
ON THE STRONG FREESE-NATION PROPERTY

DAVID MILOVICH

Abstract. We show that there is a boolean algebra that has the Freese-
Nation property (FN) but not the strong Freese-Nation property (SFN), thus

answering a question of Heindorf and Shapiro. Along the way, we produce some

new characterizations of the FN and SFN in terms of sequences of elementary
submodels.

1. The Freese-Nation property and friends

Definition 1.1.

• Given a poset P and a map f from P to the power set of P , we say that f
is interpolating if, for all pairs x ≤P y, there exists z ∈ [x, y] ∩ f(x) ∩ f(y).
• We say that poset P has the Freese-Nation property (FN) if there is an

interpolating map from P to [P ]<ℵ0 , the set of finite subsets of P . Such a
map is called an FN map.

When a P is also a boolean algebra, the FN can be understood as an abstrac-
tion of the Interpolation Theorem of propositional logic, which states that if the
implication ϕ → ψ is tautological for two propositions ϕ and ψ, then there is a
proposition χ such that ϕ → χ and χ → ψ are tautological and the propositional
variables of χ are common to ϕ and ψ. An easy consequence of the Interpolation
Theorem is that free boolean algebras have the FN.

The FN is named after Freese and Nation [2], who introduced it in 1978 as part
of a characterization of projective lattices. In particular, every projective lattice has
the FN (but the converse was already known to be false, even for finite lattices).
Since the morphisms in the category of lattices and lattice homomorphisms are
epimorphisms if and only if they are surjective, a lattice is projective if and only
if it is a retract of a free lattice. Likewise, a boolean algebra is projective if and
only if it is a retract of a free boolean algebra. The Stone duals of the projective
boolean algebras are exactly the Dugundji spaces, i.e., the continuous retracts of
powers of 2.

The Stone duals of the boolean algebras with the FN were elegantly characterized
in two ways by Ščepin [10, 11], as the existence of a distance function between points
and regular closed sets and as the existence of a rich family of open quotient maps.
Succinctly, a compact Hausdorff space is “k-metrizable” if and only if it is “openly
generated;” a boolean space is openly generated if and only if its clopen algebra
has the FN. Ščepin also proved that every Dugundji space is openly generated, that
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the Vietoris hyperspace operation preserves open generation, and that every openly
generated boolean space of weight at most ℵ1 is Dugundji. However, Shapiro [9]
proved that the Vietoris hyperspace of 2κ is not a continuous image of a power
of 2 if κ ≥ ℵ2. Thus, for boolean algebras up to size ℵ1, the FN is equivalent to
projectivity, while for boolean algebras in general, projectively strictly implies the
FN.

Fuchino translated Ščepin’s notion of openly generated into the language of ele-
mentary substructures in an appendix to [4]. Before we can state this characteri-
zation, we need a few definitions.

Definition 1.2.

• If P is a poset, S is a set, and p ∈ P , then, when they exist, let
– πS+(p) = min{q ∈ P ∩ S : q ≥ p} and

– πS−(p) = max{q ∈ P ∩ S : q ≤ p}.
• Given a poset P and Q ⊆ P , we say that Q is a relatively complete suborder

of P if, for all p ∈ P , πQ+(p), πQ−(p) exist.
• Given boolean algebras A and B, we write A ≤ B to indicate that A is a

subalgebra of B.
• If B is a boolean algebra, A ≤ B, and A is a relatively complete suborder

of B, then we write A ≤rc B.
• If ψ : A → B is a boolean homomorphism, we say that ψ is relatively

complete if ψ[A] ≤rc B.

Note that the topological dual of a relatively complete boolean homomorphism
is an open map between two boolean spaces.

Definition 1.3.

• Given two sets P and Q, we write P ≺ Q if (P,∈) is an elementary sub-
structure of (Q,∈).
• Given a cardinal µ, let H(µ) denote the set of all sets with transitive closure

smaller than µ.

Given a boolean algebra A = (A, 0, 1,∧,∨,−), we will abuse notation by using
A to denote both A and A. In particular, when we write A ∈ M for some set M ,
we mean A ∈M .

Theorem 1.1 (Fuchino). Let A be a boolean algebra and let µ be a regular un-
countable cardinal such that A ∈ H(µ). The following are then equivalent.

(1) A has the FN.
(2) A ∩M ≤rc A for all countable M satisfying A ∈M ≺ H(µ).
(3) A ∩M ≤rc A for all M satisfying A ∈M ≺ H(µ).

If we weaken the definition of FN map to allow as outputs countable sets instead
of merely finite sets, then we obtain the weak Freese-Nation property (WFN), which
was initially investigated in topological terms by Ščepin [11] and later systematically
studied in Heindorf and Shapiro’s 1994 book Nearly Projective Boolean Algebras [4].
For our purposes, their most interesting result about the WFN is a characteriza-
tion of it as the existence of a rich family of commuting subalgebras. Elementary
substructure characterizations analogous to (2) and (3) from the previous theorem
were proved by Fuchino, Koppelberg, and Shelah in [3] and by the author in [8],
respectively.
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Definition 1.4.

• Given a poset P and A,B ⊆ P , we say that A and B commute, writing
A |̂ B, if, for all pairs (x, y) ∈ A × B, if x ≤ y, then [x, y] ∩ A ∩ B is
nonempty, and if y ≤ x, then [y, x] ∩A ∩B is nonempty.
• Given a poset P and Q ⊆ P , we say that Q ⊆σ P if, for all p ∈ P , there

exist countable sets L(p), U(p) ⊆ Q such that
– {q ∈ Q : q ≤ p} =

⋃
r∈L(p){q ∈ Q : q ≤ r} and

– {q ∈ Q : q ≥ p} =
⋃
r∈U(p){q ∈ Q : q ≥ r}.

Note that if A and B are subalgebras of a boolean algebra C, then A |̂ B if
and only if, for all ultrafilters U of A and V of B, if U ∩ B = V ∩ A, then U ∪ V
extends to an ultrafilter of C.

Theorem 1.2. Let A be a boolean algebra and let µ be a regular uncountable car-
dinal such that A ∈ H(µ). The following are then equivalent.

(1) A has the WFN, i.e., there is an interpolating map from A to [A]<ℵ1 .
(2) (Fuchino, Koppelberg, Shelah) A ∩M ⊆σ A for all M satisfying A ∈M ≺

H(µ) and |M | = ω1 ⊆M .
(3) A ∩M ⊆σ A for all M satisfying A ∈M ≺ H(µ) and ω1 ⊆M .
(4) (Ščepin, Heindorf, Shapiro) There is a cofinal family C of countable subal-

gebras of A such that F |̂ G for all F,G ∈ C.

In [4], Heindorf and Shapiro defined the natural analog of (4) for the FN to be
the strong Freese-Nation property (SFN).

Definition 1.5. A boolean algebra has the SFN if and only if it has a pairwise
commuting cofinal family of finite subalgebras.

Also in [4], Heindorf and Shapiro showed that projectivity implies the SFN im-
plies the FN. Hence, the three properties are equivalent for boolean algebras of size
at most ℵ1. They further showed that the symmetric square and exponential oper-
ations preserve the SFN; Ščepin had already shown the same for the FN [10]. On
the other hand, if κ ≥ ℵ2, then the exponential [9] and symmetric square [11] of a
free boolean algebra of size κ are not projective. Thus, the two most natural exam-
ples of non-projective boolean algebras with the FN also have the SFN. Naturally,
Heindorf and Shapiro posed the question of whether the SFN is actually equivalent
to the FN. Twenty years later, there appears to have been no subsequent published
work on the SFN. The primary motivation of this work is to answer Heindorf and
Shapiro’s question.

Theorem 1.3. There is a boolean algebra of size ℵ2 that has the FN but not the
SFN.

To prove the above, we require new characterizations of the FN and SFN in
terms of “retrospective” sequences of countable elementary submodels, as we shall
explain shortly. We expect that the techniques we use here for separating the FN
and SFN will see wider application in the future, and have stated many lemmas in
anticipating generality.

