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Abstract. In [FHK13], the authors considered the question whether model-existence of Lω1,ω-

sentences is absolute for transitive models of ZFC, in the sense that if V ⊆ W are transitive

models of ZFC with the same ordinals, ϕ ∈ V and V |= “ϕ is an Lω1,ω-sentence”, then V |= Φ if
and only if W |= Φ where Φ is a first-order sentence with parameters ϕ and α asserting that ϕ

has a model of size ℵα.

From [FHK13] we know that the answer is positive for α = 0, 1 and under the negation of CH,
the answer is negative for all α > 1. Under GCH, and assuming the consistency of a supercompact

cardinal, the answer remains negative for each α > 1, except the case when α = ω which is an
open question in [FHK13].

We answer the open question by providing a negative answer under GCH even for α = ω. Our

examples are incomplete sentences. In fact, the same sentences can be used to prove a negative
answer under GCH for all α > 1 assuming the consistency of a Mahlo cardinal. Thus, the large

cardinal assumption is relaxed from a supercompact in [FHK13] to a Mahlo cardinal.

Finally, we consider the absoluteness question for the ℵα-amalgamation property of Lω1,ω-
sentences (under substructure). We prove that assuming GCH, ℵα-amalgamation is non-absolute

for 1 < α < ω. This answers a question from [SS]. The cases α = 1 and α infinite remain open. As

a corollary we get that it is non-absolute that the amalgamation spectrum of an Lω1,ω-sentence
is empty.

1. Introduction

The current paper adds to the literature that investigates which notions for infinitary logics, or
more generally for abstract elementary classes, are absolute for models of ZFC. Some notions like
satisfiabilitya, model-existence in ℵ0 and ℵ1, model-existence in some κ ≥ iω1

, ℵ0-amalgamation
and ℵ0-joint embedding are absolute between transitive models of ZFC (see [Bal12, FHK13, GS86]).
Other notions such as model-existence in ℵα, α > 1, or existence of a maximum model in ℵα, α > 1
are non-absolute (see [FHK13, BKS16, BS]). Unfortunately, the absoluteness question remains
open for a wide range of notions, such as ℵ1-categoricity for Lω1,ω-sentences, ℵ1- amalgamation,
and ℵ1-joint embedding, to name a few.

The notions we consider in this paper are “model-existence” and “amalgamation”. For ℵ0 and
ℵ1, model existence is an absolute notion for transitive models of ZFC. From [Mal68], we know that
there is a complete Lω1,ω-sentence φ that characterizes 2ℵ0 . That is, φ has models in all (infinite)
cardinalities less or equal to 2ℵ0 , but no larger models, and this is a theorem of ZFC. Under CH,
φ has models in ℵ1, but no models in ℵ2. Under the negation of CH, φ has a model in ℵ2. Hence,
model-existence in ℵ2 is not an absolute notion.
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aWe mean that given a model M and a sentence φ, the statement “M |= φ” is absolute.
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Similarly, other consistent violations of GCH witness that for each 1 < α < ω1 model existence
in ℵα is not absolute.

Recall that iω1
is the Hanf number for Lω1,ω. I.e., every Lω1,ω-sentence which has models in

all cardinalities below iω1
, it also has arbitrarily large models. By [GS86], the property that an

Lω1,ω-sentence has arbitrarily large models is absolute.
So, it is natural to ask whether model-existence in ℵα, with ℵ1 < ℵα < iω1 , is absolute for models

of ZFC+GCH. The question was answered in [FHK13], under large cardinal assumptions, except
the case where α = ω. The large cardinal assumptions are different for successors of successors
than for limit cardinals and successors of limits.

The following result from [FHK13], shows that, assuming the consistency of uncountably many
inaccessibles, model-existence in ℵα+2 is a non-absolute notion for Lω1,ω-sentences, for all α < ω1.

Theorem 1.1 ([FHK13], Theorem 7). Assume a ground model V of ZFC+GCH in which there
are uncountably many inaccessible cardinals and an inner model M ⊂ V of ZFC+GCH and “♦+

κ

holds for every regular uncountable κ < ℵω1 .” Then there is a generic extension V [G] in which the
GCH is true and model-existence in ℵα+2 for Lω1,ω-sentences is not absolute between M and V [G]

for all α < ωM1 .bc

The way the proof of Theorem 1.1 goes is that for each α < ωM1 there exists an Lω1,ω-sentence
σα+2 such that σα+2 has a model of size ℵα+2 if and only if there exists an ℵα+1-Kurepa family.
Moreover, this equivalence is absolute between transitive models of ZFC that contain σα+2. It
follows that σα+2 has a model of size ℵα+2 in M . In addition, since Levy collapsing an inaccessible
to ℵα+2 destroys all ℵα+1-Kurepa trees, there is a generic extension of V where σα+2 does not have
any models of size ℵα+2. So, another form of Theorem 1.1 is implicit in [FHK13]. Assuming M
and V as in Theorem 1.1 except now with just one inaccessible cardinal, then, for each α < ωM1 ,
model-existence in ℵα+2 for Lω1,ω-sentences is not absolute between M and a forcing extension
V [Gα] satisfying GCH. This covers the case of successors of successor cardinals.

