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ABSTRACT. The Noetherian type of a space is the least k such that it has a base
that is k-like with respect to reverse inclusion. Just as all known homogeneous
compacta have cellularity at most ¢, they satisfy similar upper bounds in terms
of Noetherian type and related cardinal functions. We prove these and many
other results about these cardinal functions. For example, every homogeneous
dyadic compactum has Noetherian type w. Assuming GCH, every point in
a homogeneous compactum X has a local base that is ¢(X)-like with respect
to containment. If every point in a compactum has a well-quasiordered local
base, then some point has a countable local 7-base.

1. INTRODUCTION

Van Douwen’s Problem (see Kunen [16]) asks whether there is a homogeneous
compactum of cellularity exceeding ¢. (See Engelking [7], Juhdsz [14], and Kunen [17]
for all undefined terms. In particular, recall that w(-), 7(-), x(-), 7x(-), d(-), ¢(-),
and ¢(-) respectively denote weight, m-weight, character, m-character, density, cellu-
larity, and tightness of topological spaces.) A homogeneous compactum of cellular-
ity ¢ exists by Maurice [19], but van Douwen’s Problem remains open in all models
of ZFC.

Definition 1.1. We say that a homogeneous compactum is exceptional if it is not
homeomorphic to a product of dyadic compacta and first countable compacta.

By Arhangel’skii’s Theorem, first countable compacta have size at most ¢; dyadic
compacta are ccc. Since the cellularity of a product space equals the supremum
of the cellularities of its finite subproducts (see p. 107 of [14]), all nonexceptional
homogeneous compacta have cellularity at most ¢. To the best of the author’s knowl-
edge, there are only two classes of examples of exceptional homogeneous compacta
(see [20]); these two kinds of spaces have cellularities w and c.

We investigate several cardinal functions defined in terms of order-theoretic base
properties. Just like cellularity, these functions have upper bounds when restricted
to the class of known homogeneous compacta. Moreover, GCH implies that one
of these functions is a lower bound on cellularity when restricted to homogeneous
compacta.

Definition 1.2. Given a cardinal k, define a poset to be k-like (k°P-like) if no
element is above (below) xk-many elements. Define a poset to be almost k°P-like if
it has a xk°P-like dense subset.

In the context of families of subsets of a topological space, we will always im-
plicitly order by inclusion.
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Definition 1.3. Given a space X, let the Noetherian type of X, or Nt(X), be the
least k > w such that X has a base that is k°P-like. Analogously define Noetherian
m-type in terms of m-bases and denote it by 7 Nt(X). Given a subset E of X, let the
local Noetherian type of E in X, or xNt(F, X), be the least k > w such that there
is a k°P-like neighborhood base of E. Given p € X, let the local Noetherian type of
p, or xNt(p, X), be xNt({p}, X). Let the local Noetherian type of X, or xNt(X),
be the supremum of the local Noetherian types of its points. Let the compact
Noetherian type of X, or xxgNt(X), be the supremum of the local Noetherian
types of its compact subsets. We call Nt, 7tNt, xNt, and xx Nt Noetherian cardinal
functions.

Noetherian type and Noetherian 7-type were introduced by Peregudov [23]. Pre-
ceding this introduction are several papers by Peregudov, Sapirovskii and Ma-
lykhin [18, 21, 22, 24] about min{Nt(-),ws} and min{wNt(-),ws} (using different
terminologies). Also, Dow and Zhou [5] showed that Sw \ w has a point with local
Noetherian type w. (An easier construction of such a point will be given in the
proof of Theorem 5.16, which is a generalization a construction of Isbell [12].)

Observation 1.4. Fvery known homogeneous compactum X satisfies the following.
(1) Nt(X) <ct.

(2) TNt(X) < ws.
(3) XNt(X) = w.
(4) xxNU(X) <

We justify this observation in Section 2, except that we postpone the case of ho-
mogeneous dyadic compacta to Section 3, where we investigate Noetherian cardinal
functions on dyadic compacta in general. The results relevant to Observation 1.4
are summarized by the following theorem.

Theorem 1.5. Suppose X is a dyadic compactum. Then tNt(X) = xgNt(X) =
w. Moreover, if X is homogeneous, then Nt(X) = w.

Also in Section 3, we generalize the above theorem to continuous images of
products of compacta with bounded weight; we also prove the following:

Theorem 1.6. The class of Noetherian types of dyadic compacta includes w, ex-
cludes wy, includes all singular cardinals, and includes k* for all cardinals k with
uncountable cofinality.

Section 4 generalizes our results about dyadic compacta to the proper superclass
of k-adic compacta.

Finally, in Section 5, we prove several results about the local Noetherian types of
all homogeneous compacta, known and unknown, including the following theorem.

Theorem 1.7 (GCH). If X is a homogeneous compactum, then xNt(X) < ¢(X).

2. OBSERVED UPPER BOUNDS ON NOETHERIAN CARDINAL FUNCTIONS
First, we note some very basic facts about Noetherian cardinal functions.

Definition 2.1. Given a subset E of a product [[,.; X; and o € [I]<*, we say
that E has support o, or supp(E) = o, if E = 7, '7,[E] and E # n'n,[E] for all
TCo.



NOETHERIAN TYPES OF HOMOGENEOUS COMPACTA AND DYADIC COMPACTA 3

Theorem 2.2. Given a point p and a compact subset K of a product space X =
[Lic; Xi, we have the following relations.
Nt(X) < sup Nt(X;)

el
7Nt(X) < supmNt(X;)
el

) < sup xNt(p(i), X;)
el

) <

sup  xNt(mo [K], 7o [X])
oce[I]<w

xNt(p, X

YNH(K, X

Proof. See Peregudov [23] for a proof of the first relation. That proof can be easily
modified to demonstrate the next two relations. Let us prove the last relation. For
each o € [I|<¥, set ko = XNt(m,[K], 75| X]) and let A, be a k2P-like neighborhood
base of 7, [K]. For each o € [I]<%, let B, denote the set of sets of the form m, U
where U € A, and supp(U) = 0. Note that if U € A, and supp(U) € o, then there
exists 7 C o and V € A, such that 71V C 7 1U. Moreover, for any minimal such
7, we have 771V € B,.

Set B = erm@ B,. By compactness, B is a neighborhood base of K. Moreover,
if o7 € [I]<¥ and B, > U C V € B;, then ¢ = supp(U) 2 supp(V) = 7;
hence, given U, there are at most (sup,c, #-)-many possibilities for V. Thus, B is
(SUPye(r)<« Ko )°P-like as desired. N O

Question 2.3. Do there exist spaces X and Y such that g Nt(X x Y) exceeds
XKNt(X)XKNt(Y)?

Lemma 2.4. Every poset P is almost |P|°P-like.

Proof. Let k = |P| and let (pn)a<x enumerate P. Define a partial map f: k — P
as follows. Suppose a < k and we have a partial map f,: o — P. If ran f, is dense
in P, then set fo4+1 = fo. Otherwise, set § = min{d < k : ps 2 ¢ for all ¢ € ran f,}
and let fo41 be the smallest map extending f, such that f,11(«) = pg. For limit
ordinals v < &, set f, = [, < fa- Then f, is nonincreasing; hence, ran f is
k°P-like. Moreover, ran f, is dense in P. ([

Theorem 2.5. For any space X with point p, we have xNt(p, X) < x(p,X),
TNt(X) < 7(X), Nt(X) < w(X)*t, and xg Nt(X) < w(X).

Proof. The first two relations immediately follow from Lemma 2.4; the third relation
is trivial. For the last relation, note that if K is a compact subset of X, then it has
neighborhood base of size at most w(X); apply Lemma 2.4. |

Given Theorem 2.2, justifying Observation 1.4 for Nt(-), nNt(-), and xNt(-)
amounts to justifying it for first countable homogeneous compacta, dyadic homoge-
neous compacta, and the two known kinds of exceptional homogeneous compacta.
The first countable case is the easiest. By Arhangel’skii’s Theorem, first countable
compacta have weight at most ¢, and therefore have Noetherian type at most c*.
Moreover, every point in a first countable space clearly has an w°P-like local base.
The only nontrivial bound is the one on Noetherian 7-type. For that, the following
theorem suffices.

Definition 2.6. Give a space X, let msw(X) denote the least x such that X has
a m-base A such that (VB =0 for all B € [A]""
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Theorem 2.7. If X is a compactum, then tNt(X) < wsw(X)T < ¢(X)T <
X(X)*.

Proof. Only the second relation is nontrivial; it is a theorem of Sapirovskii [26]. [

For dyadic homogeneous compacta, Theorem 1.5 obviously implies Observa-
tion 1.4; we will prove this theorem in Section 3. Now consider the two known
classes exceptional homogeneous compacta. They are constructed by two tech-
niques, resolutions and amalgams. First we consider the exceptional resolution.

Definition 2.8. Suppose X is a space, (Y})pex s a sequence of nonempty spaces,
and (fy)pex € [[,cx C(X \ {p},Yp). Then the resolution Z of X at each point p
into Y, by f, is defined by setting Z = |J,c x({p} X Y;) and declaring Z to have
weakest topology such that, for every p € X, open neighborhood U of p in X, and
open V C Y, the set U ® V is open in Z where

veV=~{pxV)u |J g xYy.
qeUNfy 'V

The resolution of concern to us in constructed by van Mill [30]. It is a compactum
with weight ¢, m-weight w, and character w;. Moreover, assuming MA + —-CH (or
just p > wq), this space is homogeneous. (It is not homogeneous if 2 < 2¢1.) For
a proof that this space is exceptional (assuming MA + —CH), see [20]. Clearly, this
space has sufficiently small Noetherian type and 7-type. We just need to show that
it has local Noetherian type w. Van Mill’s space is a resolution of 2“ at each point
into T* where T is the circle group R/Z.

Notice that T is metrizable. The following lemma proves that every metric
compactum has Noetherian type w, along with some results that will be useful in
Section 3.

Lemma 2.9. Let X be a metric compactum with base A. Then there exists B C A
satisfying the following.
(1) B is a base of X.
(2) B is wP-like.
(3) IfU,VeEBandU CV, thenU C V.
(4) For allT € |B]<¥, there are only finitely many U € B such that T' contains
{(VeB:UCV}.

Proof. Construct a sequence (B;,)n<. of finite subsets of A as follows. For each
n < w, let E,, be the union of the set of all singletons in (J B,.. Let C,, be the
set of all U € A for which U N E,, = () and

m<n

27" > diamU < min{diamv Ve U B,, and 0 < diamV}

m<n

and U CV forall V € Uin<n Bm strictly containing U. Then (JC, = X \ E,. Let
B, be a minimal finite subcover of C,. Set B = |J,,., Bn. To prove (3), suppose
UeB,and V € B, and U C V. Then m # n by minimality of B,. Also,
0 < diamV because ) # U C V. Hence, if m > n, then diamV < diamU, in
contradiction with U C V. Hence, m < n; hence, U C V.

For (1), let p € X and n < w, and let V be the open ball with radius 27" and
center p. Then we just need to show that there exists U € B such that p e U C V.
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Hence, we may assume {p} ¢ B. Hence, p € E,+1; hence, there exists U € By, 41
such that p € U. Since diamU < 277!, we have U C V.

For (2),let n < w and U € B,,. If U is a singleton, then every superset of U in B
is in U,, <, Bm- If U is not a singleton, then U has diamater at least 2~ for some
m < w; whence, every superset of U in B is in U< Bi-

For (4), suppose T' € [B]<“ and there exist infinitely many U € B such that
{VeB:UCV} CT. We may assume I' contains no singletons. Choose an
increasing sequence (k,)p<. in w such that, for all n < w, there exists U,, € By,
such that {V € B: U, ¢ V} CT. For each n < w, choose p, € U,. Since
{U, : n < w} is infinite, we may choose (pp)n<, such that {p, : n < w} is
infinite. Let p be an accumulation point of {p, : n < w}. Choose m < w such
that 27" < diamV for all V' € I'. Since p is not an isolated point, there exists
W € B,, such that p € W. Then W ¢ I'; hence, W does not strictly contain U,, for
any n < w. Choose ¢ € W\ {p} such that W contains {x : d(p,z) < d(p,q)}; set
r = d(p, q). Let B be the open ball of radius r/2 centered about p. Then there exists
n < w such that 2%+ < r/2 and p,, € B. Hence, diamU,, < r/2 and U,, N B # {);
hence, U,, C W and q ¢ U,; hence, U,, C W, which is absurd. Therefore, for each
T € [B]<¥, there are only finitely many U € B such that {V e B:UCV}CT. O

We have Nt(2¢) = Nt(T*!) = w by Lemma 2.9 and Theorem 2.2. Therefore,
the following theorem implies that van Mill’s space has local Noetherian type w.

Lemma 2.10 ([30]). Suppose X, (Yp)pex, (fp)pex, and Z are as in Definition 2.8.
Suppose U is a local base at a point p in X andV is a local base at a pointy inY,.
Then {U®V : (U V) eU x (VU{Y,})} is a local base at (p,y) in Z.

