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Overlapping structures

Definition
Given a class V of structures, say that structures A,B ∈ V with
underlying sets A,B overlap in V if A and B have a common
substructure C ∈ V with underlying set A ∩ B.

Example

R[x ]/(x2 + 1) and R[y ]/(y2 + 1) are algebraically closed fields
whose intersection is a common subfield, R. They overlap in the
class of fields but not in the class of algebraically closed fields.

Definition
A∩B denotes the common substructure of A and B with universe
A ∩ B, if it exists.
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Amalgamation of structures

Definition
Say that a set S of overlapping structures amalgamates in V if
there is structure D ∈ V such that every A ∈ S is a substructure of
D. Call any such D an amalgamation of S in V.

Example

• R[x ]/(x2 + 1) and R[y ]/(y2 + 1) amalgamate in the class of
commutative rings because distinct elements of(

R[x ]/(x2 + 1)
)
∪
(
R[y ]/(y2 + 1)

)
remain distinct in the ring R[x , y ]/(x2 + 1, y2 + 1).
• R[x ]/(x2 + 1) and R[y ]/(y2 + 1) do NOT amalgamate in the
class of integral domains because

x2 + 1 ≡ 0 ≡ y2 + 1⇒ (x + y)(x − y) = (x2 + 1)− (y2 + 1) ≡ 0.

• R[x ]/(x2 + 1) and R[y ]/(y2 + 1) do amalgamate in the class of
skew fields: declare yx = −xy to get the quaternions. 2 / 23



How to abstract “overlap” to category theory
• To abstract two overlapping structures, replace the two instances
of the substructure relation with monomorphisms, which are
usually just injective homomorphisms.
• But to abstract three overlapping structures requires more:

Main idea: The diagram to the
right is not just a commuta-
tive square; it’s also a pullback
square.

A ∩ B

id
��

A ∩ B ∩ C
idoo

id
��

A A ∩ C
idoo

That is, for any commutative
square

A ∩ B

id
��

D
βoo

γ
��

A A ∩ C
idoo

,

β and γ factor through inclu-
sions of A ∩ B ∩ C via a unique
homomorphism δ to A∩B ∩C .

A ∩ B D
βoo

γ
��

δ

xx
A ∩ B ∩ C

id

OO

id // A ∩ C

.

To abstract n overlapping structures, use “pullback hypercubes.”
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How to abstract amalgamation to category theory
• An amalgamation D of overlapping structures
A,B with A ∩ B = C abstracts to a pullback
square of monomorphisms.

A� _

ζ
��

C? _
αoo � _

β
��

D B? _
ηoo

• Why not just a commutative square of monomorphisms?
Requiring a pullback square abstracts the requirement that if
x ∈ A, y ∈ B, and x , y 6∈ A∩B, then x and y remain distinct in D.

If ζ ◦ α = η ◦ β and ζ and η were injective but
E = ζA ∩ ηB 6⊂ ζαC ,

then the square to the right
would commute but ζ−1 � E
could not be of the form α ◦ δ
and, hence, ζ and η do not fac-
tor through α and β via any
δ : E → C .

A� _

ζ

��

E? _
ζ−1�Eoo � _

η−1�E

��
D B? _

ηoo 4 / 23



Compactness

Lemma
Suppose that:

I Ai ,Ai ∩ Aj ∈ V for all i , j ∈ E.

I V is axiomatized by a set of first-order formulas.

I {Bi : i ∈ F} amalgamates in V for all finite F ⊂ E and all
finitely generated substructures Bi ⊂ Ai with Bi ∈ V.

Then {Ai : i ∈ E} amalgamates in V.

Proof.
I Let P denote the set of B = (Bi : i ∈ F ) as above.

I Partially order P by B ≤ B ′ iff F ⊂ F ′ and Bi ⊂ B ′i for all i .

I Let DU be the ultraproduct
∏

B DB/U where U is an
ultrafilter on P such that {B ′ | B ′ ≥ B} ∈ U for all B.

I Then the diagonal map x 7→ (B 7→ x : x ∈
⋃

i Bi )/U defines
an injection from

⋃
i Ai to DU that restricts to a

homomorphism on each Ai .
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Semigroup (and ring) amalgamation is hard
I (Kimura, 1957) There are overlapping finite commutative

semigroups S1,S2 that do not amalgamate as semigroups.
I It follows that there are two finite commutative rings that do

not amalgamate as rings.
I (Sapir, 1997; Jackson, 2000) There is no algorithm that can

decide whether two arbitrary finite semigroups amalgamate.
Likewise for finite rings.

