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Overlapping structures

Definition

Given a class V of structures, say that structures 2,8 € V with
underlying sets A, B overlap in V if 2l and 8 have a common
substructure € € V with underlying set AN B.

Example

R[x]/(x? + 1) and R[y]/(y? + 1) are algebraically closed fields
whose intersection is a common subfield, R. They overlap in the
class of fields but not in the class of algebraically closed fields.

Definition
A N B denotes the common substructure of A and B with universe
AN B, if it exists.
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Amalgamation of structures

Definition

Say that a set S of overlapping structures amalgamates in V if
there is structure D € V such that every A € S is a substructure of
D. Call any such D an amalgamation of S in V.

Example

e R[x]/(x? + 1) and R[y]/(y? + 1) amalgamate in the class of
commutative rings because distinct elements of

(RIx)/(<* +1)) U (RIy)/(y* +1))

remain distinct in the ring R[x, y]/(x*> + 1, y? + 1).
e R[x]/(x? +1) and R[y]/(y? + 1) do NOT amalgamate in the
class of integral domains because

XX+1=0=y’+1= (x+y)x—y)=(x*+1) - (y*+1)=0.

e R[x]/(x?> 4+ 1) and R[y]/(y? + 1) do amalgamate in the class of
skew fields: declare yx = —xy to get the quaternions. 2/23



How to abstract “overlap” to category theory
e To abstract two overlapping structures, replace the two instances
of the substructure relation with monomorphisms, which are
usually just injective homomorphisms.
e But to abstract three overlapping structures requires more:

Main idea: The diagram to the AN B<'Y AnBNC

right is not just a commuta- lid lid
tive square; it's also a pullback y
square. A< AnC

That is, for any commutative ANB 0 D |

square lid Jﬂ

B and « factor through inclu- ANB 7 D
sions of AN BN C via a unique Tid ) i,y
homomorphism § to ANBN C.

ANBNC-9 ~AnC

To abstract n overlapping structures, use “pullback hypercubes.”
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How to abstract amalgamation to category theory
e An amalgamation D of overlapping structures A <>2C
A, B with AN B = C abstracts to a pullback ¢ Jﬁ
square of monomorphisms. 0
D<—B

e Why not just a commutative square of monomorphisms?

Requiring a pullback square abstracts the requirement that if

x €A, y€B,and x,y € AN B, then x and y remain distinct in D.

If (oa=mnof and ¢ and 1 were injective but
E=CAnnB ¢ (aC,

then the square to the right
would commute but ¢! | E
could not be of the form a0 d ¢hLE

- = 5
and, hence, ¢ and 1 do not fac- A £
tor through a and [ via any
0: E— C. ¢ nE
D" OB e



Compactness
Lemma
Suppose that:
> A, AiNA;eV foralli,jeE.
> V is axiomatized by a set of first-order formulas.

» {B;:i e F} amalgamates inV for all finite F C E and all
finitely generated substructures B; C A; with B; € V.

Then {A; : i € E} amalgamates in V.

Proof.
» Let P denote the set of B = (B;: i € F) as above.
> Partially order P by B < B"iff F C F" and B; C B/ for all i.

» Let Dy be the ultraproduct [ [z Dg/U where U is an
ultrafilter on P such that {B’ | B’ > B} € U for all B.

» Then the diagonal map x — (B — x : x € |J; Bi) /U defines
an injection from | J; A; to Dy that restricts to a

homomorphism on each A;. L]
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Semigroup (and ring) amalgamation is hard
» (Kimura, 1957) There are overlapping finite commutative
semigroups S1, S that do not amalgamate as semigroups.
» It follows that there are two finite commutative rings that do

not amalgamate as rings.

» (Sapir, 1997; Jackson, 2000) There is no algorithm that can
decide whether two arbitrary finite semigroups amalgamate.

Likewise for finite rings.

Example
Define overlapping commutative semi-
groups S; = {0,a, b, ¢} for i = 1,2 as
shown. If some semigroup T contained
51U Sy, then we would reach the con-
tradiction

a=qab=cl(ac) =(aa)c =ac; =b.