For additional background information about the classes of boolean algebras
defined by the SFN, FN, WFN, and projectivity, we refer the reader to [4].
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2. Retrospective sequences of elementary substructures

Our proof of Theorem 1.3 uses long λ-approximation sequences, which one can
think of as a poor man’s higher-gap morasses, available in ZFC. These sequences
were introduced in [7] as a more flexible version of Davies’ trees of substructures [1].
Davies used such a tree to prove that the plane is a union of countably many rotated
graphs of functions; Jackson and Mauldin [5] used such a tree to prove that there
exists a subset of the plane intersecting every isometric copy of Z2 at exactly one
point. The main application of long λ-approximation sequences in [7] was to prove
that, for a class of topological spaces that includes every compact group, every
topological base of a space contains a base of the same space which is upper finite
with respect to inclusion.

Definition 2.1.

• Call a sequence of sets (Ai)i∈I retrospective if I is an ordinal and, for all
i ∈ I, the sequence (Aj)j<i is an element of Ai.
• Given µ a regular uncountable cardinal and λ a regular uncountable cardi-

nal at most µ, call a set M λ-approximating if |M | < λ, M ∩ λ ∈ λ, and
M ≺ H(µ).
• Given µ and λ as above, and η an ordinal at most µ, a transfinite sequence

(Mi)i<η is called a long λ-approximation sequence if it is retrospective and
Mi is λ-approximating for all i < η.

(In Definition 3.16 of [7], it was required of long λ-approximation sequences that
also |Mi| ⊆ Mi and λ ∈ Mi. Here, we do not require |Mi| ⊆ Mi because it is not
needed for any applications (so far). We do not require λ ∈Mi for the same reason,
and because if λ ≤ i < η, then λ is definable in Mi as supj<i min(i \Mj).)

The requirement Mi ∩λ ∈ λ is succinct but perhaps obscures its intended appli-
cation, which is that for all A ∈Mi, if |A| < λ, then A ⊆Mi. In particular, if i < λ,
then

⋃
j<iMj ⊆ Mi. Also notice that the requirement Mi ∩ λ ∈ λ is redundant if

λ = ω1.

Lemma 2.1. Given regular uncountable cardinals λ ≤ µ, A ∈ [H(µ)]<λ, η < µ,
and (Mi)i<η a long λ-approximation sequence, there exists Mη such that A ⊆ Mη

and (Mi)i<η+1 is a long λ-approximation sequence.

Proof. Let B = A∪{(Mi)i<η} and choose Mη =
⋃
n<ω Nn where B ⊆ N0, |Nn| < λ,

Nn ≺ H(µ), and Nn ∪ sup(λ ∩Nn) ⊆ Nn+1 for all n. �

Lemma 2.2. Given (Mi)i<η as in the above definition and α, β < η, the following
are equivalent.

(1) α ∈ β ∩Mβ

(2) Mα ∈Mβ

(3) Mα (Mβ

Proof. Given (1), we have (2) because Mα is definable from α and (Mγ)γ<β . Given
(2), we have Mα ⊆Mβ because |Mα| ∈Mβ ∩ λ ∈ λ; we also have Mα ∈Mβ \Mα.
Given (3), we have α 6= β; we also have α ∈ Mβ because α is definable in Mα

from (Mγ)γ<α; we also have α ≤ β because otherwise Mα ⊆
⋃
γ<αMγ , which is

impossible because H(µ) 6⊆
⋃
γ<αMγ and

⋃
γ<αMγ ∈Mα ≺ H(µ). �

Lemma 2.3. If S ∈ M0 and (Mi)i<|S| is a long λ-approximation sequence, then
S ⊆

⋃
i<|S|Mi.
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Proof. Some f ∈ M0 is a surjection from |S| to S. By Lemma 2.2, M0 ( Mα for
all α > 0, so f(α) ∈Mα for all α < |S|. �

Definition 2.2. Given an ordinal α and an infinite cardinal λ, let the λ-truncated
cardinal normal form of α denote the unique polynomial

ωβ0
γ0 + · · ·+ ωβm−1

γm−1 + γm

equal to α and satisfying ωβ0
> · · · > ωβm−1

≥ λ, γi ∈ [1, ω+
βi

) for all i < m, and

γm < λ. For each i < m, let ∂iα denote ωβiγi and let bαci+1 denote
∑
j<i+1 ∂jα;

let bαc0 = 0 and bαcm+1 = α. Let k(α) denote m if γm = 0; m+ 1 if γm > 0.

Observe that bαci is {α}-definable in H(|α|+) for each i ≤ k(α). Hence, if
(Mβ)β<α is a long λ-approximation sequence, ζ + η ≤ α, and bζ + βck(ζ) = ζ for

all β < η, then, for each β < η, (Mζ+γ)γ<β is definable in Mζ+β . Thus, such an
(Mζ+β)β<η is a long λ-approximation sequence. We will use this last observation
to prove the fundamental lemma for long λ-approximation sequences, which is the
existence of a definable finite partition into directed segments.

Lemma 2.4. Given a long λ-approximation sequence (Mβ)β<α, the sets {Mβ :
bαci ≤ β < bαci+1} are directed with respect to inclusion for all i < k(α).

Proof. A proof is implicit in the proof of Lemma 3.17 of [7], but we will provide a
shorter explicit proof here. Proceed by induction on α. If α ≤ λ, then {Mβ : β < α}
is a chain. If k(α) ≥ 2, then each {Mβ : bαci ≤ β < bαci+1} is directed by our
induction hypothesis applied to (Mbαci+β)β<∂iα. So, suppose that α > λ and

k(α) = 1. If α = sup{β < α : k(β) = 1}, then {Mγ : γ < α} is directed because
each {Mγ : γ < β} is directed by induction. So, suppose that α = κ(γ + 1) where
κ is a cardinal and 1 ≤ γ < κ+. Set β = κγ and S = {Mδ : δ < β}. By Lemma 2.3
applied to S and (Mβ+δ)δ<κ, we have S ⊂

⋃
δ<κMβ+δ. Hence, by Lemma 2.2, for

every ε < β there exists δ < κ such that Mε ( Mβ+δ. Therefore, {Mδ : δ < α}
is directed because its cofinal subset {Mβ+δ : δ < κ} is directed by our inductive
hypothesis applied to (Mβ+δ)δ<κ. �

If n < ω and (Mα)α<λ+n is a long λ-approximation sequence, then, since k(α) ≤
n+ 1 for all α < λ+n, we can sometimes use (Mα)α<λ+n like a (λ, n)-morass, in the
weak sense that we can build a λ+n-sized object as a direct limit of small (that is,
(< λ)-sized) pieces while locally only having to fit together at most n+1 small direct
limits of these small pieces. Of course, we lack the additional coherence properties
of a (λ, n)-morass, which require assumptions beyond ZFC. However, the citations
given at the beginning of this section demonstrate that long λ-approximation se-
quence are useful even without such coherence. We will find them useful again in
this paper. See also [13] for very recent additional applications, noting that there
long ω1-approximation sequences are called Davies sequences.

We finish this section with some additional lemmas about long λ-approximation
sequences that we will need later.

Definition 2.3. Given a long λ-approximation sequence (Mβ)β<η, α ≤ η, and
i < k(α), let

• Ii(α) = [bαci , bαci+1);
• I ′i(α) = Ii(α) ∩Mα;
• Ii(α) = {Mβ : β ∈ Ii(α)};
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• I ′i(α) = {Mβ : β ∈ I ′i(α)};
• Mα,i =

⋃
Ii(α);

• M ′α,i = Mα,i ∩Mα.

Lemma 2.5. If (Mα)α<η is a long λ-approximation sequence, i < k(η), and ∂iη ≥
λ, then |Mη,i| = ∂iη ⊆Mη,i.

Proof. Since (Mbηci+α)α<∂iη is a long λ-approximation sequence, we have ∂iη ⊆
Mη,i. Since each Mbηci+α is smaller than λ, we have ∂iη = |Mη,i|. �

Lemma 2.6. If (Mα)α<η is a long λ-approximation sequence and S ∈ M0, then,
for all α < η, S ∈Mα and S ∈Mα,i for all i < k(α).

Proof. By Lemma 2.2, M0 ⊆Mα for all α < η. Hence, also M0 ⊆
⋃
β∈Ii(α)Mβ for

all α < η and i < k(α). �

Definition 2.4. Because Ii(α) and I ′i(α) may not be downward closed in {Mβ :
β < η} with respect to inclusion, we also define

• Ji(α) =
⋃
{Mβ ∩ (β + 1) : β ∈ Ii(α)};

• J ′i(α) =
⋃
{Mβ ∩ (β + 1) : β ∈ I ′i(α)};

• Ji(α) = {Mβ : β ∈ Ji(α)};
• J ′i (α) = {Mβ : β ∈ J ′i(α)}.