Theorem 2.11. Suppose X, (Yp)pex, (fo)pex, and Z are as in Definition 2.8.
Then xNt((p,y), Z) < Nt(X)xNt(y,Y,) for all {p,y) € Z.

Proof. Set k = Nt(X)xNt(y,Y,). Let A be a k°P-like base of X and let B be a
k°P-like local base at y in Y),; we may assume Y, € B. Set C ={U € A:p € U}. Set
D={U®V :{UV) e x B}, which is a local base at (p,y) in Z by Lemma 2.10.
If there exists U @ V' € D such that U N ijlV = (), then U ® V is homeomorphic to
V; whence, xNt((p,y), Z) = xNt(y,Y,) < k. Hence, we may assume Uﬁfp_lV £
forall U ®V € D.

It suffices to show that D is k°P-like. Suppose U; ® V; € D for all ¢ < 2 and
Uy®@Vy CUL ®Vy. Then Vo C V; and 0 # Uomf;% C Umf,;lvl. Since B
is k°P-like, there are fewer than k-many possibilities for V; given V. Since A is
a k°P-like base, there are fewer than k-many possibilities for Uy given Uy and Vj.
Hence, there are fewer than k-many possibilities for U; ® Vi given Uy ® V. ([l

Definition 2.12. Let p denote the least  for which some A € [[w]*]" has the strong
finite intersection property but does not have a nontrivial pseudointersection. By a
theorem of Bell [4], p is also the least x for which there exist a o-centered poset P
and a family D of k-many dense subsets of P such that P does not have a D-generic
filter.

Definition 2.13. Given a space X, let Aut(X) denote the set of its autohomeo-
morphisms.

Van Mill’s construction has been generalized by Hart and Ridderbos [10]. They
show that one can produce an exceptional homogeneous compactum with weight ¢
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and m-weight w by carefully resolving each point of 2* into a fixed space Y satisfying
the following conditions.

(1) Y is a homogeneous compactum.

(2) wr <x(Y) Sw(Y) <p.

(3) IdeY ImeAut(Y) {n*(d):n<w}=Y.

(4) If yw is a compactification of w and yw \ w 2 Y, then Y is a retract of yw.
By Theorem 2.11, to show that such resolutions have local Noetherian type w, it
suffices to show that every such Y has local Noetherian type w. Theorem 2.16 will
accomplish this.

Theorem 2.14. Suppose X is a compactum and wx(p, X) = x(q, X) for all p,q €
X. Then xNt(p,X) = w for some p € X. In particular, if X is a homogeneous
compactum and wx(X) = x(X), then xNt(X) = w.

The proof of Theorem 2.14 will be delayed until Section 5.
The following lemma is essentially a generalization of a similar result of Juhdsz [15].

Lemma 2.15. Suppose X is a compactum and w = d(X) < w(X) < p. Then there
exists p € X such that x(p, X) < w(X).

Proof. Let A be a base of X of size at most w(X). Let B be a m-base of X of
size at most 7(X). For each (U, V) € B? satisfying U C V, choose a closed Gs-set
®(U,V) such that U C ®(U,V) C V. Then ran ®, ordered by C, is o-centered
because d(X) = w. Since |A| < p, there is a filter G of ran ® such that for all
disjoint U,V € A some K € G satisfies UNK = () or VN K = (. Hence, there
exists a unique p € [ G. Hence, p has pseudocharacter, and therefore character, at
most |G|, which is at most 7(X). O

Theorem 2.16. If X is a homogeneous compactum and w = d(X) < w(X) < p,
then xNt(X) = w.

Proof. By Lemma 2.15, x(X) < n(X) = mx(X)d(X) = mx(X). Hence, by Theo-
rem 2.14, xNt(X) = w. O

Amalgams are defined in [20] as follows.

Definition 2.17. Suppose X is a Ty space, . is a subbase of X such that ) & .7,
and (Ys)se.» is a sequence of nonempty spaces. The amalgam Y of (Yg: S € %)
is defined by setting ¥ = U, cy [[,c5c.» Ys and declaring Y to have the weakest
topology such that, for each S € % and open U C Yg, the set 7r§1U is open in
Y where 7g'U = {p € Y : S € domp and p(S) € U}. Define 7 : Y — X by
{m(p)} =N domp for all p € Y. It is easily verified that 7 is continuous.

Theorem 2.18. Suppose X, Z, (Ys)sc.», and Y be as in Definition 2.17. Then
we have the following relations for allp € Y.

N(Y) < Nt(X) sup Nt(Ys)

aNt(Y) < nNt(X) sup 7 Nt(Ys)
Ses
xNt(p,Y) < xNt(n(p), X) S Sup xNt(p(S),Ys)
€dom p
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Proof. We will only prove the first relation; the proofs of the others are almost
identical. Set k = Nt(X)supge o» Nt(Ys). Let A be a k°P-like base of X. For each
S €., let Bs be a k°P-like base of Yg. Set

C= {ﬂ-lUﬂ ﬂ T T(S) T € U H Bs\{Ys} and A>U C ﬂdomr}.
Sedom T Fe[F]|<w SEF

Then C is clearly a base of Y. Let us show that C is k°P-like. Suppose 7~ 1U; N
MNsecdom 75 '7:(S) € C for all i < 2 and

71Uy N ﬂ W;lTo(S)gﬂilUlﬂ ﬂ 7r§17'1(5).

S€edom 1g Sedom 1
Then Uy C Uy and dom 1y 2 dom 7 and 79(S) C 71 (S) for all S € dom7;. Hence,
there are fewer than xk-many possibilities for Uy and 71 given Uy and 7g. ([l

An exceptional homogeneous compactum Y is constructed in [20] with X = T
and w(Ys) = 7(Ys) = ¢ and x(Ys) = w for all S € .. Hence, Nt(Ys) < ¢* and
xNt(Ys) = w for each S € .. Moreover, each Yg is 27 ordered lexicographically
where + is a fixed indecomposable ordinal in wy \ (w+ 1). Since cf v = w, it is easy
to construct an w°P-like m-base of this space. Hence, by Theorem 2.18, N#(Y) < ¢*
and TNt(Y) = xNt(Y) = w. Thus, Observation 1.4 is justified for Nt(-), 7Nt(+),
and xNt(-).

It remains to justify Observation 1.4 for xx Nt(-). We first note that all known
homogeneous compacta are continuous images of products of compacta each of
weight at most ¢. (Moreover, it it shown in [20] that any Z as in Definition 2.17 is a
continuous image of X X [[gc . Ys.) Therefore, the following theorem will suffice.

Theorem 2.19. Suppose Y is a continuous image of a product X = [[,.; X; of

compacta. Then xg Nt(Y) < sup;c; w(X;)

el

Before proving the above theorem, we first prove two lemmas.

Definition 2.20. Given subsets P and @ of a common poset, define P and @ to
be mutually dense if for all pg € P and qg € @ there exist p; € P and ¢; € @Q such
that po > ¢1 and go > p1.

Lemma 2.21. Let k be a cardinal and let P and Q be mutually dense subsets of a
common poset. Then P is almost k°P-like if and only if Q is.

Proof. Suppose D is a k°P-like dense subset of P. Then it suffices to construct a
k°P-like dense subset of Q. Define a partial map f from |D|T to @ as follows. Set
fo = 0. Suppose a < |D|" and we have constructed a partial map f, from « to
Q. Set E={de D:d%qforallq €ranf,}. If E =0, then set for1 = fa.
Otherwise, choose ¢ € @ such that ¢ < e for some e € E, and let f,41 be the
smallest function extending f, such that f,1(a) = q. For limit ordinals v < |D|*,
set fy = Uyey fa- Set f= fip+.

Let us show that ran f is k°P-like. Suppose otherwise. Then there exists ¢ € ran f
and an increasing sequence (£,)a<x in dom f such that ¢ < f(&,) for all @ < k. By
the way we constructed f, there exists (do)a<r € D such that f({g) < dg # da
for all & < 8 < k. Choose p € P such that p < q. Then choose d € D such that
d <p. Then d < dg # d, for all o < 8 < k, which contradicts that D is x°P-like.
Therefore, ran f is k°P-like.
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Finally, let us show that ran f is a dense subset of Q). Suppose ¢ € Q). Choose
p € P such that p < g. Then choose d € D such that d < p. By the way we
constructed f, there exists r € ran f such that r < d; hence, r < gq. (]

Lemma 2.22. Suppose f: X — Y is a continuous surjection between compacta
and C is closed in Y. Then xNt(f~1C,X) = xNt(C,Y).

Proof. Let A be a neighborhood base of C. By Lemma 2.21, it suffices to show that
{f~'V : V € A} is a neighborhood base of f~1C. Suppose U is a neighborhood of
f~1C. By normality of Y, we have f~1C = Nvea f~'V. By compactness of X,
we have f~1V C U for some V € A. Thus, {f~!V : V € A} is a neighborhood
base of f~1C as desired. O

Proof of Theorem 2.19. By Lemma 2.22, we may assume Y = X. By Theorem 2.2,
we may assume [ is finite. Apply Theorem 2.5. O

How sharp are the bounds of Observation 1.47 (3) is trivially sharp as every space
has local Noetherian type at least w. We will show that there is a homogeneous
compactum with Noethian type ¢, namely, the double arrow space. Moreover, we
will show that Suslin lines have uncountable Noetherian m-type. It is known to be
consistent that there are homogeneous compact Suslin lines, but it is also known to
be consistent that there are no Suslin lines. It is not clear whether it is consistent
that all homogeneous compacta have Noetherian m-type w, even if we restrict to
the first countable case. Also, it is not clear in any model of ZFC whether all first
countable homogeneous compacta have compact Noetherian type w.

Question 2.23. Is there a first countable compactum with uncountable compact
Noetherian type?

The following proposition is essentially due to Peregudov [23].
Proposition 2.24. If X is a space and m(X) < cf k < k < w(X), then Nt(X) > k.

Proof. Suppose A is a base of X and B is w-base of X of size 7(X). Then |A| > &;
hence, there exist U € [A]" and V € B such that V' C (\U. Hence, there exists
W € A such that W C V C [ U; hence, A is not x°P-like. O

Example 2.25. The double arrow space, defined as ((0,1] x {0}) U ([0,1) x {1})
ordered lexicographically, has m-weight w and weight ¢, and is known to be compact
and homogeneous. By Proposition 2.24, it has Noetherian type ¢*.

Theorem 2.26. Suppose X is a Suslin line. Then nNt(X) > w;.

Proof. Let A be a m-base of X consisting only of open intervals. By Lemma 2.21, it
suffices to show that A is not w°P-like. Construct a sequence (B;,), <, of maximal
pairwise disjoint subsets of A as follows. Choose By arbitrarily. Given n < w and
B,,, choose B, 41 such that it refines B,, and B,, N B,+1 C [X]'.

Let E denote the set of all endpoints of intervals in |J,, ., By. Since X is Suslin,
there exists U € A\ [X]! such that U N E = (). For each n < w, the set |JB, is
dense in X by maximality; whence, there exists V,, € B, such that U NV, # 0.
Since U N E =), we have U C V. Thus, A is not w°P-like. O

n<w

MA + —=CH implies there are no Souslin lines. It is not clear whether it further
implies every homogeneous compactum has Noetherian 7-type w. However, the
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next theorem gives us a partial result. First, we need a lemma very similar to the
result that MA + —CH implies all Aronszajn trees are special.

Definition 2.27. Given a subset F of a poset @, let |y E denote the set of ¢ € )
for which ¢ has a lower bound in E.

Lemma 2.28. Assume MA. Suppose Q is an wi®-like poset of size less than c.
Then Q is almost w°P-like or @ has an uncountable centered subset.

Proof. Set P = [Q]<* and order P such that o < 7 if and only if N7 =17. A
sufficiently generic filter G of P will be such that |J G is a dense w°P-like subset of
Q. Hence, if P is ccc, then @ is almost w°P-like. Hence, we may assume P has an
antichain A of size w;. We may assume A is a A-system with root p. Since @ is
wiP-like, we may assume o N 1o p = p for all o € A. Choose a bijection (aa)a<w,
from w; to A. We may assume there exists an n < w such that |a, \ p| = n for
all @ < wy. For each o < wy, choose a bijection (aq ;)i<n from n to a4 \ p. For
each z € Q and i < n, set B, ; = {a < wi : ¢ <g q,i OF aq,; <g x}. For each
o < wi, since A is an antichain, we have {J,_,, U, -, Fa, ;,j = wi. Choose a uniform
ultrafilter ¢ on wy. Then we may choose B € [(JA) \ p]“* and ¢ < n such that
E,;€U forall z € B.

It suffices to show that B is centered. Let o € [B]<“. Set E =, Esi. Then
E € U; hence, |E| = w;; hence, we may choose a € E\ {# < w1 :ag; € Ig0}.
Then aq,; <g z for all z € ¢. Thus, B is centered. ([

Lemma 2.29. Suppose f: X — Y is an irreducible continuous surjection between

spaces and X is reqular. Then mNt(X) = nwNt(Y).