¢ 0 a b a
Cy | C2 0 b b
0|0 0 0 0 O
alb 00 0 a
b|b 0 00
a 0 a a a
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A-systems of groups

Call a set S of overlapping structures a A-system (or sunflower) in
V if S CV and there is a root R € V such that AN B = R for all
distinct A, B € S.

Theorem (Schreier, 1927)

Every A-system of groups amalgamates in the class of groups.

Corollary
Any two overlapping groups amalgamate in the class of groups.

Schreier's Theorem remains true if we replace “groups” with
“abelian groups.” And the proof is much easier!
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A-systems of abelian groups (or left R-modules)

e For n > 2, use induction:
1. Assume a A-system of abelian groups G, ..., G, with root H.
2. Assume K is an amalgamation of Gy, ..., G,_1.
3. Replace K with an isomorphic copy K’ such that K'N G, = H.
4. Amalgamate K’ and G,.

e Base case of overlapping abelian groups (A, +4,0),(B,+5,0):
1. Choose isomorphisms a: A — A’, 3: B — B’ such that

A 'n B ={0}.

2. Let D be a direct sum A@ B' 5 AUB’ and E = D/N where

N ={ax—fpBx:x € AnB}.
3. Check that (a/N) U (8/N) is injective:
aa/N = pb/N = aa— b= (a— [B)x
=0=a(x—a)+ p(b—x)
= (0,0)=(x—a,b—x)=a=x=0b
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A-systems of posets and of Boolean algebras
To amalgamate a A-system of posets {(P;, <;) : i € E} with root
R, declare x < y iff
> x <;y for some i€ E or
» x<;z<;yforsomei,jc EandzcR.
Claim: < is transitive, antisymmetric, and such that < [ P; = <.

A A-system of Boolean algebras amalgamates essentially the same
way a A-system of abelian groups does. Base case:

1. Assume overlapping Boolean algebras Az, As.

2. Let B be the coproduct A; & Az, which is the Boolean algebra
generated by copies e;(a) of a for each i and a € A;, and the
relations €;(0) = 0, e;(—x) = —ei(x), and
ei(x A y) = ei(x) Aei(y) for each i and x,y € A;.

3. Let C = B/l where | is the ideal

{b/\ \/(el(x,-) AN 62(—X,')) beB, x1,...,xp € AL ﬂA2} .

i=1
4. Claim: (e1/l)U (e2/1) is injective.
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Beyond A-systems

Not every three overlapping posets A, B, C amalgamate:
xX<ay<pz<cX.

A Boolean algebra is a partially ordered by x <y & x=xAy.
So, not every three overlapping Boolean algebras amalgamate, not
even in the class of posets.

(H. Neumann) Higher amalgamation of groups is very interesting:
» (1948) There are three overlapping groups that do not
amalgamate in the class of groups.
» (1951) But any three overlapping abelian groups amalgamate
in the class of abelian groups.
» (1953, with B.H. Neumann) But there are four overlapping
abelian groups that do not amalgamate in the class of groups.

> (1950) Yet, any set of overlapping locally cyclic groups
amalgamates in the class of abelian groups.
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Why three overlapping abelian groups amalgamate
e Suppose we have a three overlapping abelian groups A, B, C.
(Our argument also works for three overlapping left R-modules.)

e Choose isomorphisms a: A — A', 3: B — B, v: C — C’ such
that A, B’, C' is a A-system with root {0}.

elet D=AeB o DAUB UC and E = D/N where
N={la=Bx+B-y+(r—a)z
(x,y,2) € (ANB) x (BN C) x (CNA)}
aa/N = (3b/N
aa—pb=(a—P)x+(BL—7)y+(y—a)z
O=alx—z-a)+p(b—x+y)+1(z-y)
(0,0,0)=(x—z—a,b—x+y,z—y)

a=x—z=x—y=2b

R

e This proof doesn't work for n > 3 because then <g> > n.
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Four non-amalgamating overlapping free abelian groups
Start with the following Gi, Gy, G3 C (a, b, c).