By Lemma 2.2, Ji(α) and J ′i (α) are downward closed in {Mβ : β < η} with
respect to inclusion. Also observe that, by elementarity and retrospectiveness,

• I ′i(α) = Ii(α) ∩Mα;
• J ′i(α) = Ji(α) ∩Mα;
• J ′i (α) = Ji(α) ∩Mα.

Lemma 2.7. Given a long λ-approximation sequence (Mβ)β<α+1 and i < k(α),
Ii(α) and I ′i(α) are directed with respect to inclusion with respective unions Mα,i

and M ′α,i. Moreover, Ii(α) is cofinal in Ji(α) and I ′i(α) is cofinal in J ′i (α).

Proof. By Lemma 2.4, Ii(α) is directed; by definition, its union is Mα,i. Since
(Mβ : β ∈ Ii(α)) ∈Mα ≺ H(µ), the set Ii(α)∩Mα is directed with unionMα,i∩Mα.
Having thus proved the first sentence of the lemma, the second sentence immediately
follows from Lemma 2.2. �

Lemma 2.8. Given a long λ-approximation sequence (Mβ)β<α+1, we have

•
⋃
β<αMβ =

⋃
i<k(α)Mα,i,

• Mα ∩
⋃
β<αMβ =

⋃
i<k(α)M

′
α,i, and

• Mα,i,M
′
α,i ≺ H(µ) for all i < k(α).

Proof. Clearly, α =
⋃
i<k(α) Ii(α); the two equations of the lemma immediately

follow. By Lemmas 2.4 and 2.7, each Mα,i and each M ′α,i is a directed union of
elementary substructures of H(µ), so Mα,i,M

′
α,i ≺ H(µ). �

Lemma 2.9. Given a long λ-approximation sequence (Mβ)β<α+1 and i < k(α),
we have I ′i(α) 6⊆

⋃
j 6=i Jj(α).

Proof. Since λ is regular and |Ij(α)| > |Ik(α)| for all j < k < k(α), we have

|Ii(α)| >
∑
i<j<k(α) |Jj(α)|. Let β = min

(
Ii(α) \

⋃
i<j<k(α) Jj(α)

)
, which is de-

finable in Mα and thus in I ′i(α) \
⋃
i<j<k(α) Jj(α). Since β ≥ bαci, we also have

β 6∈
⋃
j<i Jj(α). �



ON THE STRONG FREESE-NATION PROPERTY 7

Definition 2.5. Given a long λ-approximation sequence (Mβ)β<α+1 and nonempty
s ⊆ k(α), let

• Ks(α) =
⋂
i∈s Ji(α);

• K ′s(α) =
⋂
i∈s J

′
i(α);

• Ks(α) =
⋂
i∈s Ji(α);

• K′s(α) =
⋂
i∈s J ′i (α).

Observe that, by elementarity and retrospectiveness,

• K ′s(α) = Ks(α) ∩Mα;
• K′s(α) = Ks(α) ∩Mα;
• Ks(α) = {Mβ : β ∈ Ks(α)};
• K′s(α) = {Mβ : β ∈ K ′s(α)}.

Lemma 2.10. Given a long λ-approximation sequence (Mβ)β<α+1 and nonempty
s ⊆ k(α), the sets Ks(α) and K′s(α) are directed with respect to inclusion.

Proof. Since Ks(α) ∈ Mα ≺ H(µ), it suffices to show that Ks(α) is directed.
Proceed by induction on |s|. Case |s| = 1 follows from Lemmas 2.4 and 2.7. As-
suming |s| > 1, let i = max(s) and t = s \ {i}. Suppose that β, γ ∈ Ks(α).
Since β, γ ∈ Ji(α), we have Mβ ,Mγ ⊆ Mδ for some δ ∈ Ii(α). By definition,
Kt(α) < Ii(α); hence, β, γ < δ; hence, Mβ ,Mγ ∈ Mδ by Lemma 2.2. Since
δ ∈ Ii(α), we have Ij(δ) = Ij(α) for all j < i. Therefore, Mδ knows that Kt(α) is
directed and that Mβ ,Mγ ∈ Kt(α). Hence, there exists Mε ∈Mδ ∩Kt(α) such that
Mβ ,Mγ ⊆ Mε. By Lemma 2.2, ε ∈ Mδ ∩ δ; hence, ε ∈ Ji(α). Thus, Mβ and Mγ

have a common superset Mε in Kt(α) ∩ Ji(α), as desired. �

Definition 2.6. Given a long λ-approximation sequence (Mβ)β<η and x ∈
⋃
β<ηMβ ,

let the M -rank of x, written ρ(x,M) or just ρ(x), denote the least α < η such that
x ∈Mα.

Lemma 2.11. Given a long λ-approximation sequence (Mβ)β<α+1 and x ∈ Mα,
we have Mρ(x) ⊆Mα.

Proof. Supposing ρ(x) < α, we have Mρ(x) definable in Mα from x and (Mβ)β<α.
By Lemma 2.2, we then have Mρ(x) (Mα. �

Lemma 2.12. For every long λ-approximation sequence (Mβ)β<η and ∅ 6= E ⊆ η,
there exists D ⊆ η such that

⋂
α∈EMα =

⋃
α∈DMα and {Mα : α ∈ D} is directed.

Proof. Let N =
⋂
α∈EMα. By Lemma 2.11, N =

⋃
{Mα : α < η and Mα ⊆ N}.

Suppose that α, β < η and Mα,Mβ ( N . It suffices to find γ < η such that
Mα ∪Mβ ⊆ Mγ ⊆ N . First, note that Mα,Mβ ∈ Mi for all i ∈ E by Lemma 2.2.
Since E is nonempty, we may define γ = ρ({Mα,Mβ}). We then have Mα,Mβ (
Mγ (again by Lemma 2.2). Fix i ∈ E; it suffices to show that Mγ ⊆ Mi. By
definition of ρ, γ ≤ i. If γ < i, then Mγ (Mi because Mγ is definable in Mi. �

Lemma 2.13. For every long λ-approximation sequence (Mα)α<η and E ⊆ η, if
{Mα : α ∈ E} is directed, then there exists i < k(η) such that E ⊆ Ji(η).

Proof. Let E = {Mα : α ∈ E} and Ei = {Mα : α ∈ E ∩ Ii(η)} for each i < k(η).
Since E is directed and {Ei : i < k(η)} is a finite partition of E , there must exist i
such that Ei is cofinal in E . By Lemma 2.2, E ⊆ Ji(η) for any such i. �
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3. Retrospective characterizations of the FN and SFN

Lemma 3.1. Given a poset C and A,B ⊆ C such that A |̂ B and A ∩ B is a
relatively complete suborder of A, the functions πB+ � A and πB− � A respectively

equal πA∩B+ � A and πA∩B− � A.

Proof. Given a ∈ A and b ∈ B such that a ≤ b, we have some c ∈ [a, b] ∩ A ∩ B;
hence, πA∩B+ (a) ≤ c ≤ b; hence, πB+(a) exists and equals πA∩B+ (a). Likewise, πB−(a)

exists and equals πA∩B− (a). �

Proposition 3.1. If C is a poset, A,B ⊆ P(C), and A |̂ B for all (A,B) ∈ A×B,
then

⋃
A |̂

⋃
B.

Proposition 3.2. Given a poset C and A ⊆ B ⊆ C, if A is a relatively complete
suborder of C, then A is relatively complete suborder of B.

Definition 3.1. Given a boolean algebra A, a long λ-approximation sequence
(Mβ)β<η, x ∈ A ∩

⋃
β<ηMβ , and i < k(ρ(x)), let πi+(x,M) or just πi+(x) denote

π
Mρ(x),i

+ (x) if it exists; likewise let πi−(x,M) or just πi−(x) denote π
Mρ(x),i

− (x) if it
exists.

Theorem 3.1. Let A be a boolean algebra. The following are equivalent.

(1) A has the FN.
(2) For every long ω1-approximation sequence (Mα)α<|A| with A ∈ M0, for

every x ∈ A, ρ(x) exists and, for every i < k(ρ(x)), πi+(x) and πi−(x)
exist.