The following two results from [FHK13], show that, assuming the consistency of a supercompact,
model-existence in ℵβ for Lω1,ω-sentences is not absolute between transitive models of ZFC+GCH,
for every countable β > ω not of the form α+ 2.

Theorem 1.2 ([FHK13], Theorem 6). Assume a ground model V of ZFC+GCH in which there
is a supercompact cardinal and an inner model M ⊂ V of ZFC+GCH and “�∗λ holds at every
singular cardinal λ < ℵω1

.” Then there is a generic extension V [G] in which the GCH is true
and model-existence in ℵα+1 for Lω1,ω-sentences is not absolute between M and V [G] for all limit
α < ωM1 .

Theorem 1.3 ([FHK13], Section 3.5). Assume M and V is as in Theorem 1.2. Then there is a
generic extension V [G] in which the GCH is true and model-existence in ℵα for Lω1,ω-sentences is
not absolute between M and V [G] for all limit α < ωM1 except possibly ω.

Theorem 1.2 is proved as follows: Given α < ωM1 , there is an Lω1,ω-sentence ϕα+1 which has a
model of size ℵα+1 if and only if there is a special ℵα+1-Aronszajn tree. Moreover, this equivalence
is absolute between transitive models of ZFC that contain ϕα+1. Therefore, ϕα+1 has a model of

b The proofs of Theorems 1.1-1.3 obtain ω
V [G]
1 = ωV1 .

c In Theorems 1.1-1.3, the restriction α < ωM1 , as opposed to α < ωV1 , is not essential. More precisely, we
can arrange that M = V by starting from an arbitrary transitive model W of ZFC+GCH and the large cardinal

hypothesis and then by a small forcing obtain a generic extension V = W [H] satisfying the hypotheses for M .
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size ℵα+1 in M . Moreover, assuming a supercompact, there is a forcing extension V [G] in which
GCH is true, but there are no special ℵα+1-Aronszajn trees, for all countable limit α.

Theorem 1.3 has a similar proof, but now for every limit ω < α < ωM1 , there exists some
Lω1,ω-sentence ψα that codes multiple special Aronszajn trees simultaneously. The vocabulary of
ψα contains predicates Qβ , for all β < α. Each Qβ+1 is |Qβ |-like and if |Qβ+1|=|Qβ |+, then ψα

codes a special |Qβ+1|-Aronszajn tree. It follows that ψα has models of size ℵα if and only if there
are special ℵβ+1-Aronszajn trees for all β < α. Moreover, this equivalence is absolute between
transitive models of ZFC that contain ψα. Thus, ψα has models of size ℵα in M while in the
generic extension V [G] used in the proof of Theorem 1.2, all models of ψα have size at most ℵω.

The above argument fails for α = ω because GCH implies a special ℵn+1-Aronszajn tree for each
n < ω. We overcome this barrier by using coherent special κ-Aronszajn trees (see Definition 2.1 for
coherence).

The following is Corollary 3.15(a) in [Kö03].

Theorem 1.4. If �λ holds, then there is a coherent special λ+-Aronszajn tree.

So, in L, our modified formula φα will have a model of size ℵα. On the other hand, from a model
of φα of size ≥ ℵ2, we can recover a coherent pseudotree that contains a cofinal special ℵ2-Aronszajn
tree. By coherence, this pseudotree cannot contain a copy of 2≤ω. Todorčević showed that after
Levy collapsing a Mahlo to ω2, every special ℵ2-Aronszajn tree contains a copy of 2<ω1 . (We state
his corresponding equiconsistency theorem below.) Therefore, there is a model of GCH in which
φα has no models of size ≥ ℵ2.

Theorem 1.5 ([Tod81], Theorem 4.6). Con(ZFC+“there exists a Mahlo”)↔ Con(ZFC+GCH+“every
special ℵ2-Aronszajn tree contains a copy of 2<ω1”).

Our result works not only for α = ω, but for all countable α. For α a limit ordinal, or the
successor to a limit ordinal, our result improves the large cardinal assumption from a supercompact
(Theorems 1.2, 1.3) to a Mahlo cardinal (Theorem 2.4).

This completes all cases of the absoluteness question for model-existence of Lω1,ω-sentences. The
same question can be asked about the amalgamation property of Lω1,ω-sentences. Before we phrase
the question precisely, notice that for the amalgamation property we need to specify the type of
embeddings used. For this paper we consider only amalgamation under the substructure relation.

Definition 1.6. Given a collection of models K, by the amalgamation spectrum of K, in symbols
AP-spec(K), we mean the set of all cardinals κ for which the class of all models in K of size κ is
nonempty and has the amalgamation property.

If K is the collection of all models of some sentence ϕ, then we write AP-spec(ϕ) for AP-spec(K).

