<p = c. (See Martin and Solovay [43].))

[In very recent unpublished work, Stevo Todorčević has deduced Theorem 6.3.7 from

the mere existence of a P -point, which is known to follow from d = c, which is a strictly

weaker hypothesis than p = c. Thus, the need for ♦(Ec
ω) has been eliminated altogether.]

Remark 6.3.8. When thinking about Tukey classes of ultrafilters, one may be reminded

of Hechler’s result [30] that any ω1-directed set without a maximum can be forced to be

isomorphic to a cofinal subset of ωω ordered by eventual domination. Similarly, Brendle

and Shelah [12] have implicitly shown that, for a fixed regular uncountable κ and set R

of regular cardinals exceeding κ, there is a model of ZFC in which, for each λ ∈ R, some

U ∈ ω∗, when ordered by ⊇∗, has a cofinal subset isomorphic to κ × λ. It is not clear

whether an arbitrary ω1-directed set can be forced to be isomorphic to a cofinal subset

of an ultrafilter ordered by ⊇∗. In constructing non-P -points, which are not ω1-directed

when ordered by ⊇∗, order-theoretic results seem to come even less easily.

It is worth noting another relationship between the Tukey classes arising from ultra-

filters ordered by ⊇∗ and those ordered by ⊇.

Proposition 6.3.9. Suppose U is a non-P -point in ω∗. Then there exists V ∈ ω∗ such

that 〈V ,⊇〉 ≤T 〈U ,⊇∗〉.

Proof. Choose 〈xn〉n<ω ∈ Uω such that xn ⊇ xn+1 6⊇∗ xn for all n < ω, that
⋂
n<ω xn = ∅,

and that {xn : n < ω} has no pseudointersection in U . For each n < ω, set yn = xn\xn+1.

Set V =
{
E ⊆ ω :

⋃
n∈E yn ∈ U

}
. Then V ∈ ω∗ and the map from 〈V ,⊇〉 to 〈U ,⊇∗〉

defined by E 7→
⋃
n∈E yn is Tukey.

Next, we have a pair of negative ZFC results.
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Theorem 6.3.10. Let Q be a directed set that is a countable union of ω1-directed sets.

Then 〈U ,⊇∗〉 6≡T ω ×Q for all U ∈ ω∗.

Proof. Seeking a contradiction, suppose U ∈ ω∗ and 〈U ,⊇∗〉 ≡T ω × Q. Then there

is a quasiordering v on U ∪ (ω × Q) such that 〈U ,⊇∗〉 and 〈ω × Q,≤ω×Q〉 are cofinal

suborders. Let Q =
⋃
n<ωQn where Qn is ω1-directed for all n < ω. Fix p ∈ Q. Fix

η ∈ ωω such that η−1{n} is unbounded and η(4n) = η(4n+ 1) = η(4n+ 2) = η(4n+ 3)

for all n < ω. For all n < ω and q ∈ Q, choose xn,q ∈ U such that 〈n, q〉 v xn,q. We may

assume that xi,p v xj,q for all i ≤ j < ω and q ∈ Q.

Construct ζ ∈ ωω as follows. Suppose we are given n < ω and ζ � n. Then, for all

q ∈ Q, the set {xζ(m),q : m < n} has a v-upper bound 〈k, r〉 for some k < ω and r ∈ Q.

Since Qη(n) is ω1-directed, every countable partition of Qη(n) includes a cofinal subset.

Hence, there exist k < ω and a cofinal subset Sn of Qη(n) such that for all q ∈ Sn there

exists r ∈ Q such that {xζ(m),q : m < n} v 〈k, r〉. We may assume k > ζ(m) for all

m < n. Set ζ(n) = k.

Since ω∗ is an F-space (or, more directly, by an easy diagonalization argument),

there exists z ⊆ ω such that xζ(4n),p \ xζ(4n+2),p ⊆∗ z and xζ(4n+2),p \ xζ(4n+4),p ⊆∗ ω \ z

for all n < ω. Suppose z ∈ U . Then there exist m < ω and 〈l, r〉 ∈ ω × Qm such that

〈l, r〉 w z. Choose n < ω such that η(4n + 3) = m and ζ(4n + 2) ≥ l. Then choose

q ∈ S4n+3 such that q ≥ r. Then 〈ζ(4n+ 2), q〉 w z. Hence, xζ(4n+2),q w z ∩ xζ(4n+2),p w

xζ(4n+4),p w 〈ζ(4n + 4), p〉. Hence, 〈ζ(4n + 4), p〉 v xζ(4n+2),q v 〈ζ(4n + 3), s〉 for some

s ∈ Q, which is absurd because ζ is strictly increasing. By symmetry, we can also derive

an absurdity from ω \ z ∈ U . Thus, U is not an ultrafilter on ω, which yields our desired

contradiction.