(3) There exists a long ω1-approximation sequence (Mα)α<|A| such that, for

every x ∈ A, ρ(x) exists and, for every i < k(ρ(x)), πi+(x) and πi−(x)
exist.

(4) For every long ω1-approximation sequence (Mα)α<|A| with A ∈ M0, for
every α < |A|, and for every i < k(α), we have A ∩Mα |̂ A ∩Mα,i and
A ∩M ′α,i ≤rc A ∩Mα.

(5) There exists a long ω1-approximation sequence (Mα)α<|A| such that A ⊆⋃
α<|A|Mα and, for all α < |A| and i < k(α), we have A ∩ Mα ≤ A,

A ∩Mα |̂ A ∩Mα,i, and A ∩M ′α,i ≤rc A ∩Mα.
(6) For every long ω1-approximation sequence (Mα)α<|A| with A ∈ M0, for

every α, β < |A|, and for every i < k(α), we have A ∩Mα |̂ A ∩Mβ and
A ∩M ′α,i ≤rc A ∩Mα.

(7) There exists a long ω1-approximation sequence (Mα)α<|A| such that A ⊆⋃
α<|A|Mα and, for all α, β < |A| and i < k(α), we have A ∩Mα ≤ A,

A ∩Mα |̂ A ∩Mβ, and A ∩M ′α,i ≤rc A ∩Mα.

Proof. (1)⇒(2). Fix M as in the hypothesis of (2). For each x ∈ A, ρ(x) exists
by Lemma 2.3. Each Mρ(x),i is an elementary substructure of H(µ) by Lemma 2.8.
Also, A ∈Mρ(x),i by Lemma 2.6. Hence, A∩Mρ(x),i ≤rc A by Theorem 1.1. Hence,

πi+(x) and πi−(x) exist.
(1)⇒(6). Fix M as in the hypothesis of (6). By Lemma 2.6, we have A ∈ M ′α,i

for all α < |A| and i < k(α). Hence, by Lemma 2.8 and Theorem 1.1, we have
A ∩M ′α,i ≤rc A. Hence, A ∩M ′α,i ≤rc A ∩Mα by Proposition 3.2. Finally, given
α, β < |A|, choose an FN map f ∈ M0. By Lemma 2.6, Mα and Mβ are f -closed;
hence, A ∩Mα |̂ A ∩Mβ .
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(2)⇒(3), (4)⇒(5), and (6)⇒(7). Choose µ large enough that A ∈ H(µ). By
Lemma 2.1, there is a long ω1-approximation sequence (Mα)α<|A| with A ∈ M0.
By Lemma 2.6, we have A ∩Mα ≤ A for all α < |A|. By Lemma 2.3, we have
A ⊆

⋃
α<|A|Mα.

(6)⇒(4) and (7)⇒(5). Apply Proposition 3.1.

(5)⇒(3). By Lemma 3.1, π
Mα,i

+ and π
Mα,i

− are well-defined on all of A ∩Mα.
(3)⇒(1). This is implicit in the author’s proof of Corollary 3.4 of [8], but we

include a proof here for completeness. For each α < |A|, choose a well-ordering vα
of {x ∈ A : ρ(x) = α} with length at most ω. Set v =

⋃
α<|A|vα. Recursively

define f : A→ [A]<ℵ0 by

f(x) = {y : y v x} ∪

 ⋃
i<k(ρ(x))

(f(πi+(x)) ∪ f(πi−(x)))

 .

Suppose x ≤A y. We verify that S = [x, y] ∩ f(x) ∩ f(y) is nonempty by induction
on max{ρ(x), ρ(y)}. If ρ(x) = ρ(y), then x v y, in which case x ∈ S, or y v x,
in which case y ∈ S. If ρ(x) < ρ(y), then x ∈ Mρ(y),i for some i, in which case

[x, πi−(y)] ∩ f(x) ∩ f(πi−(y)) is a nonempty subset of S. If ρ(y) < ρ(x), then

y ∈ Mρ(x),i for some i, in which case [πi+(x), y] ∩ f(πi+(x)) ∩ f(y) is a nonempty
subset of S. �

Lemma 3.2. Given boolean algebras A ≤ C and B ≤rc C, the following are equiv-
alent.

(1) A |̂ B.
(2) πB+ [A] ⊆ A.

(3) πB− [A] ⊆ A.

Proof. (1)⇒(2). Given a ∈ A, we have a ≤ πB+(a) ∈ B, so there exists b ∈
[a, πB+(a)] ∩A ∩B. However, by definition of πB+ , we must have have b = πB+(a).

(2)⇒(1). Given a ∈ A and b ∈ B, if a ≤ b, then πB+(a) ∈ [a, b] ∩A ∩B; if b ≤ a,

then πB−(a) ∈ [b, a] ∩B and πB−(a) = −πB+(−a) ∈ A.

(2)⇔(3). πB−(•) = −πB+(−•) and πB+(•) = −πB−(−•). �

Definition 3.2.

• A partial algebra is a pair of the form (U,F) where U is a set (called the
universe of (U,F)) and F is a set of functions such that, for each f ∈ F ,
there exists n < ω such that dom(f) ⊆ An. If every dom(f) is of the form
An, then we say that (U,F) is an algebra.

• A partial algebra (U,F) is a subalgebra of a partial algebra (V,G) if U ⊆ V ,
F = {g � U<ω : g ∈ G}, and

⋃
g∈G g[U<ω] ⊆ U .

• A partial algebra (U,F) is locally finite if, for every finite A ⊆ U , there
exists a finite B ⊆ U such that A ⊆ B and (B, {f � B : f ∈ F}) is a
subalgebra of (U,F).

• We say that a partial algebra (V,G) expands a partial algebra (U,F) if
U = V and F ⊆ G.

• Given a long λ-approximation sequence (Mi)i<η and a boolean algebra
A, let the M -expansion of A, written A[M ], denote the expansion of A
resulting from adding the functions in the set

⋃
i<ω{πi+, πi−}.
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Theorem 3.2. If A is a boolean algebra with the SFN, (Mα)α<|A| is a long ω1-
approximation sequence, and A ∈M0, then A[M ] is locally finite.

Proof. Let C ∈M0 be a pairwise commuting cofinal family of finite subalgebras of
A. It suffices to show that, for every F ∈ C, (an expansion of) F is a subalgebra of
A[M ]. Let x ∈ F ∈ C, α = ρ(x), and i < k(α). By Theorem 3.1, πi±(x) are well-
defined. By Lemmas 2.6 and 2.8, C ∈Mα,i ≺ H(µ), so we may choose G ∈Mα,i∩C
such that πi±(x) ∈ G. Since G ∈Mα,i and G is finite, G ⊆Mα,i; hence, πi±(x) ∈ G
implies πi±(x) = πG±(x). By Lemma 3.2, πG±(x) ∈ F . �

The proof of Theorem 3.2 implicitly shows much more. Indeed, we can expand
A[M ] by adding every function of the form πN± where C ∈ N ≺ H(µ), yet still
obtain a locally finite partial algebra. However, local finiteness of A[M ] is strong
enough for our purposes. As we shall show in Section 5, it is strictly stronger than
the FN.

Question 3.1. If A is a boolean algebra with the FN, (Mα)α<|A| is a long ω1-
approximation sequence, A ∈M0, and A[M ] is locally finite, then does A have the
SFN?

We do not know the answer to the above question. However, we will point out
that if we broaden our consideration to arbitrary expansions of boolean algebras,
then characterizations of the FN and SFN are apparently easier to obtain.

Definition 3.3. Call an FN map f transitive if f(y) ⊆ f(x) for all x ∈ dom(f)
and y ∈ f(x).

Lemma 3.3. If A has the FN, then A has a transitive FN map.

Proof. Construct an FN map f as in the proof of (4)⇒(1) in Theorem 3.1, except
use the following recursive definition of f :

f(x) = {x} ∪

(⋃
y@x

f(y)

)
∪

 ⋃
i<k(ρ(x))

(f(πi+(x)) ∪ f(πi−(x)))

 .

The proof of (4)⇒(1) in Theorem 3.1 still works verbatim, but now f is also tran-
sitive. �

Lemma 3.4. If A is a boolean algebra, B is a pairwise commuting family of rela-
tively complete subalgebras of A, and B0, B1 ∈ B, then B ∪ {B0 ∩ B1} is pairwise
commuting.