Proof. Let A be a 1 Nt(X)°P-like m-base of X and let B be a n Nt(Y)°P-like w-base
of Y. By Lemma 2.21, we may assume 4 consists only of regular open sets. Set
C = {f"'U : U € B}. Then C is 7Nt(Y)°P-like. Suppose U is a nonempty open
subset of X. Then we may choose V € B such that V' N f[X \ U] = 0. Then
f~1V CU. Thus, C is a m-base of X; hence, TNt(X) < 7Nt(Y).

Set D ={Y \ f[X\U] : U € A}. Suppose V is a nonempty open subset of
Y. Then we may choose U € A such that U C f~'V. Then Y \ f[X \ U] C V.
Thus, D is a 7-base of Y. Now suppose Uy, U; € A and Uy € U;. Then Uy € U,
by regularity. By irreducibility, we may choose p € Y \ f[X \ (Up \ U1)]. Then
pe fIX\Uy] and p & f[X \ Up). Hence, Y\ f[X \ U] € ¥\ f[X \ Uy]. Thus, D is
mNt(X)°P-like; hence, 7 Nt(Y) < mNt(X). O

Theorem 2.30. Assume MA. Let X be a compactum such that t(X) = w and
m(X) < c. Then nNt(X) = w.

Proof. We may assume X is a closed subspace of [0,1]* for some cardinal . By
a result of Sapirovskil [26], since ¢(X) = w, there is an irreducible continuous map
f from X onto a subspace of (¢, [0, 1]7 x {0}*\. Because of Lemma 2.29, we
may replace our hypothesis of ¢(X) = w with X C [J;¢(. [0, 17 x {0}"\. Set
F =Fn(x, (QN(0,1])?) and

A= {X N ﬂ 7.1 (0(a)(0),0(a)(1)) 0 € f} \ {0},

acdom o

which is a m-base of X. Then A witnesses that msw(X) = w. Hence, by Theorem 2.7
and Lemma 2.21, A contains an w(’-like dense subset B3, and it suffices to show that
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B is almost w°P-like. Seeking a contradiction, suppose B is not almost w°P-like. By
Lemma 2.28, B contains an uncountable centered subset C. Let the map

<Xﬁ N w;1<ag<a><o>,aﬁ<a><1>>>

acdomog B<w:

be an injection from w; to C. Then |Uﬁ<w1 domog| = wi. By compactness, the set

xn () () mtlos()(0),05(a) 1)

B<wi a€domog
is nonempty, in contradiction with X C (Jre(,. [0, 11 x {0}=\. O

Concerning compact Noetherian type, we note that if there is a homogeneous
compactum X for which xx Nt(X) > wq, then X is not an ordered space.

Definition 2.31. A point p in a space X is P.-point if, for every set A of fewer
than k-many neighborhoods of p, the set (.4 has p in its interior. A P-point is a
P,,,-point.

Theorem 2.32. If X is a homogeneous ordered compactum, then x g Nt(X) = w.

Proof. We may assume X is infinite; hence, X has a point that is not a P-point.
By homogeneity, min X is not a P-point; hence, min X has countable character.
By homogeneity, X is first countable. Let C be closed in X. Then X \ C is a
disjoint union of open intervals | J,;(as, b;) such that (a;, b;) = U,,<,[@in, bi,n] and
(@i n)n<w is nonincreasing and (b;n)n<. i nondecreasing for all ¢ € I. Hence,
{X\ Uscdom o [%,0(i), bi,o(iy] + 0 € Fn(I, w)} is an w°P-like neighborhood base of
C. O

It is worth noting that while products do not decrease cellularity, they can
decrease Nt(-), mNt(-), and xNt(-), as shown by the following theorem of Ma-
lykhin [18].

Theorem 2.33. Let p € X = [[,; Xs where X; is a nonsingleton Ty space for
all i € 1. If sup;c;w(X;) < |I], then Nt(X) = w. If supje; n(X;) < |I|, then
TNt(X) = w. Ifsup,c; x(p(3), X;) < ||, then xNt(p, X) = w.

Proof. See [18] for a proof of the first implication. That proof can be easily modified
to demonstrate the other implications. ([

In constrast, xx Nt(-) is not decreased by products when the factors are com-
pacta. Just as is true of cellularity, the compact Noetherian type of a product of
compacta is the supremum of the compact Noetherian types of its finite subprod-
ucts.

Theorem 2.34. If X = []
SupoE[I]<“’ XKNt(HiEU Xl)
Proof. To prove “<”, apply Theorem 2.2. To prove “>”, apply Lemma 2.22. [

ser Xi s a product of compacta, then xxNt(X) =

Though cellularity and compact Noetherian type behave similarly for compacta,
they do not coincide, even assuming homogeneity. Given any indecomposable or-
dinal ~y strictly between w and wy, the lexicographic ordering of 27 is homogeneous
and compact and has cellularity ¢ by a result of Maurice [19]. However, by Theo-
rem 2.32, this space has compact Noetherian type w.
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3. DYADIC COMPACTA

In this section, we prove a strengthened version of Theorem 1.5 and generalize
it to continuous images of products of compacta with bounded weight. We also
investigate the spectrum of Noetherian types of dyadic compacta. Our approach
is to start with results about subsets of free boolean algebras and then use Stone
duality to apply them to families of open subsets of dyadic compacta.

By Lemma 2.4, every countable subset of a free boolean algebra is almost
w®P-like. We wish to prove this for all subsets of free boolean algebras. We achieve
this by approximating free boolean algebras by smaller free subalgebras using ele-
mentary substructures. More specifically, we use elementary submodels of Hy where
0 is a regular cardinal and Hy is the {€}-structure of the family of sets that hered-
itarily have size less than 6. Whenever we use Hp in an argument, we implicitly
assume that 6 is sufficiently large to make the argument valid. As is typical with
elementary submodels of Hy, we need reflection properties. For our purposes, the
crucial reflection property of free boolean algebras is given by the following lemma.

Lemma 3.1. Let B be a free boolean algebra and let {B,A\,V} C M < Hy. Then,
for all g € B, there exists r € BN M such that, for allp € BN M, we have p > q
if and only if p > r. In particular, r > q.

Proof. Let ¢ € B. We may assume ¢ # 0. By elementarity, there exists a map
g € M enumerating a set of mutually independent generators of B. Set G =
U{{g(i),g(@)'} : i € domg}. Then there exists n € [[G]<*]<% such that q =
Vien N7 and A7 # 0 forall 7 € n. Set r =\ _, A(r N M). Let p € BN M; we
may assume p # 1. Then there exists ¢ € [[G N M]<“]<* such that p = A .-V o
and \/o # 1 for all 0 € (. Hence, p > ¢ iff, for all 0 € ¢ and 7 € 7, we have
\/ o > A\ 7, which is equivalent to o N 7 # @, which is equivalent to c N 7N M # (.
Thus, p > q if and only if p > r. [

The above lemma is not new. Fuchino proved that the conclusion of the above
lemma is equivalent to the Freese-Nation property, a property free boolean algebras
are known to have. (See section 2.2 and Theorem A.2.1 of [11] for details.)

Theorem 3.2. Every subset of every free boolean algebra is almost w°P-like.

Proof. Let B be a free boolean algebra; set k = |B|. Given A C B, let 1A denote
the smallest semifilter of B containing A; if A = {a} for some a, then set Ta = TA.
Let @ be a subset of B. If Q) is a countable, then @ is almost w°P-like by Lemma 2.4.
Therefore, we may assume that x > w and the theorem is true for all free boolean
algebras of size less than x.

We will construct a continuous elementary chain (M, )a<,x of elementary sub-
models of Hy and a continuous increasing sequence of sets (D, )q<y satisfying the
following conditions for all a < k.

(1) aU{B,A,V,Q} C M, and |M,| < |a| + w.

(2) D, is a dense subset of @ N M,,.
(3) D4 N 1q is finite for all g € Q N M.
(4) Dotr1NTqg=DyN1q for all g € Q N M,.
Given this construction, set D = J, ., Do. Then D is a dense subset of @ by (2).
Moreover, if o < k and d € D,, then d € Q N M, by (2); whence, d is below at
most finitely many elements of D by (3) and (4). Hence, @ is almost w°P-like.
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For stage 0, choose any My < Hy satisfying (1). Since Q@ N My C B N My, we
may choose Dy to be an w°P-like dense subset of @ N My, exactly what (2) and
(3) require. At limit stages, (1) and (2) are clearly preserved, and (3) is preserved
because of (4).

For a successor stage o + 1, choose M1 such that M, < M,4+1 < Hp and (1)
holds for stage a+1. Since QN M1 C BNM,41, there is an w°P-like dense subset
Eof QN May1. Set Doy1 = Do U(E\T(QNM,)). Then (4) is easily verified: if
q € QN M,, then

Doy1NTg= (Do NTq)U(ENTY\T(QN M) =DaNTg.

Let us verify (2) for stage @« + 1. Let ¢ € Q N My41. If ¢ € 1(Q N M,,), then
q € 1Dy C D441 because of (2) for stage . Suppose ¢ € 1(Q N M,). Choose
e € E such that e < q. Then e & 1(QNM,); hence, ¢ € T(E\T(QNM,)) C 1Dgt1-

It remains only to verify (3) for stage a + 1. Let ¢ € @ N My41. Then EN g
is finite; hence, by the definition of D1, it suffices to show that D, N Tq is finite.
By Lemma 3.1, there exists r € BN M, such that r > ¢ and M, N Tq = M, N Tr;
hence, D, N Tqg = D, N Tr. Since ¢ € @, we have r € M, N T1Q. By elementarity,
there exists p € @ N M, such that p < r; hence, D, N Tr C D, N p. By (2) for
stage a, we have D, N Tp is finite; hence, D, N Tq is finite. g

Definition 3.3. For any space X, let Clop(X ) denote the boolean algebra of clopen
subsets of X.

Theorem 3.4. Let X be a dyadic compactum and let U be a family of subsets of
X such that for all U € U there exists V € U such that VN X \U = 0. Then U is
almost w°P-like.

Proof. Let f: 2" — X be a continuous surjection for some cardinal k. Set B =
Clop(2¥). Then B is a free boolean algebra. Set V = {f~'U : U € U}. Then it
suffices to show that V is almost w°P-like. Let Q denote the set of all B € B such
that V' C B for some V € V. By Theorem 3.2, Q is almost w°P-like. Hence, by
Lemma 2.21, it suffices to show that @ and V are mutually dense. By definition,
every Q € Q contains some V € V; hence, it suffices to show that every V € V

contains some ) € Q. Suppose V' € V. Choose U € U such that Unx\ f[vV]=0.
Then there exists B € B such that f~'U € B C V; hence, V O B € Q. O

The following corollary is immediate and it implies the first half of Theorem 1.5.

Corollary 3.5. Let X be a dyadic compactum. Then, for all closed subsets C
of X, every neighborhood base of C' contains an w°P-like neighborhood base of C'.
Moreover, every w-base of X contains an w°P-like w-base of X.

Remark. The first half of the above corollary can also be proved simply by citing
Theorem 2.19 and Lemma 2.21.

Next we state the natural generalizations of Lemma 3.1, Theorem 3.2, Theo-
rem 3.4, and Corollary 3.5 to continuous images of products of compacta with
bounded weight. We will only remark briefly about the proofs of these generaliza-
tions, for they are easy modifications of the corresponding old proofs.

Lemma 3.6. Let x be a regular uncountable cardinal and let B be a coproduct
[;c; Bi of boolean algebras all of size less than k; let {B, A, V, (Bi)icr} € M < Hp
and M Nk € k+ 1. Then, for all g € B, there exists r € BN M such that, for all
p € BN M, we have p > q if and only if p > r. In particular, r > q.
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Proof. Note that the subalgebra BN M is the subcoproduct [[;.;~,, Bi naturally
embedded in B. Then proceed as in the proof of Lemma 3.1 with | J,;; B;, naturally
embedded in B, playing the role of G. (]

Theorem 3.7. Let k > w and B be a coproduct of boolean algebras all of size at
most k. Then every subset of B is almost k°P-like.

Proof. The proof is essentially the proof of Theorem 3.2. Instead of using Lemma 3.1,
use the instance of Lemma 3.6 for the regular uncountable cardinal x¥. O

Theorem 3.8. Let k > w and let X be Hausdorff and a continuous image of a
product of compacta all of weight at most k; let U be a family of subsets of X such
that, for all U € U, there exists V € U such that VN X \U = 0. Then U is almost
KOP-like.

Proof. Let h: [],c; Xi — X be a continuous surjection where each X; is a com-
pactum with weight at most x. Each X, embeds into [0,1]" and is therefore a
continuous image of a closed subspace of 2%. Hence, we may assume [[,.; X; is
totally disconnected. The rest of the proof is just the proof of Theorem 3.4 with
Theorem 3.7 replacing Theorem 3.2. (]

The following corollary is immediate.