The above result is optimal in the following sense. As noted before, it is not hard to
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show that, for a fixed regular uncountable κ and set R of regular cardinals exceeding κ,

a construction of Brendle and Shelah [12] can be trivially modified to yield a model of

ZFC in which, for each λ ∈ R, some U ∈ ω∗ satisfies 〈U ,⊇∗〉 ≡T κ× λ for each λ in an

arbitrary set of regular cardinals exceeding κ.

Lemma 6.3.11. Given a quasiorder Q with an unbounded cofinal subset C, there exists

a cofinal subset A of C such that A is |C|-like.

Proof. Let 〈cα〉α<|C| : |C| ↔ C. For each α < |C|, let aα = cβ where β is the least

γ < |C| such that cγ has no upper bound in {aδ : δ < α}, provided such a γ exists. If

no such γ exists, then α > 0, so we may set aα = a0. Then A = {aα : α < |C|} is as

desired.

Theorem 6.3.12. Suppose Q is a directed set that is a countable union of ω1-directed

sets. Then 〈U ,⊇〉 6≤T Q for all U ∈ ω∗.

Proof. Seeking a contradiction, suppose U ∈ ω∗ and f : 〈U ,⊇〉 ≤T Q. By a result of

Brendle and Shelah [12],

cf(cf(〈U ,⊇〉)) = cf(cf(〈U ,⊇∗〉)) > ω.

By Lemma 6.3.11, U has a cofinal subset A that is cf(〈U ,⊇〉)-like. Since A is cofinal,

f � A is a Tukey map and |A| = cf(〈U ,⊇〉). Let Q =
⋃
n<ωQn where Qn is ω1-directed

for all n < ω. Since cf(|A|) > ω, there exist n < ω and B ∈ [A]|A| such that f [B] ⊆ Qn.

Since A is |A|-like, B is unbounded. Set I = ω\
⋂
B. For each i ∈ I, choose Bi ∈ B such

that i 6∈ Bi. Then
⋂
i∈I Bi =

⋂
B; hence, {Bi : i ∈ I} is unbounded. But {f(Bi) : i ∈ I}

is a countable subset of Qn, and therefore bounded. This contradicts our assumption

that f is Tukey.
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From Corollary 5.4 of [66] by Solecki and Todorčević, it follows that 〈U ,⊇〉 6≤T ωω

(where ωω is ordered by domination) for all U ∈ ω∗.

Our next theorem, a positive consistency result, is proved using Solovay’s Lemma [43],

which we now state in terms of p.

Lemma 6.3.13. If A,B ∈ [[ω]ω]<p and |a∩
⋂
σ| = ω for all a ∈ A and σ ∈ [B]<ω, then

B has a pseudointersection b such that |a ∩ b| = ω for all a ∈ A.

Theorem 6.3.14. Assume p = c. Let ω ≤ cf(κ) = κ ≤ c. Then there exists U ∈ ω∗

such that 〈U ,⊇∗〉 ≡T 〈[c]<κ,⊆〉.

Proof. Given a set E, let I(E) denote the set of injections from κ to E. Given E ⊆ P(ω),

let Φ(E) denote the set of 〈ρ,Γ〉 ∈ [E ]<ω × I(E)<ω satisfying
⋂
ρ ⊆∗

⋃
f∈ran Γ f(γ) for all

γ < κ. Let 〈Sα〉α<c enumerate [[ω]ω]<κ. Note that if |E| ≥ κ, then Φ(E) = ∅ implies

that E has the SFIP and that 〈E ,⊇∗〉 is κ-like.

Let us construct a sequence 〈Uα〉α<c in [ω]ω such that we have the following for all

α ≤ c, given the notation Uβ = {Uγ : γ < β} for all β ≤ c.

1. ∀β < α ∀σ, τ ∈ [Uβ]<ω
⋂
σ ⊆∗

⋃
τ or

⋂
σ \
⋃
τ 6⊆∗ Uβ.

2. ∀β < α ∃σ ∈ [Sβ]<ω Uβ ∩
⋂
σ =∗ ∅ or ∀S ∈ Sβ Uβ ⊆∗ S.

3. Φ(Uα) = ∅.