Proof. Let C ∈ B. Suppose that x ∈ B0 ∩ B1, y ∈ C, and x ≤ y. By symmetry, it
suffices to show that [x, y] ∩ B0 ∩ B1 ∩ C is nonempty. Let z = πC+(x), which is in
[x, y] ∩ C. By Lemma 3.2, z is also in each of B0 and B1. �

Definition 3.4.

• Given a partial algebra B, call a subalgebra C of B cyclic if, for some
x ∈ C, C is the smallest subalgebra of B that contains {x}.

• Given a boolean algebra A, we say that a partial algebra B is strongly A-
commuting if B has the same universe as A, B is locally finite, and, for all
cyclic subalgebras F and G of B, we have F |̂ G as suborders of (A,≤A).

Theorem 3.3. Given a boolean algebra A,
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• A has the FN if and only if there is a strongly A-commuting algebra;
• A has the SFN if and only if there is a strongly A-commuting algebra ex-

panding A.

Moreover, the above is true if we replace “strongly A-commuting algebra” with
“strongly A-commuting partial algebra.”

Proof. If f is a transitive FN map on A, then, letting (fn(x))n<ω surject from ω to
f(x) for each x ∈ A, the algebra B with universe A and set of functions {fn : n < ω}
is strongly A-commuting.

Conversely, given a strongly A-commuting partial algebra B, construct an FN
map f by letting f(x) be the minimal subalgebra of B containing {x}, for each
x ∈ A.

Suppose C is a pairwise commuting cofinal family of finite subalgebras of A. By
Lemma 3.4, we may assume that C is closed with respect to pairwise intersection.
For each x ∈ A, let C(x) denote the smallest element of C that contains {x}; let
(fn(x))n<ω surject from ω to C(x). The expansion of A formed by the adding the
functions from {fn : n < ω} is strongly A-commuting.

Conversely, suppose that B is a strongly A-commuting expansion of A. Let C
denote the set of finite subalgebras of B. Since B is locally finite, C is a cofinal family
of finite subalgebras of A (provided we identify each C ∈ C with the subalgebra
of A that has the same universe). Moreover, by Proposition 3.1, C is pairwise
commuting. �

Observe that adapting the proof of Lemma 3.3 to build a strongly A-commuting
expansion of A would require not only that A[M ] be locally finite, but also that
A[M ] remain locally finite after adding a partial function that maps each x ∈ A to
its immediate @-predecessor, if one exists.

We shall need the next lemmas in Section 5.

Lemma 3.5. If A ≤rc B, a ∈ A, b ∈ B, and πA+(b) = x, then πA+(a ∧ b) = a ∧ x.

Proof.

a ∧ b ≤ y ∈ A⇒ b ≤ y ∨ −a ∈ A
⇒ b ≤ x ≤ y ∨ −a
⇒ a ∧ b ≤ a ∧ x ≤ y �

Definition 3.5. Given a boolean algebra A, a long λ-approximation sequence
(Mα)α<η, and x ∈ A, let σ∅

+(x,M) = x and, for all (t0, . . . , tn) ∈ ω<ω, let

σt+(x,M) = (πtn+ ◦ π
tn−1

+ ◦ · · · ◦ πt0+ )(x,M)

if the righthand side exists. Let ς+(x,M) denote the set of all σt+(x,M) that exist.
Likewise define σt−(x,M) and ς−(x,M). We may suppress the dependence of ς±
and σt± on M when convenient.

Observe that if s is a strict initial segment of t and σt+(x) exists, then t|s| <
k(ρ(σs+(x))) and ρ(σt+(x)) < ρ(σs+(x)). Hence, by König’s Lemma, ς+(x) is finite;
likewise, ς−(x) is finite.

Lemma 3.6. Suppose we have a boolean algebra A and a long λ-approximation
sequence (Mα)α<η such that πi±(x) exist for all x ∈ A ∩

⋃
α<ηMα and all i <
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k(ρ(x)). Then, for every B ≤ A[M ] where B is of the form A∩
⋃
α∈IMα, we have

πB+(x) =
∧

(B ∩ ς+(x)) and πB−(x) =
∨

(B ∩ ς−(x)) for all x ∈ A ∩
⋃
α<ηMα.

Proof. Suppose that x ∈ A ∩
⋃
α<ηMα and x ≤ y ∈ B. By symmetry, it suf-

fices to show that xB+ ≤ y where xB+ =
∧

(B ∩ ς+(x)). Proceed by induction on
max{ρ(x), ρ(y)}. Choose α ∈ I such that y ∈ Mα. By Lemma 2.11, Mρ(y) ⊆ Mα;

hence, A ∩Mρ(y) ⊆ B. If ρ(x) = ρ(y), then x ∈ B, in which case xB+ = x ≤ y.

If ρ(x) < ρ(y), then x ∈ Mρ(y),i for some i, in which case x ≤ πi−(y) ∈ B and

ρ(πi−(y)) < ρ(y); by induction, xB+ ≤ πi−(y) ≤ y. If ρ(y) < ρ(x), then y ∈ Mρ(x),i

for some i, in which case z ≤ y and ρ(z) < ρ(x) where z = πi+(x); by induction,

zB+ ≤ y; hence, xB+ ≤ zB+ ≤ y because ς+(z) ⊆ ς+(x). �

Corollary 3.1. Suppose we have a boolean algebra A and a long λ-approximation
sequence (Mα)α<η such that ρ(x) and πi±(x) exist for all x ∈ A and all i < k(ρ(x)).
Further suppose that ν is a regular uncountable cardinal, A,M ∈ P ≺ H(ν), and
λ ∩ P ∈ λ+ 1. Then, for all x ∈ A \ P ,

πP+(x) =
∧

i<k(ρ(x,M))

πP+(πi+(x,M)) and

πP−(x) =
∨

i<k(ρ(x,M))

πP−(πi−(x,M)).

4. Embeddings and colimits

In this section, we collect some facts and specify some notation concerning vari-
ous colimits and various classes of boolean embeddings. We refer the reader to [4]
and [6] for additional background information.

Definition 4.1.

• Say that a sequence (Fi)i∈I of subalgebras of a fixed boolean algebra is
independent if, for all finite J ⊆ I and all x ∈

∏
j∈J Fj , if

∧
j∈J x(j) = 0,

then x(j) = 0 for some j ∈ J .
• Say that a sequence (xi)i∈I of elements of a fixed boolean algebra is inde-

pendent if ({xi,−xi, 0, 1})i∈I is independent.
• Say that a boolean algebra F is free if it is generated by the range of an

independent sequence of elements of F .

Fix once and for all a countably infinite free boolean algebra Frω and an inde-
pendent sequence (frn)n<ω generating Frω such that Frω and fr are definable in
H(ℵ1) without parameters. For each S ⊂ ω, let FrS denote the subalgebra of Frω
generated by {frn : n ∈ S}.

Definition 4.2.

• A boolean embedding is an injective boolean homomorphism.
• Given two boolean algebras C0 and C1, a coproduct of C0 and C1 is a

boolean algebra C0 ⊕ C1 with boolean embeddings ⊕0 : C0 → C0 ⊕ C1

and ⊕1 : C1 → C0 ⊕ C1 such that ⊕0[C0] and ⊕1[C1] are independent and⋃
i<2⊕i[Ci] generates C0⊕C1. These embeddings are called cofactor maps.

Coproducts always exist uniquely up to isomorphism.

Definition 4.3.
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• Say that a boolean embedding f : A → B is free if there is an infinite free
boolean algebra F and a coproduct A⊕F such that A⊕F = B and ⊕0 = f .
• If idA is free embedding from A to B, then we say that B is a free extension

of A and write A ≤free B.
• Given boolean algebras A ≤ B, we say that A splits in B if every ultrafilter

of A extends to at least two ultrafilters of B. We say that A splits perfectly
in B if, for all finite F ⊆ B, the subalgebra generated by A∪F splits in B.
• We say that a boolean embedding f : A → B splits perfectly if f [A] splits

perfectly in B.

Every free embedding is relatively complete and splits perfectly. Conversely, we
have Sirota’s Lemma [12], i.e., if f : A → B is relatively complete and perfectly
splitting and B is generated by f [A]∪C for some countable C, then f is free. Also
note that the classes of relatively complete, perfectly splitting, and free embeddings
are each closed with respect to composition. Moreover, for any composite boolean
embedding f ◦ g, if f is perfectly splitting, then so is f ◦ g.