Corollary 3.9. Let k > w and let X be Hausdorff and a continuous image of a
product of compacta all of weight at most k. Then, for all closed subsets C' of X,
every neighborhood base of C' contains a k°P-like neighborhood base of C'. Moreover,
every w-base of X contains a k°P-like m-base of X.

Remark. Again, the first half of the above corollary can also proved simply by citing
Theorem 2.19 and Lemma 2.21.

In contrast to Corollary 3.5, not all dyadic compacta have w°P-like bases. The
following proposition is essentially due to Peregudov (see Lemma 1 of [23]). It
makes it easy to produces examples of dyadic compacta X such that Nt(X) > w.

Proposition 3.10. Suppose a point p in a space X satisfies mx(p, X) < cfk =k <
X(p, X). Then Nt(X) > k.

Proof. Let A be a base of X. Let Uy and Vy be, respectively, a local m-base at p
of size at most mx(p, X) and a local base at p of size x(p, X). For each element of
Uy, choose a subset in A, thereby producing a local w-base U at p that is a subset
of A of size at most mx(p, X). Similarly, for each element of Vg, choose a smaller
neighborhood of p in A, thereby producing a local base V at p that is a subset of A
of size x(p, X). Every element of V contains an element of /. Hence, some element
of U is contained in k-many elements of V; hence, A is not k°P-like. (I

Example 3.11. Let X be the discrete sum of 2“ and 2“*. Let Y be the quotient
of X resulting from collapsing a point in 2¢ and a point in 2“! to a single point p.
Then 7x(p,Y) = w and x(p,Y) = wy; hence, Nt(Y) > wy.

Question 3.12. Is there a dyadic compactum X such that wx(p, X) = x(p, X) for
all p € X but X has no w°P-like base? In particular, if Y is as in Example 3.11 and
Z is the discrete sum of Y and 2“2, then does Z“! have an w°P-like base?
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As we shall see in Theorem 3.21, if we make an additional assumption about
a dyadic compactum X, namely, that all its points have w-character equal to its
weight, then X has an w°P-like base. Also, we may choose this w°P-like base to be
a subset of an arbitrary base of X. To prove this, we approximate such an X by
metric compacta. Each such metric compactum is constructed using the following
technique due to Bandlow [2].

Definition 3.13. Given a space X, let C(X) denote the set of continuous maps
from X to R.

Definition 3.14. Suppose X is a space and F is a set. For all p € X, let p/F
denote the set of ¢ € X satisfying f(p) = f(q) for all f € F N C(X). For each
feF, define f/F: X/F —Rby (f/F)(p/F)=f(p) for all p € X.

Lemma 3.15. Suppose X is a compactum and F C C(X). Then X/F (with the
quotient topology) is a compactum and its topology is the coarsest topology for which
f/F is continuous for all f € F. Further suppose {X \ f~*{0} : f € F} is a base
of X and F € M < Hy. Then {(X\ f~HO}H/(FNM): feFNM} is a base of
X/(FNnM).

Proof. If f € F, then f/F is clearly continuous with respect to the quotient topol-
ogy of X/F. Therefore, the compact quotient topology on X/F is finer than the
Hausdorff topology induced by {f/F : f € F}. If a compact topology 7 is finer
than a Hausdorff topology 77, then 7y = 7;. Hence, the quotient topology on X/F
is the topology induced by {f/F : f € F}.

Set A= {X\ f~1{0} : f € F}. Suppose A is a base of X and F € M < Hy. Let
us show that {(X \ f~HO0}/(FNM): f € FNM}is abase of X/(FNM). Let
U denote the set of preimages of open rational intervals with respect to elements
of FN M. Let V denote the set of nonempty finite intersections of elements of U.
Then V C M and {V/(FNM) : V € V} is base of X/(FNM). Suppose p € V € V.
Then it suffices to find W € AN M such that p € W C V. Choose V; € V such
that p € V; C V1 C Vi. Then there exist n < w and Wy,..., W,_1 € A such that
V,C Uicn Wi € Vo. By elementarity, we may assume Wo,..., W, 1 € M. Hence,
there exists ¢ < n such that p € W; C Vy and W; € AN M. O

To construct an w°P-like base of a suitable dyadic compactum X, we apply
Lemma 2.9 to a family of spaces X/(F N M) where F C C(X) and M ranges over
a transfinite sequence of countable elementary submodels of Hy. This sequence
is constructed such that, loosely speaking, each submodel in the sequence knows
about the preceding submodels.

Definition 3.16. Let x be a regular uncountable cardinal and let (Hp,...) be an
expansion of the {€}-structure Hy to an L-structure for some language £ of size
less than k. Then a k-approzimation sequence in (Hp,...) is an ordinally indexed
sequence (My)q<y such that for all o < n we have {x, (Mg)g<a} € My < (Hp,...)
and |M,| € M, Nk € k.

The following lemma is a generalization of a technique of Jackson and Mauldin [13]
of approximating a structure by a tree of elementary substructures.

Lemma 3.17. Let k and (Hy,...) be as in Definition 8.16. Then there is a
{k}-definable map U that sends every k-approzimation sequence (Ma)a<y i (Hy, .. .)
to a sequence (Xq)a<y Such that we have the following for all o < ).



NOETHERIAN TYPES OF HOMOGENEOUS COMPACTA AND DYADIC COMPACTA 15

(1) X4 is a finite set.

(2) IN|C N < (Hy,...) forall N € &,.

) UXa =Ugea Ms-

(4) If a« < m, then o € M,.

(5) 3q is an €-chain.

(6) IfNo,Nl € Y and Ny € Nl, then |N0| > |N1|

(1) (Ep)p<a = Y((Mp)p<a)-
Moreover, |E5] =1 and {a < X : |Z,| = 1} is closed unbounded in X for all infinite
cardinals A < n.

Proof. Let Q2 denote the class of (v;)i<,, € On<¥ \ {0} for which x < |y;| > |v]
for all i < j < n and |y,—1] < k. Order Q lexicographically and let T be the
order isomorphism from On to Q. Given any o = (;)i<n € On<¥ and i < n,
set ¢i(0) = (Y0,...,%-1,0) and ¢,(0) = 0. Let (My)a<y be a K-approximation
sequence in (Hy,...). For all @« <7 and i € dom Y (a), set

Nai = J{Mjs : ¢i(Y(a)) < T(B) < pira(T(e))};

set o = {Nq,i : ¢ € domY ()} \ {0}. Then V¥ is {x}-definable and it is easily
verified that [¥5] = 1 and {o < A : |2,] = 1} is closed unbounded in A for all infinite
cardinals A < ). Let us prove (1)-(7). (1), (3), (4), and (7) immediately follow from
the relevant definitions. Let a@ < 1 and (5;)i<n = T(«). We may assume n > 0.
For all 0 € © and i < n — 1, we have ¢;(T(a)) < 0 < ¢;41(Y()) if and only if o
is the concatenation of (8;),<; and some 7 € Q satistying 7 < (f3;,0). Therefore,
|No,i| = |Bi] for all i <n — 1. For all o € Q, we have ¢,—1(T(a)) < 0 < ¢n(T(a))
if and only if o = (0o, ..., Bn—2,7) for some v < B,_1. Hence, | Ny n_1| < k; hence,
|Noil > | Ny, | forall i < j < n. Let T(a;) = ¢;(Y()) for all i < n. If i < j < n,
then {No : k < j} = Xa,_,; whence, either Ny j = 0 or No; € My, , € Naj,
depending on whether 8; = 0. Thus, (5) and (6) hold.

Finally, let us prove (2). Proceed by induction on «. Suppose [3,—1 > 0. Since
{Ng;i:i<n—1} =%, , and ap—1+Bn—1 = @, it suffices to show that | Ny ,—1| C
Nopn—1 < (Hg,...). If 8,1 € Lim, then N, ,_1 is the union of the €-chain
(Nan_14vy,n—1)v<Bn_.; hence, [Ny 1| € Nojp—1 < (Hyg,...). If B,_1 ¢ Lim, then
Napn-1=Na1n1UMy 1 =My 1 because No—1n-1 € Mo and |Na—1,n—1| <
&; hence, |[Non—1] € Nan—1 < (Hp,...).

Therefore, we may assume §,_1 = 0. Hence, £, = {Ny; : i <n — 1}; hence, we
may assume n > 1. Since {N,; :i <n—2} =3, , and a,,—2 < a, it suffices to
show that [Ny n—2| € Nan—2 < (Hg,...). If 8,_2 = K, then N, ,_2 is the union
of the €-chain (N,,, ,+~.n—2)y<x; hence, [Ny pn—2| € Non—2 < (Hg,...). Hence,
we may assume 3,_o > K. Let T(0,) = (Bo,...,0n—3,7,0) for all v € [k, Bn_2).
If 8,2 € Lim, then Ny, 2 is the union of the €-chain (Nj_ ,—2)x<y<p,_,; hence,
|INon—2] € Non—2 < (Hp,...). Hence, we may let 5,_o = £ + 1. Suppose || = k.
Then Ny p—2 = Ng_ p—2 U U7<H Ms_4v. If v < K, then ¢,,_1(T(d: + 7)) = Y(:);
whence, §. and «y are definable from J. ++ and ; whence, 'yL,IUp<,Y Ms 4, € Ms_ 4.
Hence, |Ns, n—2| = k C U’y<ﬁ Ms_4~ < (Hp,...). Moreover, since Nj_ n_2 € Ms_,
we have Nj_ p—a C U,Y<H Ms_4~; hence, [Non—2| =Kk C Nopn—2 < (Hp,...).

Therefore, we may assume |¢| > k. Let T({y) = (6o,...,0Bn-3,6,6 + 7,0)
for all v < |e|. Then Nyp—2 = N5, p_2 U U7<|5\ Ne m—1. If v < [e], then
T(¢y)(n—1) = k+~; whence, v € M¢, € N¢,y n—1. Hence, [e] €U, o) Ne,n—1 <
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<H9,. . > Since |N55,n_2| = |€| and N(ssm_g S M(;E - NCO7”_1’ we have Nég,n—Z -
U,Y<‘5| N¢, n—1. Hence, [Ny 2| = |e| € Najn—2 < (Hy,...). O

Proposition 3.18. If X is a topological space, then every base of X contains a
base of size at most w(X).

Proof. Let A be an arbitrary base of X; let B be a base of X of size at most w(X).
Since X is hereditarily w(X)T-compact, we may choose, for each U € B, some
Ay € [A]5¥X) such that U = |JAy. Then J{Ay : U € B} is a base of X and in
[A]Sw(X), O

Lemma 3.19. Let X be a dyadic compactum such that wx(p, X) = w(X) for all
p € X. Let A be a base of X consisting only of cozero sets. Then A contains an
w°P-like base of X.

Proof. Set k = w(X); by Proposition 3.18, we may assume |A| = k. Choose
F C C(X) such that A = {X \ g71{0} : g € F}. Let h: 2% — X be a continuous
surjection for some cardinal A. Let B be the free boolean algebra Clop(2}). By
Lemma 2.9, we may assume k > w. Let (M, )q<, be an wy-approximation sequence
in (Hg, €,F,h); set (Za)a<n = V((My)a<x) as defined in Lemma 3.17.

For each a < k, set A, = AN M, and F, = FN M,. For every H C A,, let
H/F, denote {U/F, : U € H}. By Lemma 3.15, A, /F, is a base of X/F,. Since
X/F, is a metric compactum, there exists W, C A, such that W, /F, is a base
of X/F, satisfying (2), (3), and (4) of Lemma 2.9. By (2) of Lemma 2.9, we may
choose, for each U € W, some E, € BN M, such that h~'U C E,y C h™'V
for all V€ W, satisfying U C V. Set G, = {Eav : U € Wa}.

Suppose G, is not w°P-like. Then there exist U € W, and (V,)n<, € WY such
that Eo v C Eayv, # Eayv, foralm <n <w. Set ' ={WeW, :U C W}
By (2) of Lemma 2.9, T" is finite; hence, by (4) of Lemma 2.9, there exists n < w
such that {W e W, : V,, C W} € T'. Hence, there exists W € W, such that W
strictly contains V;, but not U. Hence, by (3) of Lemma 2.9, E, v, C h™'W; hence,
iU C E.uCE,v, C h='W; hence, U C W, which is absurd. Therefore, G, is
wOP-like.

Let V, denote the set of V € W, satisfying U € V for all nonempty open U €
UX4. Let us show that V,, /F, is a base of X/F,. 'V € V,, then P(V)NW,, C V,;
hence, it suffices to show that V, covers X. Since ||JX,| < k, every point of X
has a neighborhood in A that does not contain any nonempty open subset of X in
(JX.. By compactness, there is cover of X by finitely many such neighborhoods,
say, Wy, ..., W,_1. By elementarity, we may assume Wy,...,W,,_1 € A,. Then
{W; : i < n} has a refining cover § C W,,. Hence, S C V,; hence, V,, covers X as
desired.