(G1?+1) = <av b> (G2a+2) = <‘37 C) (G37+3) = (ba C>

GlﬂG2:<a> G1QG3:<b> G2ﬂG3:<C>

Then choose (G4, +4) = (a+1 b,a+2 )
such that for all nonzero integers m, n,

» Gj and Gy agree on what m(a+ b) is, and

» G, and Gy agree on what n(a+ ¢) is, but

» [m(a+b)] +a[n(a+c)] ¢ GLUG U Gs.
Then G, Gy, Gz, G4 overlap but do not amalgamate in the class of
abelian groups because [7_; G; equates

b—3c and (a+1b) —a(a+20).

This example generalizes to left R-modules.
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Pushout squares

e In an equationally axiomatized class of structures, a coproduct
@, Ai of structures (A; : i € E) is a structure generated by

> elements ej(x) for each i € E and x € A;,
P relations saying that each ¢; is an isomorphism, and
> relations saying that @ieE A; satisfies the axioms of V.

e All our binary amalgamation proofs start the same way: take a
coproduct e;(A;1) @ ex(Ay) of copies of A; and A, and then take
the quotient

A1 B A = (e1(A1) @ e2(A2))/~
where ~ is generated by e;(x) = ex(x) for x € A; N As.

e Even if A; and As do not amalgamate, A1 -4 A1 N A
A1 B A; is special: the diagram to the iel/ l_d

~ I
right is a pushout square. ..

eg/N

A H A, Ao
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Pushout squares (continued)

The diagram to the right is a pushout Ap <9 AN A
square. iel/~ lid
AB A2 a,
That is, for any commutative square Ay ~ A1NA;,
fi iid
B~"__a
fi and f, factor through e;/~ and &3/~ A ——— = A1 HA;
e/~
via a unique homomorphism '
flEfziAlEAg—)B fi f,@f e/~

called the mediating morphism. f2

Therefore, if fi U f; is injective, then so is (e1/~) U (e2/~).
Therefore, B is an amalgamation of Aj, A, if and only if an
isomorphic copy of A; H A is.
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Pushout hypercubes

e More generally, define a (generalized) pushout [H{;.¢ A; to be an
isomorphic copy of a quotient of a coproduct, of the form

(2]

where 6 and each e; are isomorphisms and ~ is generated by
ei(x) = ej(x) forall i,j € E and x € A; N A;.

e Properly speaking, a pushout consists of ;. A; and its
coprojections
EEI,‘ =fo (e,'/N)Z A,' — A,'.
icE
e Pushouts makes sense in any class of structures where coproducts
and quotients make sense (i.e., in any category with colimits).

e Overlapping structures amalgamate if and only if they are
amalgamated by a pushout, provided pushouts are well-defined.
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Linear amalgamation
Between pushouts [(H" ; A; with coprojections EEE'") for
1 < i < m < n, there are unique mediating morphisms:

B
A — L, A

B<y

<2
A —

H<s Bep1 — J/E5<m
A,'—_>+A,' —> i> A,‘ Bﬂgmﬂ)

1
I A

[~
]

Il
._.

._.
Il
N

Definition

In a class with well-defined pushouts, say that overlapping
structures Aj, ..., A, linearly amalgamate if there exists pushouts
™, Ai for m=1,... nsuch that |J]_; Hﬂg") and each H<, are
indentity maps.

2 3 n n
Aq CA,-CA,'C"- CHA,'D UA,'
i—1 i—1 i—1 i1
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Iterated binary amalgamation

o If (AT, A)) B Apyy exists, then it is 1 A;.

(That is, any structure satisfying the definition of
(FA™, A;) B A1 must also satisfy the definition of [H7™h! A;.)

o If A,..., A, linearly amalgamate, then ([, A;) B Apt1 exists
for all m < n.

e If V has well-defined pushouts and Ay, ..., A, amalgamate in V
but do not linearly amalgamate in V,

then some ([H;_; A;) B Amy1 does not exist

because Apmt1 and [H; A; are not overlapping structures.

17/23



Nonlinear amalgamation

Example

Consider the following overlapping abelian groups.
(This example also works for left R-modules.)

Ay = (x) Az = (y) Az = (2)

AlNA=ANA3=A3NA = {0}
Ay =(x,y,z; x+y+z=0) DA UAUA;3
Trivially, A4 amalgamates A, As, A3, As. And Aq = ?:1 A;.
But x+y+2z#0in ,3:1Ai = @?ZIA; =(x,y,2z).
Hence, ?:1 A; and A, disagree about x + y + z.