Clearly, (1) and (2) will be preserved at limit stages of the construction. Let us show

that (3) will also be preserved. Let ω ≤ cf(η) ≤ η ≤ c and suppose (1) and (3) hold

for all α < η. Seeking a contradiction, suppose 〈ρ,Γ〉 ∈ Φ(Uη); we may assume 〈ρ,Γ〉

is chosen so as to minimize dom Γ. By (1), 〈Uα〉α<η is injective; let ψ be its inverse.

Since Φ(Usup(ψ[ρ])) = ∅, we have Γ 6= ∅. By the pigeonhole principle, there exist A ∈ [κ]κ
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and i ∈ dom Γ such that for all γ ∈ A we have ψ(Γ(i)(γ)) = maxj∈dom Γ ψ(Γ(j)(γ)).

By symmetry, we may assume i = max(dom Γ). Since Φ(Usup(ψ[ρ])) = ∅, we have |A ∩

Γ(i)−1 sup(ψ[ρ])| < κ; hence, we may assume A∩Γ(i)−1 sup(ψ[ρ]) = ∅. By the definition

of Φ(Uη), we have
⋂
ρ \
⋃
j<i Γ(j)(γ) ⊆∗ Γ(i)(γ) for all γ ∈ A. Hence, by (1), we have⋂

ρ ⊆∗
⋃
j<i Γ(j)(γ) for all γ ∈ A. Choose h ∈ I(A). Then 〈ρ, 〈Γ(j) ◦ h〉j<i〉 ∈ Φ(Uη), in

contradiction with the minimality of dom Γ. Thus, (3) will be preserved at limit stages.

Given α < c and 〈Uβ〉β<α satisfying (1)-(3), let us show that there always exists

Uα ∈ [ω]ω such that 〈Uβ〉β≤α also satifies (1)-(3). Let g ∈ 2ω be sufficiently Cohen

generic. There are two cases to consider. First, suppose that there exists σ ∈ [Sα]<ω

such that Φ(Uα ∪ σ) 6= ∅. Then there exists 〈ρ2,Γ2〉 ∈ Φ(Uα ∪ {x2}) where x2 =
⋂
σ.

For each i < 2, set xi = g−1{i} \ x2. Seeking a contradiction, suppose there exists

〈ρi,Γi〉 ∈ Φ(Uα ∪ {xi}) for each i < 2. We may assume
⋃
i<3

⋃
ran Γi ⊆ Uα. Let Λ be a

concatenation of {Γi : i < 3} and set τ = Uα ∩
⋃
i<3 ρi. Then, for all γ < κ, we have

⋂
τ =

⋃
i<3

(
xi ∩

⋂
τ
)
⊆
⋃
i<3

⋂
ρi ⊆∗

⋃
f∈ran Λ

f(γ).

Hence, 〈τ,Λ〉 ∈ Φ(Uα), in contradiction with (3). Therefore, we may choose i < 2 such

that Φ(Uα ∪ {xi}) = ∅. Set Uα = xi, which is disjoint from
⋂
σ. Then (2) and (3) are

clearly satisfied for stage α + 1, and (1) is also satisfied because of Cohen genericity.

Now suppose that Φ(Uα∪σ) = ∅ for all σ ∈ [Sα]<ω. For each ρ ∈ [Uα]<ω, σ ∈ [Sα]<ω,

and Γ ∈ I(Uα)<ω, choose γρ,σ,Γ < κ such that
⋂

(ρ∪σ) 6⊆∗
⋃
i∈ran Γ f(δ) for all δ ∈ κ\γρ,σ,Γ.

Set γρ,Γ = sup{γρ,σ,Γ : σ ∈ [Sα]<ω}; set xρ,Γ =
⋂
ρ \
⋃
f∈ran Γ f(γρ,Γ). Then xρ,Γ ∩

⋂
σ

is infinite for all σ ∈ [Sα]<ω. By Solovay’s Lemma, Sα has a pseudointersection y

such that y ∩ xρ,Γ is infinite for all ρ ∈ [Uα]<ω and Γ ∈ I(Uα)<ω, for there are at most

|Uα|<ω-many possible xρ,Γ. Set Uα = y ∩ g−1{0}. Then (2) is clearly satisfied for stage
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α + 1. Since y ∩ xρ,Γ ∩
⋂
σ is infinite, Cohen genericity implies Uα ∩ xρ,Γ is infinite, for

all ρ, σ, and Γ. Hence, (3) is satisfied for stage α + 1; (1) is also satisfied because of

Cohen genericity. This completes our construction of 〈Uα〉α<c.