Let U, denote the set of U € V, such that U C V for some V € V,. Then
Uy Fo is clearly a base of X/F,. Set £, = {Equ : U € Uy}. Then &, is wP-like
because it is a subset of G,.

For all Z C P(2%),set 1Z ={H C2%: H DI for some I € Z}. For all H C 2",
set 1H = 1{H}. Set U =, Us and C = BNT{h™'U : U € U}. For all a < &,
set Do = Uz, €s- Then we claim the following for all o < k.

(1) D, is a dense subset of C N J Z,.
(2) Do NTH is finite for all H € CN Y X,
3) fa <k, then Doy1 NTH =D, NTH forall H e CNYX,.
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We prove this claim by induction. For stage 0, the claim is vacuous. For limit
stages, (1) is clearly preserved, and (2) is preserved because of (3). Suppose o < K
and (1) and (2) hold for stage . Then it suffices to prove (3) for stage « and to
prove (1) and (2) for stage a + 1.

Let us verify (3). Seeking a contradiction, suppose H € CN|JX, and Dyqq N
TH # DoNTH. Then E,NTH # 0; hence, there exists U € U, such that H C E, .
By (1), there exist 8 < a and W € U such that Egw C H. By definition, there
exists V € V, such that U C V. Hence, hlw C Esw CHCE,y C h’lv;
hence, W C V. Since W € Mz C |JZ, and V € V,,, we have W Z V', which yields
our desired contradiction.

Let us verify (1) for stage « + 1. By (1) for stage a, we have

Das1 =Do UE, C (CmUZa) U€nM)=CcnlJSat,

so we just need to show denseness. Let H € CNJXn41. If H € JX,, then
H € 1D,, so we may assume H € M,. By elementarity, there exists Uy € U, such
that h~1U, C H. Choose U; € U, such that U; C Uy. Then Eou, C h=1Uy;
hence, Eoy, € H. Hence, H € TDg41.

To complete the proof of the claim, let us verify (2) for stage o + 1. By (1)
for stage o + 1, it suffices to prove D41 N TH is finite for all H € Dy41. By (3),
if H € D,, then Dyy1 N TH = D, N TH, which is finite by (1) and (2) for stage
a. Hence, we may assume H € &,. Since &, is w°P-like, it suffices to show that
D, N TH is finite. Since D, C |J X4, it suffices to show that D, N N N 1H is finite
forall N € ¥,. Let N € ¥,. By Lemma 3.1, there exists G € BN N such that
GO Hand BOANNTH =BNNNTG; hence, D, "NNNTH =D, NN NTGE. Since
G 2 H € C, we have G € C. By (2) for stage a, the set D, N N N 1G is finite;
hence, D, N N N TH is finite.

Since U C A, it suffices to prove that U is an w°P-like base of X. Suppose
p € V € A. Then there exists o < k such that V' € A,. Hence, there exists U € U,
such that p/F, € U/Fo C V/Fq4; hence, p € U C V. Thus, U is a base of X.

Let us show that U is w°P-like. Suppose not. Then there exists o < x and
Up € U, such that there exist infinitely many V € U such that Uy C V. Choose
U, € U, such that U, C Uy. Suppose 3 < k and Uy C V € Uz. Then E,y, C
h='Uy € h™'V C Esyv. By (1) and (2), D, is w°P-like; hence, there are only
finitely many possible values for Egy. Therefore, there exist (Vn)n<w € £ and
(Vi)n<w € [lhcw Uy, such that Vi, #V, and E, v, = E,, v, forallm <n < w.
Suppose that for some § < x we have v, = J for all n < w. Let i < w and set
I'={WeWs:V, C W} By (2) and (4) of Lemma 2.9, there exists j < w such

=

that {WW € W5 : V; C W} Z I'. Hence, there exists W € Ws such that W strictly

contains V; but not V;. By (3) of Lemma 2.9, Vj C W. Hence, h"'V,; C Esy, =
Esyv, C h~'W. Hence, V; C W. Since W does not strictly contain V;, we must
have V; = V; = W. Hence, AV, = Esv, = Esv,. Since i was arbitrary chosen,
we have V,, = V,, = h[Es,y,] for all m,n < w, which is absurd. Therefore, our
supposed 0 does not exist; hence, we may assume 7y < ;. By definition, there
exists W € V,, such that V; C W. Therefore, h"'Vy C E, v, = E,, v, Ch™1W;

hence, Vy C W. Since Vy € M, CJX,, and W € V,,, we have Vy € W, which is
absurd. Therefore, U is wP-like. (]
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Let us show that we may remove the requirement that the base A in Lemma 3.19
consist only of cozero sets.

Lemma 3.20. Suppose X is a space with no isolated points and x(p, X) = w(X)
for allp € X. Further suppose k = cf kK < min{N¢(X),w(X)} and X has a network
consisting of at most w(X)-many k-compact sets. Then every base of X contains
an Nt(X)°P-like base of X.

Proof. Set A = Nt(X) and p = w(X). Let A be an arbitrary base of X; let B
be a \°P-like base of X; let A/ be a network of X consisting of at most p-many
k-compact sets. By Proposition 3.18, we may assume |B| = u. Let ((Na, Ba))a<p
enumerate {(N,B) € N x B: N C B}. Construct a sequence (Gqo)a<, as follows.
Suppose « < p and (Gg)s<q is a sequence of elements of [B]<*. For each p € N,,
we have x(p,X) = p > k = cfk; hence, we may choose U,, € B such that
p € Uap & Uscnq s Choose o, € [NQ]Qi such that N, C J Ua,p- Set
ga = {Ua,p ‘pe 0—04}'

For each o < p, choose F,, € [A]<" such that N, C |JF, C B, and F, refines
Gqo. Set F = Ua<u Fu, which is easily seen to be a base of X. Let us show that F
is A°P-like. Suppose not. Then, since x = cf k < A, there exist V € F, I € [u]*, and
(Wa)aer € [1aer Fa such that V. C (), o; We. For each o € I, there is a superset
of W, in G,. By induction, G, NGg = 0 for all @ < 3 < p; hence, V has A-many
supersets in the \°P-like base B, which is absurd, for V' has a subset in B. O

PEO

Remark. If X is regular and locally x-compact and x < w(X), then it is easily seen
that X has a network consisting of at most w(X)-many k-compact sets.

Theorem 3.21. Let X be a dyadic compactum such that 7wx(p, X) = w(X) for all
p € X. Then every base A of X contains an w°P-like base of X.

Proof. By Lemma 3.19, Nt(X) = w. Since w(X) = mx(p, X) < x(p, X) < w(X)
for all p € X, we may apply Lemma 3.20 to get a subset of A that is an w°P-like
base of X. 0

Finally, let us prove the second half of Theorem 1.5.

Corollary 3.22. Let X be a homogeneous dyadic compactum with base A. Then
A contains an w°P-like base of X.

Proof. Efimov [6] and Gerlits [9] independently proved that the m-character of every
dyadic compactum is equal to its weight. Since X is homogeneous, mx(p, X) =
w(X) for all p € X. Hence, A contains an w°P-like base of X by Theorem 3.21. O

Note that a compactum is dyadic if and only if it a continous image of a product
of second countable compacta. Let us prove generalizations of Theorem 3.21 and
Corollary 3.22 about continuous images of products of compacta with bounded
weight.

Lemma 3.23. Suppose k = cfk > w and X is a space such that wx(p,X) =
w(X) > k for all p € X. Further suppose X has a network consisting of at most
w(X)-many k-compact closed sets. Then every base of X contains a w(X)°P-like

base of X.
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Proof. Set A = w(X) and let A be an arbitrary base of X. By Proposition 3.18,
we may assume |A| = A. Let A/ be a network of X consisting of at most A\-many
k-compact sets. Let (M,)a<x be a continuous elementary chain such that for all
a < X\ we have A, N, M, € M,y1 < Hg. We may also require that M, Nk € K >
|Mg| for all @ < k and |M,| = |k + af for all @ € A\ k. For each o < A, set
Ao = AN M,. Set B=J,o Aat1 \ TAqa, which is clearly A°P-like. Let us show
that B is a base of X. Suppose p € U € A. Choose N € N such that p e N C U.
Choose a < A such that N,U € Ayy1. For each ¢ € N, choose V; € A\ TA,
such that ¢ € V; C U. Then there exists o € [N]<" such that N C J ., V- By
elementarity, we may assume (Vy)qeo € May1. Choose ¢ € o such that p € V.
Then V;, € Band p € V, CU. Thus, B is a base of X. O

Theorem 3.24. Let k > w and let X be Hausdorff and a continuous image of a
product of compacta each with weight at most k. Suppose wx(p, X) = w(X) for all
p € X. Then every base of X contains a k°P-like base.

Proof. Let h: [],c; Xi — X be a continuous surjection where each X; is a com-
pactum with weight at most x. Each X, embeds into [0,1]" and is therefore a
continuous image of a closed subspace of 2%. Hence, we may assume [[;.; X; is to-
tally disconnected. Set A = w(X); by Lemmas 2.9 and 3.23, we may assume A > k.
By Theorem 3.21, we may assume x > w. Inductively construct a k™ -approximation
sequence (My)a<x in (Hp, €,C(X), h, (Clop(X;))icr) as follows. For each o < A,
let (No g)p<x be an wi-approximation sequence in

<H97 67 C(X)v ha R, <CIOP(X1)>z€Ia <Mﬁ>ﬂ<a>~

Set (Tw,8)s<rx = Y({Na,g)s<r) as defined in Lemma 3.17; let {M,} = Tn .. Set
(Ba)a<r = U((Ma)a<r). Set F=C(X)NJZEy and A= {X\ f~1{0}: f € F}.
Then A is a base of X. By Lemma 3.20, it suffices to construct a subset of A that
is a k°P-like base of X.

For each o < A, set F, = F N M,. Let V, denote the set of V € AN M,
satisfying U ¢ V for all nonempty open U € (JX,. Arguing as in the proof
Lemma 3.19, V,/F, is a base of X/F,. For each 8 < &, let V, g denote the set
of all V. € V, N N, g satisfying U ¢ V for all nonempty open U € |JT'n 5. Let
Ra,p denote the set of (U, V) € Vg(,ﬁ for which U C V; set Uy g = dom R, 3; set
Uo = Upo\.Uap-

Let us show that U, /F, is also a base of X/F,. Suppose p € V € V,. Extend
{V'} to a finite subcover o of V, such that p & (J(o \ {V}). Choose 3 < r such that
0 € Nq . For each ¢ € X, choose V, o,V 1 € A such that ¢ € V, ¢ and there exists
W € o such that U € V, 0 C V1 € W for all nonempty open U € | JX, UJT 4 .
Choose T € [X]<“ such that X = quT Vg,0- By elementarity, we may assume
(Va,i) (g.iyerx2 € Na,g. Choose ¢ € 7 such that p € V0. Then Vo € Uy,p and
p € Vyo C V. Thus, U,/F, is a base of X/F,.

Set B = CIOP(Hiez Xi). For each (Uy,U;) € Uﬁ<,{ Ra., choose E,(Uy,Uy) €
BN M, such that h='Uy C E,(Uy,U1) C hU;. Set €3 = Ea[Rapl- Set
Ea =Up<y €a,p- Let us show that &, is k°P-like. Suppose 8,7 <k and £,3> H C
K € &,,. Then it suffices to show that v < 3. Seeking a contradiction, suppose
B < ~y. There exist (Uy,U1) € Ra,p and (Vy, Vi) € Ry, such that H = E,(Up, Ur)
and K = E,(Vp,V1). Hence, JT'oy 2 Uy C Vi € V, 4, in contradiction with the
definition of Vq .
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Set U = JperUa and C = BN AU : U € U}. For all oo < A, set Dy =
Up<a € Then we claim the following for all o < A.

(1) D, is a dense subset of C N J X,
(2) [DoNTH| <k forall H e CN|JZ,.
(3) If a < A, then Dpy1 NTH =D, NTH for all He CNYZ,.

We prove this claim by induction. For stage 0, the claim is vacuous. For limit
stages, (1) is clearly preserved, and (2) is preserved because of (3). Suppose a < K
and (1) and (2) hold for stage o. Then it suffices to prove (3) for stage « and to
prove (1) and (2) for stage a + 1.

Let us verify (3). Seeking a contradiction, suppose H € CN|J X, and Dyq1 N
TH # DoNTH. Then E,NTH # 0; hence, there exists V € U, such that H C A~V
By (1), there exist 8 < a and U € Uy and K € &z such that h™1U C K C H.
Hence, U C V. Since U € Mg C Y%, and V € V,, we have U € V, which yields
our desired contradiction.

Let us verify (1) for stage o+ 1. By (1) for stage «, we have

Day1 =Dy UE, C (CﬂUEa) UE€NM)=CcnlJSat,

so we just need to show denseness. Let H € CN{JXp+1. If H € [JX,, then
H € 1D, so we may assume H € M,. By elementarity, there exists U € U,, such
that h~'U C H. Choose 3 < k such that U € U, g; choose V € U, 5 such that
V CU. Then E,(V,U) C H; hence, H € 1Dy 1.