Thus, ([, Ar) B As does not exist and [P, A; ¢ B2, A )



The direct summand property

Definition
Say that a class V has the direct summand property if

» binary coproducts in V are well-defined and,

> for every A, B € V with A a substructure of B, there exists
C €V such that Ag C = B.

Example
The following classes have the direct summand property.
» The class of vector spaces over a fixed field.

» The class of divisible groups.
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The direct summand property applied

Definition
In a class V, if A, B overlap, then let AS B denote some C € V (if
it exists) such that A= (AN B) & C.

Theorem

In the class of all vector spaces over a common field, and in the
class of all divisible groups, if A1, Az, A3 overlap, then they linearly
amalgamate.

Main idea of proof.
> ATHA, = (Al o AQ) S5, (Al N A2) D (A2 &) Al)
» Hence, no proper quotient of A; HH Ay amalgamates A;p, As:

aatan+ta=0=>A;1>a+app=—ar € As. L]

Remark: three Boolean algebras can nonlinearly amalgamate.
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Characterizing linear amalgamation

Theorem (informal)

Assume V is a “reasonable” class of structures in which every two
overlapping structures amalgamate. Then, overlapping structures
A1, Az, ..., Ay €V linearly amalgamate in V if and only if,
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Characterizing linear amalgamation
Theorem (informal)

Assume V is a “reasonable” class of structures in which every two
overlapping structures amalgamate. Then, overlapping structures
A1, Az, ..., Ay €V linearly amalgamate in V if and only if,
for all m < n and all terms s, t generated by Apmi1 N U Aj,
1. ifs=tin Amt1, then s =t is already implied by how
AL NAmit, s Am N Amg1 overlap,
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Characterizing linear amalgamation

Theorem (informal)

Assume V is a “reasonable” class of structures in which every two
overlapping structures amalgamate. Then, overlapping structures
A1, Az, ..., Ay €V linearly amalgamate in V if and only if,

for all m < n and all terms s, t generated by Apmi1 N U Aj,

1. ifs=tin Amt1, then s =t is already implied by how
AL NAmit, s Am N Amg1 overlap,

2. if s =t is implied by how Ai, ..., A, overlap, then s =t is
already implied by how A1 N Apmi1, .-, Am N Amy1 overlap,
and

3. ifk<m, u€ Ay, and s = u is implied by how A1, ..., An
overlap, then already u € Ax N Amt1.

Condition 1 says A, +1 does not newly equate distinct “old” terms.
Conditions 2 and 3 are closure conditions on A 1. In Part I,
elementary substructures, which satisfy “every” finitary closure

condition, will be used to satisfy Conditions 2 and 3. .



Characterizing linear amalgamation

Theorem (more formal)
Assume V is a class of structures such that:
> V is closed with respect to isomorphism,
» pushouts are well-defined in V, and
> every two overlapping structures in V amalgamate in V.

Then, overlapping structures A1, As, ..., A, € V linearly
amalgamate in'V if and only if:

1. I’-n:l (id: AN Am+1 — Am+1) : Ir-ll(A,' N Am+1) — Am+1
is injective for all m < n,

2. 77:1 (Id AiNAntt — A,) : 7;1(/4,' N Am+1) — 7;1 A;
is injective for all m < n, and

3. for all k < m < n, the range of [H_; (id: AiN Am+1 — Aj),
intersected with the range of [+, : Ax — i~ Ai, is a subset
of the image [+, [Ax N Am1].
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Open Problems

e Given n > 4, is there an interesting example of a class in which
every n but not every n+ 1 overlapping structures amalgamate?

e (B.H. and H. Neumann, 1953) If finitely many overlapping finite
groups are amalgamated by a group, are they amalgamated by a
finite group?

e Given n > 3, is there an algorithm for deciding whether n
arbitrary overlapping finite groups amalgamate?

e Investigate “weak” amalgamation of Boolean algebras where it's
okay to equate distinct elements of A; U A; but not okay to equate

distinct elements of A;.

(The Neumanns' 1953 paper has an example of four abelian
groups that do not weakly amalgamate in the above sense.)
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