Then the absoluteness question for amalgamation is the following: Is it the case that, if V ⊆W
are transitive models of ZFC with the same ordinals, ϕ ∈ V and V |= “ϕ is an Lω1,ω-sentence”,
then V |= “ℵα ∈ AP-spec(ϕ)” if and only if W |= “ℵα ∈ AP-spec(ϕ)”?

Parallel to [FHK13], we can show that manipulating the size of the continuum yields a non-
absoluteness result for the amalgamation spectrum of Lω1,ω-sentences.

Consider the sentence φ that asserts the existence of a full binary tree of length ω. This sentence
has models up to cardinality continuum. All models of φ differ only on the maximal branches they
contain. In particular, they satisfy the amalgamation property in all cardinals up to the continuum.
It follows that the κ-amalgamation property is not absolute for κ ≥ ℵ2. A similar result, but for
ℵ2 ≤ κ ≤ 2ℵ1 , is proved in [SS] using Kurepa trees. The result is interesting mainly when GCH
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fails, since under GCH, ℵ2 = 2ℵ1 . In [SS], the question was raised about the absoluteness of κ-
amalgamation, for κ ≥ ℵ3, assuming GCH. In Section 3 we answer the question for all κ = ℵα,
3 ≤ α < ω, and we prove that our examples cannot be used to settle the question for α ≥ ω.

2. Model- Existence

In this section we use coherent special Aronszajn trees to prove Theorem 2.4 about non-absoluteness
of model-existence. Recall that well-orderings cannot be characterized by an Lω1,ω-sentence. So, it
is unavoidable that we will be working with non-well-founded trees. We call such trees pseudotrees
to distinguish them from their well-founded counterparts.

Definition 2.1.

• A pseudotree is a partial ordered set T such that each strict lower cone ↓ x = {y | y <T x}
is a chain.

• A pseudotree T is functional if there is a linear order L such that T is a downward closed
suborder of the class of all functions with domains of the form ↓ x = {y | y <L x}, ordered
by inclusion. In this case, define a rank ρ : T → L by ρ(t) being the unique element such
that dom(t) = ↓ ρ(t).

• Given T and L as above and x ∈ L, define Tx to be the fiber ρ−1(x).
• The cofinality cf(T ) of a functional pseudotree T is the cofinality cf(ρ[T ]).
• By =∗ we mean equality of sets modulo a finite set.
• A pseudotree T is coherent if it is functional and dom(s) = dom(t) implies s =∗ t.
• Given a regular uncountable cardinal κ, a κ-pseudotree is a pseudotree T of cofinality κ

such that |Tx| < κ for each x ∈ ρ[T ].
• A κ+-pseudotree is special if it is the union of κ-many of its antichains.

Lemma 2.2. If T is a coherent pseudotree T of uncountable cofinality, no suborder of T is iso-
morphic to (2≤ω,⊂).

Proof. Seeking a contradiction, suppose e : 2≤ω → T is an order embedding. Choose t ∈ T such
that ρ(t) ≥ ρ(e(c)) for all c ∈ 2<ω. This is possible since T has uncountable cofinality. Then
construct w ∈ 2ω as follows. Given c = w � n, since e(c_0) ⊥ e(c_1), we may choose w(n) = i < 2
such that e(c_i)(y) 6= t(y) for some y ≥ ρ(e(c)). Thus, e(w)(y) 6= t(y) for infinitely many y, in
contradiction with coherence of T . �

Lemma 2.3. Given 1 ≤ α < ω1, there is an Lω1,ω formula φα satisfying the following.

(1) If φα has a model A of size ≥ ℵ2, then there is a coherent pseudotree T with cofinality ω2

and an order embedding of a special ℵ2-Aronszajn tree into T .
(2) If there is a coherent special ℵβ+1-Aronszajn tree for each β < α, then φα has a model B

of size ℵα.
(3) There is no model of φα of size greater than ℵα.

Proof. Let 1 ≤ α < ω1. We will use a predicate symbol ωβ for each β ≤ α, a binary relation symbol
<, ternary relation symbols Lβ and Sβ for each β < α, and a 4-ary relation symbol Tβ for each
β < α. Our sentence φα will assert that the predicates Lβ , Tβ , and Sβ are functional, i.e., each
of these predicates defines the graph of a function. Therefore, we will freely write, for example,
z = Lβ(x, y) to denote the unique z such that Lβ(x, y, z). Further, Lβ(x, •) will denote the function
sending y to Lβ(x, y).
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The idea behind the definition below is that for each β < α, the relation Tβ defines a functional
pseudotree with underlying order ωβ+1. Tβ(x, •, •) will enumerate the set of all functions in the
pseudotree with rank equal to x. Each such function will equal Tβ(x, y, •), for some y ∈ ωβ . So,
each level of the pseudotree will have size at most |ωβ |. Also, dom(Tβ(x, y, •)) = ↓ x. We will use
Sβ to witness the fact that Tβ is special.

Let φα ∈ Lω1,ω assert the following statements for each β < α, x ∈ ωβ+1, and y ∈ ωβ .