Example
Define overlapping commutative semi-
groups Si = {0, a, b, ci} for i = 1, 2 as
shown. If some semigroup T contained
S1 ∪ S2, then we would reach the con-
tradiction

a = c1b = c1(ac2) = (c1a)c2 = ac2 = b.

· c2 0 a b c1
c2 c2 0 b b
0 0 0 0 0 0
a b 0 0 0 a
b b 0 0 0 a
c1 0 a a c1
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∆-systems of groups

Call a set S of overlapping structures a ∆-system (or sunflower) in
V if S ⊂ V and there is a root R ∈ V such that A ∩ B = R for all
distinct A,B ∈ S.

Theorem (Schreier, 1927)

Every ∆-system of groups amalgamates in the class of groups.

Corollary

Any two overlapping groups amalgamate in the class of groups.

Schreier’s Theorem remains true if we replace “groups” with
“abelian groups.” And the proof is much easier!
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∆-systems of abelian groups (or left R-modules)
• For n > 2, use induction:

1. Assume a ∆-system of abelian groups G1, . . . ,Gn with root H.

2. Assume K is an amalgamation of G1, . . . ,Gn−1.

3. Replace K with an isomorphic copy K ′ such that K ′∩Gn = H.

4. Amalgamate K ′ and Gn.

• Base case of overlapping abelian groups (A,+A, 0), (B,+B , 0):

1. Choose isomorphisms α : A→ A′, β : B → B ′ such that
A′ ∩ B ′ = {0}.

2. Let D be a direct sum A′ ⊕B ′ ⊃ A′ ∪B ′ and E = D/N where

N = {αx − βx : x ∈ A ∩ B}.

3. Check that (α/N) ∪ (β/N) is injective:

αa/N = βb/N ⇒ αa− βb = (α− β)x

⇒ 0 = α(x − a) + β(b − x)

⇒ (0, 0) = (x − a, b − x)⇒ a = x = b
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∆-systems of posets and of Boolean algebras
To amalgamate a ∆-system of posets {(Pi ,≤i ) : i ∈ E} with root
R, declare x ≤ y iff
I x ≤i y for some i ∈ E or
I x ≤i z ≤j y for some i , j ∈ E and z ∈ R.

Claim: ≤ is transitive, antisymmetric, and such that ≤ � Pi = ≤i .

A ∆-system of Boolean algebras amalgamates essentially the same
way a ∆-system of abelian groups does. Base case:

1. Assume overlapping Boolean algebras A1,A2.
2. Let B be the coproduct A1 ⊕A2, which is the Boolean algebra

generated by copies ei (a) of a for each i and a ∈ Ai , and the
relations ei (0) = 0, ei (−x) = −ei (x), and
ei (x ∧ y) = ei (x) ∧ ei (y) for each i and x , y ∈ Ai .

3. Let C = B/I where I is the ideal{
b ∧

n∨
i=1

(e1(xi ) ∧ e2(−xi )) : b ∈ B, x1, . . . , xn ∈ A1 ∩ A2

}
.

4. Claim: (e1/I ) ∪ (e2/I ) is injective.
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Beyond ∆-systems
Not every three overlapping posets A,B,C amalgamate:

x <A y <B z <C x .

A Boolean algebra is a partially ordered by x ≤ y ⇔ x = x ∧ y .
So, not every three overlapping Boolean algebras amalgamate, not
even in the class of posets.

(H. Neumann) Higher amalgamation of groups is very interesting:

I (1948) There are three overlapping groups that do not
amalgamate in the class of groups.

I (1951) But any three overlapping abelian groups amalgamate
in the class of abelian groups.

I (1953, with B.H. Neumann) But there are four overlapping
abelian groups that do not amalgamate in the class of groups.

I (1950) Yet, any set of overlapping locally cyclic groups
amalgamates in the class of abelian groups.
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Why three overlapping abelian groups amalgamate
• Suppose we have a three overlapping abelian groups A,B,C .
(Our argument also works for three overlapping left R-modules.)

• Choose isomorphisms α : A→ A′, β : B → B ′, γ : C → C ′ such
that A′,B ′,C ′ is a ∆-system with root {0}.

• Let D = A′ ⊕ B ′ ⊕ C ′ ⊃ A′ ∪ B ′ ∪ C ′ and E = D/N where

N = {(α− β)x + (β − γ)y + (γ − α)z

: (x , y , z) ∈ (A ∩ B)× (B ∩ C )× (C ∩ A)}.