Definition 4.4.

• A quotient of a boolean algebra A with respect to an ideal I is a boolean
algebra B with a surjective homomorphism f : A → B with kernel I; f is
called the quotient map and f(x) may be denoted by x/I.
• Given boolean embeddings f : C → A and g : C → B, define a pushout
A �

C
B of f and g to be a quotient of a coproduct A ⊕ B with respect to

the ideal I generated by {⊕0(f(c))∧⊕1(g(−c)) : c ∈ C}. Thus, A�
C
B is a

colimit of the diagram formed by f and g.
• Given f and g as above such that also f = g = idA∩B , let A�B more specif-

ically denote a pushout of f and g such that ⊕0(a)/I = a and ⊕1(b)/I = b
for all a ∈ A and b ∈ B.

If A and B are boolean algebras such that their intersection A∩B is also a com-
mon subalgebra, then A�B exists as above and is characterized up to isomorphism
as a boolean algebra D in which A and B are commuting subalgebras and A ∪ B
generates D.

Lemma 4.1. If A = C0 ∩ C1 and, for each i < 2, we have Ci = A ⊕ Bi with
cofactor maps ⊕0 = idA and ⊕1 = idBi , then (A,B0, B1) is independent in C0�C1

Proof. Suppose that a ∈ A, b0 ∈ B0, b1 ∈ B1, and a∧ b0 ∧ b1 = 0 in C0�C1. Then
a ∧ b0 ≤ â ≤ −b1 for some â ∈ A because C0 |̂ C1. Hence, â ∧ b1 = 0. Since
(A,B1) is independent, â = 0 or b1 = 0. If â = 0, then a ∧ b0 = 0, in which case
a = 0 or b0 = 0 because (A,B0) is independent. Thus, a = 0, b0 = 0, or b1 = 0. �

Definition 4.5. Given a (nonempty) directed set D of boolean algebras such that
A ⊆ B implies A ≤ B for all A,B ∈ D, endow the union

⋃
D of (the universes of)

the algebras in D with the unique algebraic operations that make the inclusions
(idA : A →

⋃
D)A∈D a colimit of the inclusions (idA : A → B){A⊆B}⊆D, namely,

∧⋃D =
⋃
A∈D ∧A, ∨⋃D =

⋃
A∈D ∨A, −⋃

D =
⋃
A∈D −A, 0⋃D = 0B , and 1⋃D =

1B for some B ∈ D.
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5. Proof of main theorem

By Theorem 3.2, it is sufficient to construct a boolean algebra Ω of size ℵ2 such
that Ω has the FN, but Ω[N ] is not locally finite for some long ω1-approximation
sequence (Nα)α<ω2 with Ω ∈ N0. We will construct in parallel a sequence (Aα)α<ω2

of countable boolean algebras and a long ω1-approximation sequence (Mα)α<ω2

such that, for all α < ω2, we have

Aα bMα ≺ H(ℵ2),(1)

Aα ∩
⋃
β<α

Mβ =
⋃

i<k(α)

A′α,i, and(2)

∀i < k(α) A′α,i ≤ Aα(3)

where A′α,i =
⋃
{Aβ : β ∈ J ′i(α)} and S b T means that S is a coinfinite subset of

T . Also define Aα,i =
⋃
{Aβ : β ∈ Ji(α)}.

Claim 5.1. Given A and M as above, α, β < ω2, and i < k(α), we have that

• Aα ∩Aβ = Aα ∩Mβ ,
• Aα ⊆ Aβ if Mα ⊆Mβ , and
• A′α,i = Aα ∩Aα,i.

Proof. For the first subclaim, we may assume we are not in the trivial case α = β.
Since Aβ is countable, (1) implies Aβ ⊆ Mβ . Therefore, Aα ∩ Aβ ⊆ Aα ∩Mβ . To
prove the converse inclusion, suppose x ∈ Aα ∩Mβ . If β < α, then, by (2), x ∈ Aγ
for some γ < α; we may inductively assume Aγ ∩Mβ = Aγ ∩ Aβ , in which case
x ∈ Aβ . If α < β, then ρ(x) ∈ Mβ ∩ Ij(β) ⊆ J ′j(β) for some j < k(β); hence,
by (2) and (3), x ∈ Aρ(x) ⊆ A′β,j ⊆ Aβ . Thus, Aα ∩Mβ ⊆ Aα ∩ Aβ . Therefore,
Aα ∩Aβ = Aα ∩Mβ .

We obtain the third subclaim from the first subclaim and from (3):

Aα ∩Aα,i = Aα ∩
⋃

β∈Ji(α)

Aβ = Aα ∩
⋃

β∈Ji(α)

Mβ = Aα ∩Mα ∩
⋃

β∈Ji(α)

Mβ

= Aα ∩
⋃

β∈J′i(α)

Mβ = Aα ∩
⋃

β∈J′i(α)

Aβ = Aα ∩A′α,i = A′α,i.

Also, the second subclaim holds because if δ < ω2 and Mα ⊆ Mδ, then Aα ⊆ Aδ
because Aα ∩Aδ = Aα ∩Mδ ⊇ Aα ∩Mα = Aα. �

By the above claim, since I0(ω2) is directed, letting Ω = Aω2,0 =
⋃
α<ω2

Aα, we
obtain a boolean algebra of size at most ℵ2 such that, for all α < ω2, Ω ∩Mα =
Aα ≤ Ω and, for all i < k(α), Ω ∩Mα,i = Aα,i and Ω ∩M ′α,i = A′α,i. Therefore,
by Theorem 3.1, Ω will have the FN if A′α,i ≤rc Aα and Aα |̂ Aβ as suborders of
Ω for all α, β < ω2 and i < k(α). Therefore, Ω will have the FN if we have the
following for all α < ω2.

∀i < k(α) A′α,i ≤free Aα.(4)

∀Mβ ,Mγ ∈Mα Aβ |̂ Aγ as suborders of Aα.(5)

Note that (4) implies (3).
At stage 0, let A0 = Frω ∈ M0. At nonzero stages α < ω2, select a countable

Mα ≺ H(ℵ2) such that (Aβ ,Mβ)β<α ∈Mα. If k(α) = 1, then let Aα be a coproduct
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A′α,0 ⊕ Frω such that A′α,0 ≤ Aα b Mα and Aα \ A′α,0 is disjoint from
⋃
β<αMβ .

Clearly, (1), (2), and (4) are preserved. Since J ′0(α) is directed, (5) is preserved
too.

Now suppose that k(α) = 2. Let A′α,2 =
⋂
j<2A

′
α,j . By Lemma 2.10, A′α,2 is a

directed union of common subalgebras of A′α,0 and A′α,1.

Claim 5.2. A′α,2 ≤rc A
′
α,i for each i < 2.

Proof. Fix i < 2. By Lemma 2.12, for each β ∈ J ′i(α) and j < k(β), A′α,i ∩Aβ,j =⋃
{Aγ : γ ∈ U} for some U ⊆ J ′i(α). By the inductive assumption of (5) for all

stages before α and by the directedness of {Aδ : δ ∈ J ′i(α)}, Aγ |̂ Aβ for all
γ ∈ U . Hence, by Proposition 3.1, A′α,i ∩Aβ,j |̂ Aβ . By the inductive assumption
of (4) for all stages before α, we have A′α,i ∩ Aβ,j ∩ Aβ = A′β,j ≤rc Aβ . Hence,

by Lemma 3.1, π
A′α,i∩Aβ,j
± (x) exist for all x ∈ Aβ . Therefore, applying Lemma 3.6

with A′α,i in place of A and A′α,2 in place of B, we have A′α,2 ≤rc A
′
α,i. �

Claim 5.3. A′α,2 ≤free A
′
α,i for each i < 2.

Proof. Fix i < 2. By Sirota’s Lemma and the previous claim, it suffices to show
that A′α,2 splits perfectly in A′α,i. Let U be an ultrafilter of A′α,2 and F be a
finite subset of A′α,i. Applying Lemma 2.9, there exists β ∈ I ′i(α) \ J1−i(α). Since
I ′i(α) is directed and J1−i(α) is downward closed in {Mβ : β < α}, we may choose
β ∈ I ′i(α)\J1−i(α) such that F ⊆ Aβ . By Lemmas 2.12 and 2.13, Aβ ∩A′α,2 ⊆ A′β,j
for some j < k(β). Let B ≤ Aβ denote the subalgebra generated by A′β,j ∪ F .