(1) The universe is a continuously increasing union
⋃
β≤α ωβ and strictly linearly ordered by

<.
(2) ω0 is infinite yet ↓ n = {m | m < n} is finite for all n ∈ ω0.
(3) ωβ is <-downward closed.
(4) Lβ , Tβ and Sβ are functional predicates.
(5) If ↓ x is not empty, then Lβ(x, •) is a surjection from ωβ to ↓ x. This will ensure that each

ωβ+1 is |ωβ |-like.
(6) dom(Tβ(x, y, •)) = ↓ x and Tβ(x, y, •) =∗ Tβ(x, z, •), for each z ∈ ωβ , as required for

coherence.
(7) For each w < x, there exists z ∈ ωβ such that Tβ(w, z, •) ⊂ Tβ(x, y, •), i.e., Tβ is downward

closed.
(8) Sβ : ωβ+1 × ωβ → ωβ .
(9) For each w < x and z ∈ ωβ , if Tβ(w, z, •) ⊂ Tβ(x, y, •), then Sβ(w, z) 6= Sβ(x, y).

Assuming there exists a model A of φα of size ≥ ℵ2, there is a unique β < α such that
∣∣∣ωA
β

∣∣∣ = ℵ1
and cf(ωA

β+1) = ω2. Why? First, by regularity of ℵ2, the least γ ≤ α such that
∣∣ωA
γ

∣∣ ≥ ℵ2 must

be a successor ordinal β + 1. Second, by (5), |I| ≤
∣∣∣ωA
β

∣∣∣ for every proper initial segment I of

ωA
β+1. Therefore,

∣∣∣ωA
β

∣∣∣ = ℵ1,
∣∣∣ωA
β+1

∣∣∣ = ℵ2, and ωA
β+1 cannot be covered by ℵ1-many proper initial

segments.
Select W ⊂ ωA

β+1 such that (W,<) ∼= (ω2,∈), and define trees T and U as follows:

T =
({
TA
β (x, y, •) | (x, y) ∈ ωA

β+1 × ωA
β

}
,⊂
)

U =
({
TA
β (x, y, •) | (x, y) ∈W × ωA

β

}
,⊂
)

Then T is a coherent pseudotree of cofinality ω2, U is an ω2-tree and suborder of T , and SA
β

witnesses that U is a special ℵ2-Aronszajn tree. This proves part (1).
For part (2), assuming the existence of a coherent special ℵβ+1-Aronszajn tree Υ(β) for each

β < α, let us construct a model B of φα with size ℵα. Without loss of generality, each Υ(β) is
a downward closed suborder of ((ωβ+1)<ωβ+1 ,⊂). For each β < α, let Ξβ : Υ(β) → ωβ witness
specialness. Let B have universe ωα with <B = ∈ and ωB

β = ωβ . For each β < α and γ < ωβ+1:

(1) If γ 6= 0, choose a surjection Lβ(γ, •) : ωβ → γ and let LB
β (γ, •) = Lβ(γ, •).

(2) Choose a surjection Λβ(γ, •) : ωβ → Υ
(β)
γ , where Υ

(β)
γ is the γth level of Υ(β), and let

TB
β (γ, δ, •) = Λβ(γ, δ) for each δ < ωβ .

(3) Let SB
β (γ, •) = Ξβ(Λβ(γ, •)).

It is immediate that B is a model of φα and B has size ℵα, which proves (2). We finish the proof
by noticing that (3) follows directly from the definition. �

Notice that φα is an incomplete sentence.
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Theorem 2.4. For each 2 ≤ α < ω1, let φα be the sentence from Lemma 2.3.

(1) Given 2 ≤ α < ω1, if �ℵβ holds for all β < α, then φα has a model of size ℵα. In particular,
it is consistent with ZFC+GCH that, for all 2 ≤ α < ω1, φα has a model of size ℵα.

(2) It is consistent, relative to the existence of a Mahlo cardinal, that there is a model of
ZFC+GCH in which, for each 2 ≤ α < ω1, all models of φα have size at most ℵ1.

Proof. (1) follows by Lemma 2.3, part (2), and Theorem 1.4. (2) follows from Lemma 2.3, part (1),
Lemma 2.2 and Theorem 1.5. �

3. Amalgamation

In this section we consider the absoluteness question for the amalgamation spectra of Lω1,ω-
sentences. In particular, we investigate the amalgamation spectra of the sentence φα from Lemma
2.3 under the substructure relation. We fix some notation first.

Definition 3.1. For each 1 ≤ α < ω1, let (Kα,⊂) be the collection of all models of φα from
Theorem 2.4 equipped with the substructure relation.

Remark 3.2. (Kα,⊂) is not quite an abstract elementary class because φα is not preserved by
arbitrary unions of chains. In particular, parts (6) and (7) of the definition of φα are not preserved
by arbitrary unions. However, this can be remedied by adding Skolem functions for parts (6) and
(7). That is, for (6) introduce countably many new predicate symbols (Cβn), each Cβn of arity n+ 3,
and require that Cβn(x, y, z, ~w) holds true if and only if ~w is the vector of all elements w such that
Tβ(x, y, w) is different than Tβ(x, z, w). By coherence there are only finitely many such w’s. For
(7), introduce a new 4-ary predicate symbol P and require that P (x, y, w, z) holds true if and only if
w < x and z is such that Tβ(w, z, •) ⊂ Tβ(x, y, •). Our results hold true even after such a change.