The proof of the claim is completed by noting that (2) for stage o + 1 can be
verfied just as in the proof of Lemma 3.19, except that Lemma 3.6 is used in place
of Lemma 3.1.

Just as in the proof of Lemma 3.19, I/ is a base of X; hence, it suffices to show that
U is k°P-like. Suppose v < A and § < k and U € Uy 5 and ((Ca,a))a<r € (A X k)"
and (Wa)a<w € [lacrUcam. and U C [, Wa. Then it suffices to show that
W, = W for some @ < 8 < k. Choose V € U, 5 such that V C U. For each
a < K, choose V,, € V¢, . such that Wao C V,; set H, = E;, (Wy,Vy). Then
E,(V,U) € Nyer Ha- By (1) and (2), Dy is x°P-like; hence, there exists J € [x]“
such that H, = Hg for all o, 3 € J; hence, W, C Vg for all o, € J. If o, € J
and (o < (g, then [JX¢, > W, C Vs, in contradiction with Vs € V¢,. Hence,
Ca = (g forall a,8 € J. If a,8 € J and 1, < ng, then [JT¢,,, > Wo C Vp,
in contradiction with Vg € V¢, ,,. Hence, no, = ng for all a,8 € J. Hence,
{Wata€J} CNepin s mwmin o3 hence, W, = Wy for some a < 8 < k. O

Lemma 3.25. Let k be an uncountable regular cardinal; let X be a compactum
such that w(X) > k and X is a continuous image of a product of compacta each
with weight less than k. Then m(X) = w(X).

Proof. Tt suffices to prove that w(X) > k. Seeking a contradiction, suppose A is
a m-base of X of size less than k. Let (X;);c; be a sequence of compacta each
with weight less than x and let h be a continuous surjection from [T, ; X; to X.
Choose M < Hy such that AU{C(X), h, (C(X;))ier} € M and |M| = | A|. Choose
pe MN][jc;Xiandset Y = {qg € [[,c;Xs :p [ U\M) =q [ (I\M)}
Then it suffices to show that h[Y] = X, for that implies k < w(X) < w(Y) < &.
Seeking a contradiction, suppose h[Y] # X. Then there exists U € A such that
UNhlY] = 0. By elementarity, there exists o € [I N M]<* and (V;);c, such that
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1 _
ico ™ Vi ©h7'U. Hence,

ico ™ Vi # 0, in contradiction with U N A[Y] = 0. O

V; is a nonempty open subset of X; for all i € o, and
Ynn

Definition 3.26. Given any cardinal &, set log x = min{\ : 2X > K}.

Lemma 3.27. Let k be an uncountable regular cardinal; let X be a compactum
such that w(X) > k and X is a continuous image of a product of compacta each
with weight less than k. Then mx(X) = w(X).

Proof. Let (X;)icr be a sequence of compacta each with weight less than x and
let h be a continuous surjection from [[,.; X; to X. For any space Y, we have
7(Y) = mx(Y)d(Y). Hence, w(X) = m(X) = mx(X)d(X) by Lemma 3.25; hence,
we may assume d(X) = w(X). Arguing as in the proof of Lemma 3.25, if A is a
m-base of X and AU {C(X),h,(C(X;))ic1} € M < Hp, then X is a continuous
image of [];c;~a Xi; hence, we may assume |I| = 7(X). By 5.5 of [14], d(X) <
d(I1,c; Xi) < k-log|I]. By 2.37 of [14], d(Y) < wx(Y)C(Y) for all T3 non-discrete
spaces Y. Since k is a caliber of X; for all 4 € I, it is also a caliber of X; hence,
lI| = m(X) = d(X) < 7x(X)"; hence, log|I| < k- mx(X). Therefore, w(X) =
d(X) < k- mx(X); hence, we may assume w(X) = k.

Let (U,)a<wx enumerate a base of X. For each a < k, choose p, € U,. Since
d(X) = w(X) = K, there is no @ < & such that {pg : § < a} is dense in X. Since &
is a caliber of X, we may choose p € X\U, ., {ps : B < a}. It suffices to show that
mx(p, X) = k. Seeking a contradiction, suppose mx(p, X) < k. Then there exists
a < k such that {Us : 8 < a} contains a local 7-base at p; hence, p € {pg : § < a},
in contradiction with how we chose p. O

Theorem 3.28. Let (X;);cs; be a sequence of compacta; let X be a homogeneous
compactum; let h: [[,c; Xi — X be a continuous surjection. If there is a regular
cardinal k such that w(X;) < k < w(X) for all i € I, then every base of X contains
a (sup;e; w(X;))%P-like base. Otherwise, w(X) < sup;c; w(X;) and every base of
X trivially contains a (w(X)¥)°P-like base.

Proof. The latter case is a trivial application of Proposition 3.18. In the former
case, Lemma 3.27 implies mx(p, X) = w(X) for all p € X; apply Theorem 3.24. O

Every known homogeneous compactum is a continuous image of a product of
compacta each with weight at most ¢; hence, Theorem 3.28 provides a uniform
justification for our observation that all known homogeneous compacta have Noe-
therian type at most ¢t. Analogously, since every known homogeneous compactum
is such a continuous image, it has ¢™ among its calibers; hence, it has cellularity at
most ¢.

Let us now turn to the spectrum of Noetherian types of dyadic compacta and a
proof of Theorem 1.6.

Theorem 3.29. Let k and X be infinite cardinals such that A < k. Let X be the
discrete sum of 2% and 2*. Let Y be the quotient space induced by collapsing (0)q <y
and {0)o<x to a single point p. If A < cfk, then Nt(Y) = x*. If X\ > cfk, then
Nt(Y) = k.

Proof. Clearly x(p,Y) = k and 7x(p,Y) = A. Hence, if A < cfx, then kT <
Nt(Y) < w(Y)t = k™ by Proposition 3.10. Suppose A > cf k. We still have
k < Nt(Y') by Proposition 3.10, so it suffices to construct a k°P-like base of Y. Let
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~ be the equivalence relation such that Y = X/ ~. In building a base of Y, we
proceed in the canonical way when away from p: for each u € {k, A}, set

A, ={{ze2":nCx}/~:neFn(y,2) and n {1} # 0}.

Choose fo:  — cf & such that for all a < cf & the preimage f; '{a} is bounded
in k. Define f: [k]<* — cfk by f(o) = fo(supo) for all o € [k]<¥. Choose
go: A — cf k such that for all @ < cf s the preimage gy '{a} is unbounded in .
Define g: [\]<*¥ — cf k by g(0) = go(sup o) for all ¢ € [\]<¢. Set

A= U {({x€2”:x[0] = {0}y u{ze2*:alr] = {0}})/~:

a<cfk
(0.7 € [} x g7 Ha}}.

Set A=A, UA\UA,. Let usshow that A is a x°P-like base of Y. The only
nontrivial aspect of showing that A is a base of Y is verifying that A, is a local
base at p. Suppose U is an open neighborhood of p. Then there exist o € [k]<%
and 7 € [A]<¥ such that

({zx €27 1 afo] = {0} U {z € 2* 1 z[7] = {0}})/~C U.
Choose o < A such that sup7 < a and go(a) = f(0). Set 7/ = 7 U {a} and
V={ze2 ao] = {0}}Uu{z 2" a[r] = {0}})/~.

Then V C U and V € A, because f(o) = g(7'). Thus, A is a base of Y.

Let us show that A is k°P-like. Suppose U,V € Aand U C V. If U € A,,
then, fixing U, there are only finitely possibilities for V' in A,; the same is true
if k is replaced by A or p. Hence, we may assume U € A; and V' € A; for some
{i,5} € [{r, A\, p}]%. Since no element of A, is a subset of an element of A, U A,,
we have i # p. Hence, there exists 7 € Fn(i, 2) such that U = {z € 2 : n C 2}/ ~.
Since [J A, NUAx = 0, we have j = p. Hence, there exist o € [x]<% and 7 € [\]<¥
such that

V=({z €2 zfo] = {0}} U{z € 2" : afr] = {0}})/~ .

If i = K, then 0 C 1n~1{0}; hence, fixing U, there are only finitely many pos-
sibilities for o, and at most A-many possibilities for 7. If ¢ = A, then 7 C
n~1{0}; hence, fixing U, there are only finitely many possibilities for 7, and at
most [sup fy *{g(7)}|<“-many possibilities for o given 7. Thus, there are fewer
than k-many possibilities for V' given U. Thus, A is k°P-like. ([l

Corollary 3.30. If k is a cardinal of uncountable cofinality, then there is a totally
disconnected dyadic compactum with Noetherian type k™. If k is a singular cardinal,
then there is a totally disconnected dyadic compactum with Noetherian type k.

Proof. For the first case, apply Theorem 3.29 with A = w. For the second case,
apply Theorem 3.29 with A\ = cf k. ([

Combining the above corollary with the following theorem (and a trivial example
like Nt(2¢) = w) immediately proves Theorem 1.6.

Theorem 3.31. Let X be a dyadic compactum with base A consisting only of
cozero sets. If Nt(X) < wy, then A contains an w°P-like base of X. Hence, no
dyadic compactum has Noetherian type w1 .
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Proof. Let Q be an wiP-like base of X of size w(X). Import all the notation
from the proof of Lemma 3.19 verbatim, except that we require (My)a<x to be
an wi-approximation sequence in (Hyg, €, F, h, Q). Then U is an w°P-like subset of
A as before. On the other hand, V, /F, is not necessarily a base of X/F, for all
a < k. However, we will show that U is still a base of X. In doing so, we will
repeatedly use the fact that if U, Q € M < Hy and U is a nonempty open subset of
X, then all supersets of U in Q are in M because {V € Q : U C V} is a countable
element of M.

Suppose ¢ € @ € Q. Then it suffices to find U € U such that ¢ € U C Q.
Let 3 be the least a < & such that there exists A € A, satisfying ¢ € A C A C
Q. Fix such an A € Ag. For each p € A, choose (A4,,Q,) € A x Q such that
pGAPQQPQQPQQ. Since Mg 2 A C Q € Q, we have @ € Mg. Hence, by
elementarity, we may assume there exists o € [ 4] = such that ((Ap, @Qp))peo € Mp
and A C UPEU A,. Choose p € o such that ¢ € A,. Suppose Q, ¢ |JX3. Then
all nonempty open subsets of @), are also not in |J¥g; hence, there exist U € Ug
and V € Vs such that ¢/F3 CU CV C A, C Q. Therefore, we may assume
Qp € U 23

Choose o < 3 such that @, € M,. Then Q € M, because @), C Q. Hence,
there exists 7 € [Aq]<* such that @, € U7 C U7 € Q. Choose W € 7 such that
g€ W. Then ¢ € W C W C @, in contradiction with the minimality of 3. Thus,
U is a base of X. O

Question 3.32. If x is an singular cardinal with cofinality w, then is there a dyadic
compactum with Noetherian type x*? Is there a dyadic compactum with weakly
inaccessible Noetherian type?

We note that the spectrum of Noetherian types of all compacta is trivial.

Theorem 3.33. Let k be a reqular uncountable cardinal. Then there exists a totally
disconnected compactum X such that Nt(X) =k and X has a P,-point.

Proof. Let X be the closed subspace of 27 consisting of all f € 2" for which f(«) =0
or fla] = {1} for all odd « < k. First, let us show that X has a x°P-like base. For
each o € Fn(k, 2),set U, = {f € X : f D 0}. Let E denote the set of o € Fn(k, 2)
for which supdomo is even and U, # 0. Set A = {U, : 0 € E}, which is clearly
a base of X. Let us show that A is k°P-like. Suppose 0,7 € E and U, C U,. If
sup dom o < supdom 7, then for each f € U, the sequence

(f I'supdom7) U {(supdomr,1 — 7(supdom))} U {(5,0) : supdomT < § < K}

is in U, \ U,, which is absurd. Hence, supdom7 < supdomo; hence, there are
fewer than k-many possibilities for 7 given o. Thus, A is k°P-like.

Finally, it suffices to show that (1)4<x is a Pc-point of X, for a P.-point must
have local Noetherian type at least k. For each a < &, set 0, = {(2a+1,1)}. Then
{Us, : a < K} is a local base at (1)a<x. Moreover, Uy, 2 Uy, for all a < § < k.
Since « is regular, it follows that (1),<, is a Pc-point. O

Corollary 3.34. Fvery infinite cardinal is the Noetherian type of some totally
disconnected compactum.

Proof. By Lemma 2.9, all totally disconnected metric compacta have Noetherian
type w. By Theorem 3.33, if x is a regular uncountable cardinal, then there is
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a totally disconnected compactum X with Noetherian type . If k is a singular
cardinal, then there is a totally disconnected dyadic compactum with Noetherian
type k by Corollary 3.30. (]

4. K-ADIC COMPACTA

The results of the previous section used reflection properties of free boolean
algebras—see Lemma 3.1—and more generally coproducts of boolean algebras of
bounded size—see Lemma 3.6. Let us define a more general family of reflection
properties.