Extend U ∩ Aβ to an ultrafilter V of B. Since A′β,j ≤free Aβ by (4) for stage
β, B splits in Aβ . So, choose y ∈ Aβ and ultrafilters V± of Aβ that respectively
extend V ∪ {±y}. By (5) for stages before α and by Proposition 3.1, A′α,2 |̂ Aβ
as suborders of A′α,i, so both of U ∪ V± extend to ultrafilters of A′α,i. Thus, A′α,2
splits perfectly in A′α,i. �

Choose Bα = A′α,0 �A
′
α,1 such that Bα bMα and Bα \ (A′α,0 ∪A′α,1) is disjoint

from
⋃
β<αMβ .

Claim 5.4. (5) will be preserved if Bα ≤ Aα.

Proof. Suppose that xi ∈ Aβi and Mβi ∈ Mα for each i < 2, and that x0 ≤ x1
in Aα. It suffices to find w ∈ [x0, x1] ∩Mβ0

∩Mβ1
. Let βi ∈ J ′ji for each i < 2.

We inductively assume that (5) holds for all stages before α. Therefore, since
J ′0(α) and J ′1(α) are directed, if j0 = j1, then w as above exists. So, assume that
j0 6= j1. By symmetry, we may assume that j0 = 0. Assuming Bα ≤ Aα, we have
A′α,0 |̂ A′α,1 as suborders of Aα. Hence, we may choose y ∈ A′α,0 ∩A′α,1 ∩ [x0, x1].
Choose γ ∈ K ′2(α) such that y ∈ Mγ . We may choose z0 ∈ [x0, y] ∩ Aβ0 ∩ Aγ
and z1 ∈ [y, x1] ∩Aβ1

∩Aγ , again because J ′0(α) and J ′1(α) are directed. For each
i < 2, let δi = ρ(zi,M � α); we then have zi ∈ Mδi ⊆ Mβi ∩Mγ by Lemma 2.11.
Since K′2(α) is also directed, we may choose w ∈ [z0, z1] ∩ Aδ0 ∩ Aδ1 . Thus, w ∈
[x0, x1] ∩Aβ0 ∩Aβ1 . �

Given Claim 5.3, we may choose, for each i < 2, cofactor maps ⊕0 = id: A′α,2 →
A′α,i and ⊕1 = ζα,i : Frω → A′α,i. For each i < 2, let Bα,i = ran(ζα,i) and bnα,i =
ζα,i(frn) for each n < ω. Choose Cα = Bα ⊕ Fr2 such that Cα b Mα, that
⊕0 = idBα , and that Cα \ Bα is disjoint from

⋃
β<αMβ . For each i < 2, let
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hα,i = ηα(fri) where ηα is the cofactor map ⊕1 : Fr2 → Cα. Let Hα = ran(ηα). By
Lemma 4.1, (A′α,2, Bα,0, Bα,1) is independent; hence, so is (A′α,2, Bα,0, Bα,1, Hα).

For each n < ω, let enα,0 = bnα,0 ∧ bnα,1 ∧ hα,0 and enα,1 = bn+1
α,0 ∧ bnα,1 ∧ hα,1; let Iα be

the ideal of Cα generated by {enα,i : (i, n) ∈ 2× ω}.

Claim 5.5. Iα ∩ (Bα ∪Hα) = {0}.

Proof. Let 1 ≤ m < ω, let e =
∨

(i,n)∈2×m e
n
α,i, and let J be the ideal generated

by e. We will show that J ∩ (Bα ∪ Hα) = {0}. First, if 0 < h ∈ Hα, then h 6≤ e
because e ∧ c = 0 < c ≤ h where c = h ∧ −b0α,1. Second, if 0 < b ∈ Bα, then b 6≤ e
because e ∧ c = 0 < c ≤ b where c = b ∧ −hα,0 ∧ −hα,1. �

By the above claim, we may choose a quotient Dα = Cα/Iα such that x/Iα = x
for all x ∈ Bα ∪Hα. Choose Dα such that also Dα b Mα and Dα \ (Bα ∪Hα) is

disjoint from
⋃
β<αMβ . Note that Bα 6≤rc Dα because, for example, πBα+ (hα) does

not exist because hα,0 ≤Dα
∧
n<m−(bnα,0 ∧ bnα,1) for all m < ω. However, we still

have the following.

Claim 5.6. For each i < 2, A′α,i ≤rc Dα. In particular, π
A′α,0
+ and π

A′α,1
+ satisfy (6)

for all n < ω and x ∈ Dα of the forms below.

(6)
x π

A′α,0
+ (x) π

A′α,1
+ (x)

bnα,0 ∧ hα,0 bnα,0 −bnα,1
bnα,1 ∧ hα,1 −bn+1

α,0 bnα,1

Proof. For this proof our notation will suppress the dependence on α. Every
nonzero element of C is a finite nonempty join of elements of the form x = a∧ b0 ∧
b1∧h where a ∈ A′2, h is of the form ±h0∧±h1, and each bi is

∧
n∈Pi b

n
i ∧
∧
n∈Qi −b

n
i

where Pi and Qi are each (possibly empty) finite subsets of ω. (Our convention is

that
∧
∅ = 1.) In general, π

A′i
+ (y ∨ z) = π

A′i
+ (y) ∨ πA

′
i

+ (z) and π
A′i
− (y) = −πA

′
i

+ (−y)
if the righthand sides exist. Moreover, by Lemma 3.5,

π
A′i
+ ((a ∧ bi ∧ b1−i ∧ h)/I) = a ∧ bi ∧ π

A′i
+ ((b1−i ∧ h)/I)

if the righthand side exists.

Let x = b1−i∧Ch where b1−i and h are as above. We will show that each π
A′i
+ (x/I)

exists and equals τi(x) where τi(x) =
∧
n∈Ti −b

n
i where Ti is as in (7) below, which

uses shift operator notation S. = {β + 1 : β ∈ S} and S/ = {β : β + 1 ∈ S} for
sets of ordinals.

(7)

h T0 T1
−h0 ∧ −h1 ∅ ∅
h0 ∧ −h1 P1 P0

−h0 ∧ h1 P1. P0/
h0 ∧ h1 P1 ∪ (P1.) P0 ∪ (P0/)

In all cases, x/I ≤ τi(x) follows directly from the definition of I. Moreover, (6)
follows from (7).

Henceforth working in C, suppose that y ∈ A′i, t ∈ I, and x ≤ y ∨ t. We
will show that τi(x) ≤ y ∨ e for some e ∈ I. Every element of A′i \ {1} is a
nonempty finite meet of elements of the form z ∨ wi where z ∈ A′2 \ {1} and wi is∨
n∈Ri b

n
i ∨

∨
n∈Si −b

n
i where Ri and Si are each (possibly empty) finite subsets of

ω and Ri ⊥ Si. (Our convention is that
∨

∅ = 0.) Moreover, by (7), τi(x) = 1 if
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and only if h = −h0 ∧ −h1 or P1−i = ∅. Therefore, it is enough to assume that
y = z∨wi where z and wi are as above and prove that h ≤ h0∨h1, that τi(x) ≤ y∨e
for some e ∈ I, and that P1−i 6= ∅.

By assumption, we have b1−i∧h ≤ z∨wi∨t; by independence of (A′2, B0, B1, H),
we have b1−i ∧h ≤ wi ∨ t, which implies b1−i ∧h ≤ wi ∨ (h0 ∨h1); by independence
of (B0, B1, H), we have h ≤ h0 ∨ h1. Choose m < ω and e =

∨
j<2
n<m

eni such that

m ⊇ Si and e ≥ t. Let g0,n(0) = bn0 , g1,n(0) = bn+1
0 , gj,n(1) = bn1 , and gj,n(2) = hj

for all (j, n) ∈ 2× ω. Then

b1−i ∧ h ≤ wi ∨ e = wi ∨
∨
j<2
n<m

∧
k<3

gj,n(k) = wi ∨
∧

f : 2×m→3

∨
j<2
n<m

gj,n(f(j, n)).

Thus, b1−i ∧ h ≤ wi ∨ e if and only if, for all f : 2×m→ 3,

(8) b1−i ∧ h ≤ wi ∨
∨
j<2
n<m

gj,n(f(j, n)).