We prove that if α is finite, then Kα fails amalgamation in all cardinalities below ℵα (Lemma
3.9), but amalgamation in ℵα holds trivially because all models of that size, if any, are maximal
(Lemma 3.4). By Theorem 2.4, for α ≥ 2 it is independent of ZFC+GCH whether there are any
models in Kα of size ℵα. We conclude that it is consistent with ZFC+GCH that the amalgamation
spectrum of Kα for α ≥ 2 is consistently empty and consistently equal to {ℵα} (Theorem 3.10).

Lemma 3.3. For all β < α < ω1 and A,B ∈ Kα, if A ⊂ B and ωAβ = ωBβ , then (ωBβ+1, <)

end-extends (ωAβ+1, <).

Proof. Assume that there exists some x ∈ ωBβ+1 and y ∈ ωAβ+1 with x < y. By definition Lβ(y, •) is

a surjection from ωβ to ↓ y. So, there exists some z ∈ ωBβ such that LBβ (y, z) = x. Since ωAβ = ωBβ ,

z also belongs to A, which further implies that LAβ (y, z) = x. So, x must be an element of ωAβ+1. �

Lemma 3.4. Assume 1 ≤ α < ω. All models, if any, in Kα of size ℵα are ⊂-maximal.

Proof. First observe that a model A of φα that has size ℵα must satisfy |ωAβ | = ℵβ , for all β ≤ α,

while any strict initial segment of ωAβ must have size < ℵβ .
Next, assume that A ⊂ B and both A,B are of size ℵα. We prove by induction on β ≤ α, that

ωAβ = ωBβ .

For β = 0, this follows by the fact that (ω0, <) ∼= (ω,∈). For the inductive step, assume that
for some β < α, ωAβ = ωBβ . By Lemma 3.3, ωBβ+1 is an end-extension of ωAβ+1. By the above

observation, both ωAβ+1 and ωBβ+1 have size ℵβ+1 and each strict initial segment has size < ℵβ+1.
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This leads to a contradiction if we assume that ωAβ+1 is a strict initial segment of ωBβ+1. Thus, it

must be the case that ωAβ+1 = ωBβ+1.
To finish the proof, observe that if A ⊂ B and A,B agree on all ωβ ’s, then A,B are equal. �

Next we prove a series of lemmas that lead to Lemma 3.9 where it is proved that Kα fails
amalgamation below ℵα. These lemmas do not require α to be finite.

Lemma 3.5. Assume 1 ≤ β < α < ω1 and M ∈ Kα such that |M | ∈ {ℵ0,ℵβ}. Then there exists
N ∈ Kβ of size |M |. If |M | = ℵβ, then N can be chosen to be ⊂-maximal too.

Proof. If |M | = ℵ0, then let J = β + 1. Otherwise, let J denote the set of all γ ≤ α with the
property that

∣∣ωMδ ∣∣ < ∣∣ωMγ ∣∣ for all δ < γ. In both cases, there is a unique order isomorphism
g : β + 1→ J . Note that g is a continuous map from β + 1 to α+ 1 and g maps successor ordinals
to successor ordinals. For each γ < β, choose a bijection fγ from ωMg(γ) to ωMg(γ+1)−1. We construct

N ∈ Kβ with universe ωMg(β) by relabeling the γth pseudotree of M for γ ∈ α ∩ J and eliminating

the γth pseudotree of M for γ ∈ α \ J .

(1) ωNγ = ωMg(γ) for all γ ≤ β.

(2) For each γ < β, x ∈ ωNγ+1, and y ∈ ωNγ :

(a) Let LNγ (x, y) = LMg(γ+1)−1(x, fγ(y)). This defines a surjection from ωNγ to ↓ x.

(b) Let TNγ (x, y, •) = TMg(γ+1)−1(x, fγ(y), •).
(c) Let SNγ (x, y) = f−1γ (SMg(γ+1)−1(x, fγ(y))).

In the case |M | = ℵβ , to see that N is ⊂-maximal, note that
∣∣ωNγ ∣∣ =

∣∣∣ωMg(γ)∣∣∣ = ℵγ for each γ ≤ β,

which in turn implies that each strict initial segment of ωNγ has size < ℵγ , for each γ ≤ β. Therefore,
the proof of Lemma 3.4 shows that N is ⊂-maximal. �

Definition 3.6. Given α < α′, M ∈ Kα, and M ′ ∈ Kα′ , we say that M ′ end-extends M if M and
M ′ agree on ωγ for all γ ≤ α and on Lγ , Tγ , Sγ for all γ < α.

Lemma 3.7. Assume 1 ≤ α < ω1, M ∈ Kα, and let L be a linear order of size ≤ |M |. Then there
is N ∈ Kα+1 of size |M | such that N end-extends M and ωNα+1 \ ωNα ∼= L.