Let U be the semifilter generated by Uc. By (3), Uc has the SFIP and Uc is κ-like

with respect to ⊇∗. Hence, by (2), U is a Pκ-point in ω∗. Therefore, f : 〈U ,⊇∗〉 ≤T

〈[c]<κ,⊆〉 for any injection f of U into [c]1. Choose ζ : [c]<κ → U such that ζ(σ) is a

pseudointersection of {Uα : α ∈ σ} for all σ ∈ [c]<κ. Then ζ is Tukey because Uc is

κ-like. Thus, U ≤T [c]<κ ≤T U .

6.4 Questions

Question 6.4.1. Is it consistent that every U ∈ ω∗ satisfies 〈U ,⊇∗〉 ≡T 〈[c]<ω〉? By

Proposition 6.3.9, this is equivalent to asking if it is consistent that every U ∈ ω∗

satisfies 〈U ,⊇〉 ≡T 〈[c]<ω〉.

Question 6.4.2. Does ♦ imply there are at least four Tukey classes represented by 〈U ,⊇∗〉

for some U ∈ ω∗? Infinitely many Tukey classes? As many as 2ω1? (It will be shown in

a forthcoming paper by Dobrinen and Todorčević that CH implies there are 2ω1-many

Tukey classes represented by 〈U ,⊇〉.)

Question 6.4.3. Is it consistent that there exists U ∈ ω∗ such that 〈U ,⊇∗〉 ≡T ω1 × c

and ω1 < p?
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Theory and Applications, II (Pécs, 1989), North-Holland, Amsterdam, 1993, pp.

365–371.

[37] K. Kunen, Large homogeneous compact spaces, Open Problems in Topology (J. van

Mill and G. M. Reed, eds.), North-Holland Publishing Co., Amsterdam, 1990, pp.

261–270.

[38] K. Kunen, Random and Cohen reals, Handbook of set-theoretic topology, 887–911,

North-Holland, Amsterdam, 1984.



164

[39] K. Kunen, Weak P-points in N∗, Colloq. Math. Soc. János Bolyai 23 (1980), 741–

749.

[40] K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic

and the Foundations of Mathematics, 102. North-Holland Publishing Co., Amster-

dam-New York, 1980.

[41] V. Kuz′minov, Alexandrov’s hypothesis in the theory of topological groups, Dokl.

Akad. Nauk SSSR 125 (1959), 727–729.

[42] V. I. Malykhin, On Noetherian Spaces, Amer. Math. Soc. Transl. 134 (1987), no.

2, 83–91.

[43] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2

(1970), no. 2, 143–178.

[44] M. A. Maurice, Compact ordered spaces, Mathematical Centre Tracts, 6, Mathema-

tisch Centrum, Amsterdam, 1964.

[45] J. van Mill, On the cardinality of power homogeneous compacta, Topology Appl.

146/147 (2005), 421–428.

[46] J. van Mill, On the character and π-weight of homogeneous compacta, Israel J.

Math. 133 (2003), 321–338.

[47] J. van Mill, Homogeneous compacta, Open Problems in Topology II, (E. Pearl, ed.),

Elsevier, Amsterdam, 2007, pp. 189–195.

[48] D. Milovich, Amalgams, connectifications, and homogeneous compacta, Topology

Appl. 154 (2007), no. 6, 1170–1177.



165

[49] D. Milovich, Noetherian types of homogeneous compacta and dyadic compacta,

Topology Appl. 156 (2008), 443–464.

[50] D. Milovich, Splitting families and the Noetherian type of βω \ω, J. Symbolic Logic

73 (2008), no. 4, 1289–1306.

[51] D. Milovich, Tukey classes of ultrafilters on ω, Topology Proceedings 32 (2008)

351–362.

[52] S. A. Peregudov, Certain properties of families of open sets and coverings, Moscow

Univ. Math. Bull. 31 (1976), no. 3–4, 19–25.

[53] S. A. Peregudov, P -uniform bases and π-bases, Soviet Math. Dokl. 17 (1976), no.

4, 1055–1059.

[54] S. A. Peregudov, On the Noetherian type of topological spaces, Comment. Math.

Univ. Carolinae 38 (1997), no. 3, 581–586.
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[56] B. Pospǐsil, On bicompact spaces, Publ. Fac. Sci. Univ. Masaryk (1939), no. 270.

[57] G. J. Ridderbos, Cardinality restrictions on power homogeneous T5 compacta, to

appear in Studia Sci. Math. Hungarica.

[58] J. Roitman, Correction to: Adding a random or a Cohen real: topological conse-

quences and the effect on Martin’s axiom, Fund. Math. 129 (1988), no. 2, 141.
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