Definition 4.1. Let B be a boolean algebra and let x and A be cardinals. Then we
say B has the (k, A)-FN if and only if, for every M such that {B,A,V} C M < Hy
and [M|Nk C M Nk € k+1, and for every b € B, there exists A € [B N M]<*
such that M NTb=M N TA.

Remark. For regular k, the (k,x)-FN and the (kT,k)-FN are both equivalent to
the xk-FN as defined by Fuchino, Koppelberg, and Shelah [8]. In particular, the
(w1, w)-FN is equivalent to the Freese-Nation property and the (w2, w;)-FN is equiv-
alent to the weak Freese-Nation property.

The (k,w)-FN is equivalent to the (x,2)-FN for all s: if A € [BN M|~ and
MnNtb=MnN1TA, then AAe M and M NTb=MnNTAA. Therefore, a boolean
algebra has the (w1, w)-FN if and only if it satisfies the conclusion of Lemma 3.1.
Likewise, a boolean algebra satisfies the conclusion of Lemma 3.6 if and only if it
has the (k,w)-FN.

Theorem 4.2. If k > w and B has the (k*,cf k)-FN, then every subset of B is
almost Kk°P-like.

Proof. Proceed as in the proof of Theorem 3.2. The only modifications worth noting
happen in the last paragraph. Where Lemma 3.1 is used to produce r € BNM, such
that M,N1Tq = M,N7r, instead use the (k) cf k)-FN to produce A € [BNM,]<*
such that M, N Tq = M, N TA. For each r € A, argue as before that there
exists p, € @ N M, such that D, N r C D, N Tp,. By an induction hypothesis,
|Do N 1py| < &5 hence, |Do N 1q| < [U,cn(Da N 1pr)| < K. O

Corollary 4.3. It is independent of ~CH whether every separable compactum X
satisfies xNt(X) < wy.

Proof. Fuchino, Koppelberg, and Shelah [8] proved that P(w) has the (ws,w;)-FN
in the Cohen model. Arguing as in the proof of Theorem 3.4, every separable
compactum X, being a continuous image of fw, satisfies xxNt(X) < w; and
wNt(X) < wi in this model. On the other hand, p = ¢ implies there is a P.-point p
in fw \ w. Assuming p = ¢ > wy, let us show that this p does not have an wi*-like
base in the separable compactum [Bw. Let U be a local base at p in Sw. Choose
V € [U]*r and U € U such that U\ w C (V. For every V € V, the compact set
U\ V is contained in w, so U\ V C n for some n < w. Therefore, there exist
W € [V]*t and n < w such that U\ W C n for all W € W. Choose Uy € U such
that Uy C U \ n. Then Uy C (\W; hence, U is not wi’-like. O
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Theorem 4.4. Let k > w and let X be a compactum such that 7x(p, X) = w(X)
for all p € X and such that X is a continuous image of a totally disconnected com-
pactum Y such that Clop(Y) has the (kT ,cf k)-FN. Then every base of X contains
an Kk°P-like base of X.

Proof. Proceed as in the proof of Theorem 3.24. Modify that proof just as the
proof of Theorem 3.2 was modified in the above proof of Theorem 4.2. O

Séepin discovered a nice characterization of the Stone spaces of boolean algebras
having the (wq,w)-FN.

Definition 4.5 (Scepin [27]). Given a space X, let RC(X) denote the set of regular
closed subsets of X. A space X is k-metrizable if there exists p: X x RC(X) —
[0, 00) such that we have the following for all C' € RC(X).

(1) C={z € X :p(z,C) =0}.
(2) If C 2 B € RC(X), then p(z,C) < p(x,B) for all z € X.
(3) The map pc: X — R defined by pc(z) = p(x, C) is continuous.
(4) Cy of regular closed sets, if C'=J,_; Ca,

4) For each increasing union J 3
then p(x,C) = infa<p p(z, Cy).

A compactum is k-adic if it is a continuous image of k-metrizable compactum.

Remark. Séepin’s notation is “k-metrizable.” Let us use “k-metrizable” for two
reasons. First, “k” has nothing to do with a cardinal k; it’s a Russian abbreviation
for canonical. (Canonically closed means regular closed in this context.) Second,
for some authors, k-metrizable means something else, such as having a decreasing
uniform base of the form {U, }a<k-

The following theorem is implicit in results of Séepin [27] and more explicit in
Heindorf and Sapiro [11]. (See especially Section 2.9 of the latter.)

Theorem 4.6. A totally disconnected compactum X is k-metrizable if and only if
Clop(X) has the (wy,w)-FN.

Lemma 4.7 (Séepin [27]). If X is a k-adic compactum, then nx(X) = w(X).

Given the above lemma and the preceding three theorems, it is trivial to gener-
alize our main results from the previous section about the class of dyadic compacta,
which are continuous images of powers of 2, to the class of compacta that are con-
tinuous images of totally disconnected k-metrizable compacta. Moreover, the next
two theorems show that the latter class properly contains the former class.

Theorem 4.8 (Scepin [27]). Metrizable spaces are k-metrizable. Moreover, prod-
ucts and hyperspaces (with the Vietoris topology) preserve k-metrizability. In par-
ticular, every power of 2 is k-metrizable.

Theorem 4.9 (Sapiro [25]). If k > wo, then the hyperspace of 25 is not dyadic.
Hence, there is a totally disconnected compactum that is k-metrizable but not dyadic.

With a little more care, we can further generalize our results about dyadic com-
pacta to all k-adic compacta.

Definition 4.10. Given a space X and a set M, define 73, : X — X/M by 73,(p) =
p/M.



26 DAVID MILOVICH

Lemma 4.11. Let X be a compactum. Then X is k-metrizable if and only if w35
is an open map for all M satisfying C(X) € M < Hy.

Proof. Séepin [28] proved that a compactum X is k-metrizable if and only if, for all
sufficiently large regular cardinals y, there is a closed unbounded C' C [H,]¥ such
that C(X) € M < H, and 735 is open for all M € C. (Scepin stated this result
in terms of o-complete inverse systems of metric compacta; the above formulation
is due to Bandlow [3].) It follows at once that X is k-metrizable if 73, is open
for all M satisfying C(X) € M < Hy. Conversely, suppose X is k-metrizable and
C(X) € M < Hy. Fix p and C as above. We may assume 6 > u“; hence, by
elementarity, we may assume C' € M. Choose a countable N < H(3<¢)+ such that
C(X),C, M e N. Then MNNNH, €C,so w])\meﬂH“, which is equal to 73y,

is open. Suppose U C X is open and p € U. Since WJ)\(/mN is open, there exists a
cozero VC X such that pe Ve M NN and V/(MNN) CU/(MNN). The last
relation is equivalent to the statement that, for all ¢ € V, there exists » € U such
that, for all f € C(X)N M NN, we have f(q) = f(r). By elementarity, for every
open U C X and p € U, there exists a cozero V C X such that p € V € M and, for
all ¢ € V, there exists r € U such that, for all f € C'(X)N M, we have f(q) = f(r).
Thus, p/M € V/M CU/M. Since V is cozero and V € M, the set V/M is cozero.

Hence, 71']\)2 is open. O

Theorem 4.12. Let X be a k-metrizable compactum and Q a family of cozero
subsets of X such that for every U € Q there exists V € Q such that V C U. Then
Q is almost w°P-like.

Proof. Proceed by induction on |Q|. Argue as in the proof of Theorem 3.2 until
the verification of (3) for stage a4+ 1, where we need a different argument to show
that D, N Tq is finite. Let U = ¢ and choose V € Q such that V C U. By
Lemma 4.11, U/M,, is open; hence, there exists f € C(X)N M, such that V/M, C
(f~Yo0})/M, C U/M,. Since f € M,, we have V. C f~1{0}. By elementarity,
there exists W € Q N M, such that W C f~1{0}. By (3) for stage a, it suffices
to show that D, NTU C D, N TW. Suppose Z € D, N TU. Then W/M, C
(f~Yoy) /M, C U/M, C Z/M,. Since Z € D, C M, and Z is cozero, we have
W C Z. Thus, Dy N U C Dy N 1W. O

Corollary 4.13. Let X be a k-adic compactum and U be a family of subsets of X
such that for all U € U there exists V € U such that VN X \U = 0. Then U is
almost w°P-like. Hence, TNt(X) = xg Nt(X) = w.

Proof. Proceed as in the proof of Theorem 3.4. Use the above theorem instead of
Theorem 3.2. g

Theorem 4.14. Let X be a homogeneous k-adic compactum with base A. Then A
contains an w°P-like base of X.

Proof. By homogeneity and Lemma 4.7, we have wx(p, X) = w(X) for all p € X.
By Lemma 3.20, we may assume A consists only of cozero sets. Proceed as in the
proof of Lemma 3.19. Replace 2* with a k-metrizable compactum Y and replace B
with the set of cozero subsets of Y. For the proof of (2) for stage o + 1, we need a
different argument that, given H € £, and N € ¥, the set D, N N N TH is finite.

Choose U € U, such that H = E, y; choose V' € U, such that V CU. Since 7r13\/,
is open by Lemma 4.11, we have (h=1V)/N C (f~1{0})/N C (h=*U)/N for some
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feCY)nN. Since f € N, we have h=1V C f~1{0}. Choose 3 < a such that
J € Mg. By elementarity, we may choose W, € Ag such that h='Wy C f~1{0}.
Choose W7 € V3 such that W1 C Wy; choose Wy € Ug such that W, C Wi.
By (2) for stage «, it suffices to prove D, N NN 1E,u € TEgw,. Suppose G €
Do NN NTEyu. Then we have

(f~HOD/N € (5 U)/N € Fa/N C G/N.
Since G € N and G is cozero, we have f~1{0} C G. Hence,
Esw, Ch™ Wy Ch™ W, C F7H0} CG.
Thus, Do "N NTE.u € TEg,w, as desired. O
Theorem 4.15. Let X be a k-adic compactum. Then Nt(X) # w.
Proof. Proceed as in the proof of Theorem 3.31. O

Question 4.16. Is every k-adic compactum a continuous image of a totally discon-
nected k-metrizable compactum?

If still greater generality is desired, then one can easily combine the techniques
of the proofs of Theorems 4.2, 4.12, and 4.14 to prove the following.

Theorem 4.17. Let k be an infinite cardinal and let Y be a compactum such that,
for all open U C 'Y and for all M satisfying C(Y) € M < Hy and k™ N |M| C
kTN M € kT +1, the set U/M is the intersection of fewer than (cf k)-many open
subsets of Y/M. If X is Hausdorff and a continuous image of Y, then we have the
following.

(1) If U CP(X) and, for allU € U, there exists V € U such that VN X \ U =
(0, then U is almost k°P-like. Hence, tNt(X) < k and xg Nt(X) < k.

(2) If mx(p, X) = w(X) for allp € X, then every base of X contains a k°P-like
base.

On the other hand, Lemma 4.7 cannot be so easily generalized. For example, if
X is the Stone space of the interval algrebra generated by {[a,b) : a,b € R}, then
w(X) =cand 7x(X) = 7(X) = w, despite it being shown in [8] that Clop(X) has
the (we,wq)-FN.

5. MORE ON LOCAL NOETHERIAN TYPE

In this section, we find two sufficient conditions for a compactum to have a point
with an w°P-like local base. The first of these conditions will be used to prove
Theorem 1.7. We also present some related results about local bases in terms of
Tukey reducibility.

Definition 5.1. Given cardinals A > k > w and a subset F in a space X, a local
(\, k)-splitter at E is a set U of A-many open neighborhoods of E such that F is
not contained in the interior of |V for any V € [U]". If p € X, then we call a local
(A, k)-splitter at {p} a local (A, k)-splitter at p.

Theorem 5.2. Suppose X is a compactum and wi < k = minyex mx(p, X). Then
there is a local (k,w)-splitter at some p € X.
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Proof. Given any map f, let [] f denote {(zi)icdom s : Vi € dom f z; € f(i)}.
Given any infinite open family &£, let (&) denote the set of (o, T") € [E]<¥ x ([£]¥)<¥
for which every 7 € [T satisfies (o C [Jran7. Then ®(£) = @ always implies £
is wOP-like and centered.

Let R denote the set of nonempty regular open subsets of X. Choose (W),) <., €
R* such that W, 11 € W,, # X for all n < w. Let Q denote the class of transfinite
sequences ((Uq, Va))a<y of elements of R? satisfying the following.

(1) 712 w and <<UnaVn>>n<w = <<Wn+17Wn>>n<w-

(2) Uy CV, for all a < n.

(3) PVa) N {No\UT: 07 € [UpealUs Vol ™} € {0} for all a < n.
(4) ®(UyepUa,Va}) = 0.