Moreover, we may choose N such that, for each linear order L′ of size |M | that end-extends L,

there exists N ′ ∈ Kα such that N ⊂ N ′, |N | = |N ′|, and ωN
′

α+1 \ ωN
′

α
∼= L′.

Proof. Given L and L′, we will construct N and N ′ concurrently so that N depends on L but not
on L′. Without loss of generality we may assume that L′ and ωMα are disjoint.

Fix some injection g from ωMα ∪ L to ωMα so that both the range of g and its complement have
size |M |. Extend g to an injection f from ωMα ∪ L′ to ωMα . Let 0M denote min(ωM0 ). End-extend
M to N ′ ∈ Kα+1 as follows.

(1) ωN
′

α+1 = ωMα + L′.

(2) For 0M 6= x ∈ ωN ′

α+1, let LN
′

α (x, •) be an arbitrary surjection from ωMα to ↓ x.

(3) For x ∈ ωN ′

α+1 and y ∈ ωN ′

α , let SN
′

α (x, y) = f(x) and TN
′

α (x, y, z) = 0M for all z < x.

If we also stipulate that ωNα+1 = ωMα +L, the above implicitly defines LNα , SNα , and TNα so that they
depend on L but not on L′.

�
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Corollary 3.8. Assume 1 ≤ α < α′ < ω1, M ∈ Kα, and a sequence of linear orders Lγ for
α ≤ γ < α′ each such that |Lγ | ≤ |M |. Then there is N ∈ Kα′ of size |M | that end-extends M and
satisfies ωNγ+1 \ ωNγ ∼= Lγ for α ≤ γ < α′.

Moreover, we may choose N such that, if M ′ ∈ Kα satisfies M ⊂M ′ and |M | = |M ′|, then there

exists some end-extension N ′ ∈ Kα′ of M ′ that satisfies |N ′| = |M ′|, N ⊂ N ′ and ωN
′

γ+1 \ωN
′

γ
∼= Lγ

for α ≤ γ < α′.

Proof. Create N by repeatedly end-extending M using Lemma 3.7 at successor stages and unions
at limit stages.

To prove the claim about N ′ we follow the proof of Lemma 3.7. The differences are now that (a)

ωNα and ωN
′

α may not be the same and (b) the construction of N and N ′ guarantees that ωN
′

α′ \ωNα′

equals ωM
′

α \ ωMα , i.e. no new points are added to N other than the points added to M .
The proof is by induction on γ. The limit stages are trivial, so we describe only how Lγ , Sγ and

Tγ are defined on the successor stages.

• For 0M 6= x ∈ ωN ′

γ+1, let LN
′

γ (x, •) equal LNγ (x, •) when restricted to domain ωNγ , and let

LN
′

γ (x, •) be the identity otherwise.

• Similarly, for x ∈ ωN ′

γ+1, let SN
′

γ (x, •) equal SNγ (x, •) when restricted to domain ωNγ , and let

SN
′

γ (x, •) be the identity otherwise.

• For x ∈ ωN ′

γ+1 and y ∈ ωN ′

γ , let TN
′

γ (x, y, z) = 0M for all z < x.

�

Lemma 3.9. Let 1 ≤ β < α < ω1 and γ ∈ {0, β} and assume that Kα has a model of size ℵγ .
Then amalgamation fails in ℵγ .

Proof. We give an example of a triple (A,B,C) in Kα that can not be amalgamated. The reason
that amalgamation fails is that linear orders fail amalgamation under end-extension.

Assume M ∈ Kα and |M | = ℵγ . The proof splits into two cases: γ = β > 0 and γ = 0. We give
the details for the first case and sketch the proof of the second case.

By Lemma 3.5, there exists a ⊂-maximal N ∈ Kγ with |N | = ℵγ . End-extend N using Lemma
3.7 to create three models A′, B′, C ′ ∈ Kγ+1 that satisfy the following:

(1) A′ ⊂ B′ and A′ ⊂ C ′
(2) |A′| = |B′| = |C ′| = ℵγ
(3) ωA

′

γ = ωB
′

γ = ωC
′

γ = ωNγ
(4) ωA

′

γ+1 = ωA
′

γ + ω

(5) ωB
′

γ+1 = ωA
′

γ + ω · 2
(6) ωC

′

γ+1 = ωA
′

γ + ω + Q
Then use Corollary 3.8 to end-extend A′, B′, C ′ to some A,B,C ∈ Kα such that A ⊂ B and A ⊂ C.
Assume D is an amalgam of B and C over A. Then ωDγ = ωNγ by maximality of N . By Lemma

3.3, ωDγ+1 must be an end-extension of both ωBγ+1 and ωCγ+1. But this is impossible.