Given any f : 2×m→ 3, let, for each (j, k) ∈ 2× 3, Ej,k = {n : f(j, n) = k}; let
F1,0 = E1,0. and F1,1 = E1,1. Independence of (B0, B1, H), (bn0 )n<ω, and (bn1 )n<ω
imply that (8) is equivalent to the disjunction of

(X1) P1−i 6⊥ E0,1−i ∪ F1,1−i;
(X2) Si 6⊥ E0,i ∪ F1,i;
(X3) h ≤ h0 and E0,2 6= ∅;
(X4) h ≤ h1 and E1,2 6= ∅.

Similarly, we have τi(x) ≤ wi ∨ e if and only if, for all f : 2 × m → 3, we have
Si 6⊥ E0,i ∪ F1,i or Ti 6⊥ Si. By (7), Ti 6⊥ Si if and only if P1−i 6⊥ Ui where Ui is as
in (9) below.

(9)

h U0 U1

h0 ∧ −h1 S0 S1

−h0 ∧ h1 S0/ S1.
h0 ∧ h1 S0 ∪ (S0/) S1 ∪ (S1.)

By choosing f according to (10) below, we ensure that (X2), (X3), and (X4) fail,
and, therefore, that (X1) holds.

(10)

h i E0,2 E1,2 E0,1−i E1,1−i m \ F1,i F1,1−i
h0 ∧ −h1 0 ∅ m S0 ∅ ∅ ∅
h0 ∧ −h1 1 ∅ m S1 ∅ ∅ ∅
−h0 ∧ h1 0 m ∅ ∅ S0/ S0 ∪ {0} S0/
−h0 ∧ h1 1 m ∅ ∅ S1 S1 S1.
h0 ∧ h1 0 ∅ ∅ S0 S0/ S0 ∪ {0} S0/
h0 ∧ h1 1 ∅ ∅ S1 S1 S1 S1.

Comparing (9) with (10), we see that E0,1−i ∪ F1,1−i = Ui in all cases. Therefore,
P1−i 6⊥ Ui. Thus, τi(x) ≤ y ∨ e and P1−i 6= ∅. �

Choose Aα = Dα⊕Frω such that Aα bMα, that ⊕0 = idDα , and that Aα\Dα is
disjoint from

⋃
β<αMβ . Thus, (1) is preserved. By construction, Aα ∩

⋃
β<αMβ =⋃

i<2A
′
α,i, so (2) is preserved. By Claim 5.4, (5) is preserved. By Sirota’s Lemma,

since A′α,i ≤rc Dα ≤rc Aα for all i < 2 and Dα splits perfectly in Aα, (4) is
preserved. Thus, our construction of Ω is complete and Ω has the FN.
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Choose a long ω1-approximation sequence (Nα)α<ω2 with Nα ≺ H(ℵ3) for all
α < ω2 and A,M ∈ N0 (which implies Ω ∈ N0). We will show that Ω[N ] is not
locally finite. Let δ = ω1 + 1; let β = ω2 ∩ Nδ,0, which is in ω2 ∩ Nδ,1 and has
cofinality ω1 by Lemma 2.5; let [β, α) = [β, β + ω1) ∩Nδ,1. Note that α ∈ Nδ and
bαc1 = β.

Claim 5.7. β ∩Nδ,1 = β ∩Mα,1.

Proof. By Lemma 2.3, β ⊆
⋃
θ<ω1

Mβ+θ. Since β,M ∈ Nδ,1 ≺ H(ℵ3), we have

β ∩Nδ,1 = β ∩
⋃
{Mθ : θ ∈ [β, β + ω1) ∩Nδ,1} = β ∩

⋃
β≤θ<α

Mθ = β ∩Mα,1. �

We will show that {hα,0, hα,1, b0α,0} generates an infinite subalgebra of Ω[N ]. It
suffices to show that

• ρ(bmα,i ∧ hα,i, N) = δ for all i < 2 and m < ω,

• π0
+(bmα,1 ∧ hα,1, N) = −bm+1

α,0 for all m < ω, and

• π1
+(bmα,0 ∧ hα,0, N) = −bmα,1 for all m < ω.

First, ρ(bmα,i ∧ hα,i,M) = α by construction. By definition of α, we have α ∈
Nδ \ Nδ,1; since β ≤ α, we also have α 6∈ Nδ,0. Since M,ρ(•,M) ∈ N0 and Mα is
countable, we conclude that bmα,i∧hα,i ∈ Nδ\

⋃
j<2Nδ,j . Hence, ρ(bmα,i∧hα,i, N) = δ.

Second, we have, by Corollary 3.1 and Claim 5.6,

π0
+(bmα,1 ∧ hα,1, N) =

∧
j<2

π
Nδ,0
+ (πj+(bmα,1 ∧ hα,1,M)) = π

Nδ,0
+ (−bm+1

α,0 ) ∧ πNδ,0+ (bmα,1).

We have π
Nδ,0
+ (−bm+1

α,0 ) = −bm+1
α,0 because −bm+1

α,0 ∈ Nδ,0 because ρ(−bm+1
α,0 ,M) ∈

I0(α) = β. We have π
Nδ,0
+ (bmα,1) = π

A′α,2
+ (bmα,1) = 1 by Lemma 3.1 because Nδ,0∩Ω =

Aα,0 |̂ A′α,1 by (5) and Proposition 3.1, and because Aα,0 ∩A′α,1 = A′α,2 ≤rc A
′
α,1.

Thus, π0
+(bmα,1 ∧ hα,1, N) = −bm+1

α,0 .
Third, we have, by Corollary 3.1 and Claim 5.6,

π1
+(bmα,0 ∧ hα,0, N) =

∧
j<2

π
Nδ,1
+ (πj+(bmα,0 ∧ hα,0,M)) = π

Nδ,1
+ (bmα,0) ∧ πNδ,1+ (−bmα,1).

We have π
Nδ,1
+ (−bmα,1) = −bmα,1 because ρ(−bmα,1,M) ∈ I1(α) = [β, α) ⊆ Nδ,1.

We have π
Nδ,1
+ (bmα,0) = π

A′0∩Nδ,1
+ (bmα,0) by Lemma 3.1 because A′α,0 |̂ (Ω ∩ Nδ,1)

by (5) and Proposition 3.1, and because, arguing as in the proof of Claim 5.2,
A′α,0 ∩ Nδ,1 ≤rc A

′
α,0. Because A′α,0 ∩ Nδ,1 = A′α,2 by Claim 5.7, we also have

π
A′0∩Nδ,1
+ (bmα,0) = π

A′α,2
+ (bmα,0) = 1. Thus, π1

+(bmα,0 ∧ hα,0, N) = −bmα,1.
Thus, Ω has the FN but not the SFN.
We briefly remark that the interaction between π0

+ and π1
+ is essential to the

above construction. Given boolean algebras K ≤rc L, it is not hard to check, using
Lemma 3.5, that (L,∧L,∨L,−L, 0L, 1L, πK+ , πK− ) is locally finite. This lemma can
also be used to re-prove the implication from FN to SFN for boolean algebras of
size at most ℵ1, without using, as Heindorf and Shapiro do, the implication from
FN to projectivity for boolean algebras of size at most ℵ1.

Indeed, given a boolean algebra A of size at most ℵ1 with the FN, let (Mα)α<ω1

be a long ω1-approximation sequence with A ∈ M0, let F1 be a chain of finite
subalgebras of A ∩M0 with union A ∩M0, and then inductively assume that 1 ≤
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α < ω1 and Fα is a pairwise commuting cofinal family of finite subalgebras of
A ∩ Mα,0. Let A ∩ Mα = {an : n < ω} and set C0 = {0, 1}. Given n < ω
and a finite Cn ≤ A ∩ Mα, let An be the subalgebra of A generated by Cn ∪
{an}; choose Bn ∈ Fα containing π

Mα,0

+ [An]; let Cn+1 be the subalgebra of A

generated by An ∪ Bn. By Lemma 3.5, π
Mα,0

+ [Cn+1] = Bn; hence, for all D ∈ Fα,

πD+ [Cn+1] = (πD+ ◦π
Mα,0

+ )[Cn+1] = πD+ [Bn], which implies Cn+1 |̂ D by Lemma 3.2.
Thus, Fα+1 = Fα ∪ {Cn : n < ω} is a pairwise commuting cofinal family of finite
subalgebras of A ∩Mα+1,0.
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