Seeking a contradiction, suppose 7 is a limit ordinal and ((Ua, Va))a<n € €2, but
((Us, V) p<a € Q for all @ < n. Then (1), (2), and (3) hold for ((Ua, Va))a<n,
so there exists (o, T") € (I)(Ua<n{Ua>Va})- We may choose ¢ € domI' such that
(i) € UpcalUs, V) for all @ <m. Set A =T | (domI"\ {i}). We may assume
domT is minimal among its possible values; hence, there exists 7 € [[ A such that
o £ Uran7. Choose a < n and W € I'(i) such that o Urant C (U, {Up, Vs}
and W € {Uq, Vo}. Then (o \ UranT € W by (2) and (3). Since W is regular,
No \ UranT € W; hence, (o € W UJranT, in contradiction with (o,T) €
<I>(Ua<n{Ua, Vo}). Thus, Q is closed with respect to unions of increasing chains.

It follows from (3) that © C (R2)<IRI". Moreover, ((Wpi1, Wp)lnew € €L
Hence, by Zorn’s Lemma, 2 has a maximal element ((Un,Va))a<y. Set B =
Ua<n{U0” Va.}. Let us show that > k. Suppose not. For each z € X, choose
Y., Z, € R such that z € YLQ Y, C Z, and Z, does not contain any nonempty
open set of the form (o \ U7 where 0,7 € [B]<“. Choose p € [X]<“ such that
Uze, Yo = X. Let us show that ®(B U {Y;,Z,}) = 0 for some z € p. Seek-
ing a contradiction, suppose (04, ;) € ®(BU{Y,,Z,}) for all © € p. We may

assume (J,.,Uranl'; C B. Let A be a concatenation of {I'; : = € p} and set
7 =BNU,e,0i- Then for all ¢ € [TA we have
Nr=NNexnB=UJ (Yz Ny mB)) < JNew € Jranc.
yep z€p yep z€p

Hence, (1,A) € ®(B), in contradiction with (4). Therefore, we may choose = € p
such that ®(BU{Y;,, Z,}) = 0. But then ((Ua, Va))a<nt+1 € Q if we set U, = Y,
and V;, = Z,, in contradiction with the maximality of ((Ua, Va))a<y. Thus, n > k.

Set A = {V, :a <n} By (3), [Al = In| > x. Set K = (,.,Ua. Then it
suffices to show that A is a local (|n|,w)-splitter at some x € K. Suppose not.
Then each x € K has an open neighborhood W, that is a subset of infinitely many
elements of A. Hence, (B U {W,}) # 0 for all x € K. Choose p € [K]<¥ such
that K C UJ,c, Wz. Choose an open set W such that WU ,c, Ws = X and
W NK = (. By compactness, BU {W} is not centered; hence, ®(BU {W}) # §.
Reusing our earlier concatenation argument, we have ®(B) # 0, in contradiction
with (4). Thus, A is a local (|n|,w)-splitter at some z € K. O
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Lemma 5.3. Suppose E is a subset of a space X and E has no finite neigh-
borhood base. Then xNt(E,X) is the least k > w for which there is a local
(x(p, X), k)-splitter at E.

Proof. Set kK = xNt(E,X) and A\ = x(E,X). By Lemma 2.4, A > k; hence, a
k°P-like neighborhood base of E (which necessarily has size A) is a local (A, k)-splitter
at E. To show the converse, let (U,)n<x be a sequence of open neighborhoods of
E. Let {V, : @ < A} be a neighborhood base of E. For each o < A\, choose
Wy € {Vs : B < A} such that W, C U, NV,. Then {W, : a« < A} is a neigh-
borhood base of E. Let u < k. Then there exist « < X and I € [AJ* such
that Wo C (se; Wp. Hence, E is contained in the interior of (5., Us. Hence,
{Uqs : @ < A} is not a local (A, p)-splitter at F. O

Proof of Theorem 2.14. We may assume x(X) > w;. By Theorem 5.2, there is a
local (x(X),w)-splitter at some p € X. By Lemma 5.3, xNt(p, X) = w. O

Proof of Theorem 1.7. Let X be a homogeneous compactum. By a result of Arhan-
gel’skii (see 1.5 of [1]), [Y| < 27X()e(Y) for all homogeneous spaces Y. Since |X| =
2X(X) by Arhangel’skii’s Theorem and the Cech-Pospisil Theorem, we have x(X) <
mx(X)e(X) by GCH. If mx(X) = x(X), then xNt(X) = w by Theorem 2.14. Hence,
we may assume wx(X) < x(X); hence, xNt(X) < x(X) < ¢(X) by Theorem 2.5.

([l

Example 5.4. Consider 2“! ordered lexicographically. Every point in this space
has character and local Noetherian type wi, and some but not all points have
m-character w.

Definition 5.5 (Tukey [29]). Given two quasiorders P and @, we say f is a Tukey
map from P to @ and write f: P <p @Q if f is a map from P to @ such that all
preimages of bounded subsets of @ are bounded in P. We say that P is Tukey
reducible to @ and write P <p @ if there exists f: P <p Q). We say that P and @
are Tukey equivalent and write P =7 Q if P <7 Q <p P.

Tukey showed that two directed sets are Tukey equivalent if and only if they
embed as cofinal subsets of a common directed set. In particular, any two local bases
at a common point in a topological space are Tukey equivalent. Another, easily
checked fact is thats P <p [cf P]<% for every directed set P. Also, [x]<¥ <p [\]<¥
if k <A

Lemma 5.6. Suppose k > w and E is a subset of a space X with a local {k,w)-splitter
at E. Then ([k]<%,C) <7 (A, D) for every neighborhood base A of E.

Proof. Let U be alocal (k,w)-splitter at E. Let A be the set of open neighborhoods
of E. Then N is Tukey equivalent to every neighborhood base of FE (with respect
to D), so it suffices to show that [U]<¥ <p (N,D). Define f: [U]<¥ — N by
f(o) = No for all ¢ € [U]<¥. Then, for all N € N, we have |[f"1TN| < w
because U is a local (k,w)-splitter; whence, f~! TN is bounded in [U/]<“. Thus,
f: U= <r (N, D). o

Theorem 5.7. Suppose X is a compactum and wy < k = minyex mx(p, X). Then,
for some p € X, every local base A at p satisfies ([k]<“,C) < (A, D).

Proof. Combine Theorem 5.2 and Lemma 5.6. g
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Lemma 5.8. Suppose E is a subset of a space X and E has no finite neighborhood
base. Then the following are equivalent.

(1) xNt(E, X) = w.

(2) There is a local {(x(E,X),w)-splitter at E.

(3) Every neighborhood base A of E satisfies ([x(E,X)]<%,C) =1 (A, D).

Proof. By Lemma 5.3, (1) and (2) are equivalent. Let B be a neighborhood base
of E of size x(F,X). By Lemma 5.6, (2) implies [x(E,X)]<¥ <r (A,D) =p
(B,2) <7 [x(E,X)]<¥ for every neighborhood base A of E. Thus, (2) implies
(3). Finally, suppose A is a neighborhood base of E and [x(E, X)|<* =r (A, D).
Then [x(E, X)]<“ and (A, D) embed as cofinal subsets of a common directed set.
Hence, (A, C) is almost w®P-like by Lemma 2.21. Hence, A contains an w°P-like
neighborhood base of E. Thus, (3) implies (1). O

Theorem 5.9. Suppose X is an infinite homogeneous compactum and 7wx(X) =
X(X). Then, for all p € X and for all local bases A at p, we have (A,D) =

(x(X)]=, 9).
Proof. Combine Theorem 2.14 and Lemma 5.8. (]

Definition 5.10. Given n < w and ordinals «, By, ..., B, let « — (Bo, ..., 0n)
denote the proposition that for all f: [a]> — n + 1 there exist i < n and H C «
such that f[[H]?] = {i} and H has order type f3;.

Lemma 5.11. Suppose k = cf k > w and P is a directed set such that [k]<* <r P.
Then P contains a set of k-many pairwise incomparable elements.

Proof. Let Q be a well-founded, cofinal subset of P. Then P =r Q; let f: [5]<“ <p

Q. Define g: [5]* — 3 by g({a < p}) = 0if f({a}) £ fF({8}) £ f({e}) and

g({a < 8}) = 1if f({a}) > f({B}) and g({a < B}) = 2 if f({a}) < f({B}). By
the Erdos-Dushnik-Miller Theorem, k — (k,w + 1,w + 1). Since @ is well-founded,

there is no H € [k]* such that g[[H]?] = {1}. Since f is Tukey and all infinite
subsets of [k]<“ are unbounded, there is no H C  of order type w + 1 such that
g[[H)?] = {2}. Hence, there exists H € [k]® such that g[[H]?] = {0}; whence,
fI[H]'] is a k-sized, pairwise incomparable subset of P. O

Theorem 5.12. Suppose k = cf Kk > w and X is a compactum such that every point
has a local base not containing a set of k-many pairwise incomparable elements.
Then some point in X has w-character less than k.

Proof. Combine Theorem 5.7 and Lemma 5.11 to prove the contrapositive of the
theorem. (]

Corollary 5.13. Suppose X is a compactum such that every point has a local base
that is well quasi-ordered with respect to 2. Then some point in X has countable
w-character.

Finally, let us present a few results about local Noetherian type and topological
embeddings.

Lemma 5.14. Suppose X is a space, Y C X, and p € Y satisfies x(p,Y) =
X(p, X). Then xNt(p, X) < xNit(p,Y).
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Proof. Set A= x(p,Y) and k = xNt(p,Y); we may assume A > w by Theorem 2.5.
By Lemma 5.3, we may choose a local (A, k)-splitter A at pin Y. For each U € A,
choose an open subset f(U) of X such that f(U)NY = U. Set B = f[A]. Then
|B| = X because f is bijective. Suppose C € [B]* and p is in the interior of (C
with respect to X. Then p is in the interior of ¥ N (| C with respect to Y, in
contradiction how we chose A. Thus, B is a local (A, k)-splitter at p in X. By
Lemma 5.3, xNt(p, X) < k. O

Definition 5.15. For all infinite cardinals &, let u(x) denote the space of uniform
ultrafilters on .

Theorem 5.16. For each k > w, there exists p € u(k) such that xNt(p,u(k)) = w
and x(p,u(k)) = 2".

Proof. Generalizing an argument of Isbell [12] about Sw, let A be an independent
family of subsets of k of size 2%. Set B = Upca. {2 € £ : Vy € F [z\y| < x}. Since
A is independent, we may extend A to an ultrafilter p on & such that pnB = (). For
eachz C k,set 2* = {q € u(k) : © € ¢}. Then {z* : x € A} is alocal (27, w)-splitter
at p. Since x(p,u(x)) < 2%, it follows from Lemma 5.3 that xN¢(p, u(x)) = w and
x(p; u(k)) = 2% O

Theorem 5.17. Suppose k > w and X is a space such that x(X) = 2 and u(k)
embeds in X. Then there is an w°P-like local base at some point in X. Hence,
XNt(X) =w if X is homogeneous.

Proof. Let j embed u(k) into X. By Theorem 5.16, there exists p € u(x) such that
XNt(p,u(k)) = w and x(p,u(k)) = 2". By Lemma 5.14, xNt(j(p), X) = w. O

Theorem 5.18. Suppose p is a point in a dense subspace Y of a T3 space X. Then
xNt(p, X) > xNt(p,Y).

Proof. Set k = xNt(p,Y) and let A be a k°P-like local base at p in X. By
Lemma 2.21, we may assume A consists only of regular open sets. Set B =
{UNY :U € A}. Given any U,V € A such that U € V, we have U \ V # (;
whence, UNY \ 'V # (); whence, UNY Z V NY. Therefore, B is k°P-like; hence,
xNt(p,Y) < xNt(p, X). O

Example 5.19. Consider the sequential fan Y with w-many spines. More explicitly,
Y is the space w? U {p} obtained by taking w x (w + 1) and collapsing the subspace
w x {w} to a point p. It is easily checked that Y is T3 5. Choose a compactification
X of Y. Then ¢(X) = ¢(Y) = w and X is not homogeneous because it has isolated
points. We will show yNt(p, X) > wy, thereby demonstrating that homogeneity
cannot be removed from the hypothesis of Theorem 1.7. It suffices to show that
xNt(p,Y) > wy, for we can then apply Theorem 5.18. Given f € w®, set Uy =
{pru{(m,n) € w? :n > f(m)}. Set A = {Us: f € w”}, which is a local base
at p in Y. Suppose B C A and B is a local base at p. Then it suffices to show
that B is not w°P-like. By an easy diagonalization argument, no local base at p is
countable. Choose By € [A]“*. Given n < w, B,, € [B]“*, and Uy,,..., Uy, , € B,
choose By, 41 € [B,]** such that g(n) = h(n) for all Uy, U, € B,4+1. Then choose
Uy, € Bnt1 \{Usy,..., Uy, ,}. For each n < w, set g(n) = max{fo(n),..., fu(n)}
Then Uy C Uy, for all n < w; hence, B is not w®P-like.
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