For the case when γ = 0 construct three models A,B,C ∈ Kα with ωA1 = ω · 2, ωB1 = ω · 3 and
ωC1 = ω · 2 + Q. The same argument proves that they can not be amalgamated in Kα. �

Theorem 3.10. Assume 1 ≤ α < ω. The amalgamation spectrum of Kα is equal to {ℵα}, if there
are models in Kα of size ℵα. Otherwise it is empty.
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Proof. First recall that by 2.3(3), Kα has no models of size greater than ℵα. By Lemma 3.9
amalgamation fails for all cardinals below ℵα. If there are models in Kα of size ℵα, then ℵα-
amalgamation holds trivially by Lemma 3.4. In this case the amalgamation spectrum is equal to
{ℵα}. Otherwise, the amalgamation spectrum is empty. �

Corollary 3.11. The amalgamation spectrum of K1 is {ℵ1}.

Proof. The existence of coherent special ℵ1-Aronszajn tree follows from Theorem 1.4, because �ℵ0
holds trivially. �

Theorem 3.12. The following statements are not absolute for transitive models of ZFC.

(a) The amalgamation spectrum of an Lω1,ω-sentence is empty.
(b) For finite n ≥ 2 and φ an Lω1,ω-sentence, ℵn belongs to the amalgamation spectrum of φ.

The results remain true even if we consider transitive models of ZFC+GCH.

Proof. By Theorem 3.10 and Theorem 2.4. �

A couple of notes: Theorem 3.12 covers all cardinals ℵn, with n finite and n ≥ 2. For n = 0,
ℵ0-amalgamation is absolute by an easy application of Shoenfield’s absoluteness. The question for
n = 1 remains open.

Lastly we prove that our examples can not be used to resolve the absoluteness question of
ℵα-amalgamation, for ω ≤ α < ω1, under GCH. The reason is that in this case Kα has empty
amalgamation spectrum.

Lemma 3.13. Assume ω ≤ α < ω1 and M ∈ Kα. Let K be a countable linear order. Then there
is a model R in Kα of size |M | such that ωR1 \ ωR0 ∼= K.

Moreover, we may choose R such that, for each countable linear order J that end-extends K,
there exists N ∈ Kα such that R ⊂ N , |N | = |R|, and ωN1 \ ωN0 ∼= J .

Proof. Given K and J , we will construct R and N in parallel, taking care that R depends on K
but not on J . The idea is that we move all the pseudotrees of M one level higher and introduce a
new pseudotree at the bottom.

For each β ≤ α, define σ(β) to be β−1 if 0 < β < ω and β otherwise. Without loss of generality,
assume (ωM0 , <M ) = (ω,∈); then define ωN0 = ω and ωNβ = ω + J + (ωMσ(β) \ ω) for all β > 0. In

particular, ωN1 = ω + J and ωN2 = ω + J + (ωM1 \ ω). For all β ≤ α, let ωRβ = ωNβ \ (J \K).
Next, we define the bottom pseudotree of N and, implicitly, the bottom pseudotree of R. Choose

an injection g : ω +K → ω with co-infinite range and then extend it to an injection f : ω + J → ω.
For each x ∈ ω + J and y ∈ ω, declare that:

• LN0 (x, •) is an arbitrary surjection from ω to ↓N x if x 6= 0.
• TN0 (x, y, z) = 0 for all z <N x.
• SN0 (x, y) = f(x).

The above implicitly defines LR0 , SR0 , and TR0 so that they depend on K but not on J .
Given 1 ≤ β < α, observe that ωNβ = ωMσ(β) ∪ J and ωNβ+1 = ωMσ(β)+1 ∪ J . Then declare the

following for each x ∈ ωNβ+1 \ {0} and y ∈ ωNβ .

LNβ (x, y) =


LMσ(β)(x, y) : x, y 6∈ J
y : x >N y ∈ J
0 : x ≤N y ∈ J
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The above defines our needed surjections LNβ (x, •) and LRβ (x, •), except in the case where x ∈ J and

y ∈ ωMσ(β). To define LNβ in this case, fix some surjection fβ from ωMσ(β) to ω and let LNβ (x, y) = fβ(y).

This completes the definition of LNβ (x, •) and LRβ (x, •), and notice that the latter depends on K
but not on J .

Next, we begin defining the βth pseudotree of N by splicing constant functions into the σ(β)th

pseudotree of M . For each x ∈ ωMσ(β)+1 and y ∈ ωMσ(β), let

TNβ (x, y, z) =

{
TMσ(β)(x, y, z) : x >N z 6∈ J
0 : x >N z ∈ J

.

The parts of the pseudotrees TNβ and TRβ defined so far are coherent. We now fill in the missing

levels indexed by J so as to also achieve downward closure. Fix x0 ∈ ωM1 \ ω and let (gβ , hβ) map
ωMσ(β) onto the set of pairs {

(x, y) | x0 ≥M x 6∈ ω and y ∈ ωMσ(β)
}
.

Then declare that, for each x ∈ J and y ∈ ωMσ(β),

TNβ (x, y, z) =

{
TMσ(β)(gβ(y), hβ(y), z) : z ∈ ω
0 : x >N z ∈ J

.

Observe that so far TRβ depends on K but not on J .

To witness specialness, declare that, for each x ∈ ωNβ+1 and y ∈ ωMσ(β),

SNβ (x, y) =

{
SMσ(β)(x, y) : x 6∈ J
x : x ∈ J

.

Finally, for each x ∈ ωMσ(β)+1 and y ∈ J , let TNβ (x, y, •) = TNβ (x, 0, •) and SNβ (x, y) = SNβ (x, 0).

This completes the construction of N and R. We have also implicitly defined TRβ and SRβ so that
they depend on K but not on J . �

Theorem 3.14. Assume ω ≤ α < ω1. The amalgamation spectrum of Kα is empty.

Proof. By Lemma 3.9, Kα fails amalgamation in ℵβ , for all β < α. We prove that this is the case
even for β = α. If Kα has no models of size ℵα, the result is trivial. So, assume that is a model M
of size ℵα.

We use the same method as for Lemma 3.9. In particular, we construct a triple (A,B,C) with
the following properties:

(1) A ⊂ B and A ⊂ C
(2) |A| = |B| = |C| = ℵα
(3) ωA1 = ω · 2
(4) ωB1 = ω · 3
(5) ωC1 = ω · 2 + Q

This is possible by applying Lemma 3.13 twice; once for the pair ω · 2 ⊂ ω · 3 and a second time for
the pair ω · 2 ⊂ ω · 2 + Q.

As in Lemma 3.9, if D were an amalgam of B and C over A, then ωD1 would must be an
end-extension of both ωB1 and ωC1 , which is impossible. �
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4. Open Problems

The following are some questions that remain open. Some of the questions do not bear much
resemblance to the results of this paper. Nevertheless we encountered these questions during our
search for a proof to Theorem 2.4.

(1) Can the consistency strength of our non-absoluteness theorem be further reduced? In
particular, is it possible to prove the same result without any large cardinal assumptions?

(2) If α is countably infinite, is ℵα-amalgamation non-absolute for transitive models of ZFC+GCH?
(3) Is ℵ1-amalgamation for Lω1,ω-sentences absolute for transitive models of ZFC?
(4) The way we proved non-absoluteness of amalgamation in ℵn, for finite n, is by choosing

appropriate set-theoretic assumptions that affect the model-existence spectrum. If there
are no models in ℵn then the amalgamation question becomes void. Can we prove non-
absoluteness of amalgamation in ℵn in the following stronger form: There are two transitive
models of ZFC, say V ⊂W , with the same ordinals, a sentence φ that belongs to (Lω1,ω)V ,
both V and W satisfy “φ has a model of size ℵn”, and V,W disagree on “models of φ of
size ℵn satisfy amalgamation”? Same question is open for ℵn-joint embedding.

(5) The principle �κ asserts the existence of a square sequence, i.e. a sequence < Cα|α ∈
Lim(κ+) > that satisfies (i) Cα is a club of α, (ii) if cf(α) < κ, then |Ca| < κ and (iii) if
β ∈ Lim(Cα), then Cβ = Cα ∩ β. Are there any κ+-like linear orders (L,<) (other than
well-orders) for which the existence of a sequence < Cα|α ∈ Lim(L) > that satisfies (i)-(iii)
is independent of ZFC?

(6) The proof of Lemma 2.3 does not quite recover a coherent special ℵ2-Aronszajn tree from
an ℵα-sized model of φα. It merely recovers a special ℵ2-Aronszajn tree that embeds in a
coherent pseudotree. Is there an Lω1,ω-sentence for which existence of a model of size ℵ2
entails a coherent special ℵ2-Aronszajn tree?

(7) One strategy for reducing our large cardinal assumption from Mahlo to inaccessible is to
attempt to code Kurepa trees using formulas satisfied by higher-gap simplified morasses.
The following test question captures the core obstacle to this strategy. Assume V = L.
Choose M = (L(δ),∈) such that ω4 < δ < ω5 and M ≺ (L(ω5),∈). Let G be a generic
filter of the Miller-like version of Namba forcing. (This forcing is the Nm defined in XI.4.1
of [Sh]; the Laver-like version of Namba forcing is the Nm′ defined in the remark after
XI.4.1A.) Then, in V [G], GCH and the regularity of ωV1 and ωV4 are preserved but cf(ωV2 )
collapses to ω and cf(ωV3 ) collapses to ω1. In V , let ψ be an Lω1,ω formula that defines a
binary relation on the structure M, possibly using parameters from M. Can ψ be chosen
independently of G such that in V [G] we have

∣∣dom
(
ψM
)∣∣ = ℵ2,

∣∣ran
(
ψM
)∣∣ = ℵ1, and{

ψM[x] ∩ y | x ∈ dom
(
ψM
)}

countable for all countable sets y?
(8) In the above test question, we specified “Miller-like” because we can prove, assuming CH,

that this version of Namba forcing does not add cofinal branches to ω1-trees in the ground
model, thus opening the door to rcs iterated forcing extensions without any Kurepa trees
(assuming an inaccessible in the ground model). However, our proof’s fusion argument
works for Miller and Sacks but not Laver type tree forcings. This leads us to ask, is it
consistent with CH that Laver forcing adds a cofinal branch to some ω1-tree in the ground
model?
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