αa/N = βb/N

⇒ αa− βb = (α− β)x + (β − γ)y + (γ − α)z

⇒ 0 = α(x − z − a) + β(b − x + y) + γ(z − y)

⇒ (0, 0, 0) = (x − z − a, b − x + y , z − y)

⇒ a = x − z = x − y = b

• This proof doesn’t work for n > 3 because then

(
n
2

)
> n.
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Four non-amalgamating overlapping free abelian groups
Start with the following G1,G2,G3 ⊂ 〈a, b, c〉.

(G1,+1) = 〈a, b〉 (G2,+2) = 〈a, c〉 (G3,+3) = 〈b, c〉

G1 ∩ G2 = 〈a〉 G1 ∩ G3 = 〈b〉 G2 ∩ G3 = 〈c〉

Then choose (G4,+4) = 〈a +1 b, a +2 c〉
such that for all nonzero integers m, n,

I G1 and G4 agree on what m(a + b) is, and

I G2 and G4 agree on what n(a + c) is, but

I [m(a + b)] +4 [n(a + c)] 6∈ G1 ∪ G2 ∪ G3.

Then G1,G2,G3,G4 overlap but do not amalgamate in the class of
abelian groups because

Ð4
i=1 Gi equates

b −3 c and (a +1 b)−4 (a +2 c).

This example generalizes to left R-modules.
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Pushout squares
• In an equationally axiomatized class of structures, a coproduct⊕

i∈E Ai of structures (Ai : i ∈ E ) is a structure generated by

I elements ei (x) for each i ∈ E and x ∈ Ai ,

I relations saying that each ei is an isomorphism, and

I relations saying that
⊕

i∈E Ai satisfies the axioms of V.

• All our binary amalgamation proofs start the same way: take a
coproduct e1(A1)⊕ e2(A2) of copies of A1 and A2 and then take
the quotient

A1 � A2 = (e1(A1)⊕ e2(A2))/∼

where ∼ is generated by e1(x) = e2(x) for x ∈ A1 ∩ A2.

• Even if A1 and A2 do not amalgamate,
A1 � A2 is special: the diagram to the
right is a pushout square. . .

A1

e1/∼
��

A1 ∩ A2

id
��

idoo

A1 � A2 A2
e2/∼oo
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Pushout squares (continued)
The diagram to the right is a pushout
square.

A1

e1/∼
��

A1 ∩ A2

id
��

idoo

A1 � A2 A2
e2/∼oo

That is, for any commutative square A1

f1
��

A1 ∩ A2

id
��

id
oo

B A2
f2oo

,

f1 and f2 factor through e1/∼ and e2/∼
via a unique homomorphism

f1 � f2 : A1 � A2 → B

called the mediating morphism.

A1
e1/∼

//

f1

��

A1 � A2

f1�f2

||
B A2

e2/∼

OO

f2oo

Therefore, if f1 ∪ f2 is injective, then so is (e1/∼) ∪ (e2/∼).
Therefore, B is an amalgamation of A1,A2 if and only if an
isomorphic copy of A1 � A2 is.
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Pushout hypercubes
• More generally, define a (generalized) pushout

Ð

i∈E Ai to be an
isomorphic copy of a quotient of a coproduct, of the form

θ

([⊕
i∈E

ei (Ai )

]
/∼

)

where θ and each ei are isomorphisms and ∼ is generated by
ei (x) = ej(x) for all i , j ∈ E and x ∈ Ai ∩ Aj .

• Properly speaking, a pushout consists of
Ð

i∈E Ai and its
coprojections

�i = θ ◦ (ei/∼) : Ai →
ð

i∈E
Ai .

• Pushouts makes sense in any class of structures where coproducts
and quotients make sense (i.e., in any category with colimits).

• Overlapping structures amalgamate if and only if they are
amalgamated by a pushout, provided pushouts are well-defined.
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Linear amalgamation
Between pushouts

Ðm
i=1 Ai with coprojections �(m)

i for
1 ≤ i ≤ m ≤ n, there are unique mediating morphisms:

A1
�≤1−→

2
ð

i=1

Ai
�≤2−→

3
ð

i=1

Ai
�≤3−→ · · ·

�≤n−1−→
n

ð

i=1

Ai

Ai

�(m)
i //

�(m+1)
i

##

Ðm
i=1 Ai

�≤m

��
Ðm+1

i=1 Ai

Definition
In a class with well-defined pushouts, say that overlapping
structures A1, . . . ,An linearly amalgamate if there exists pushouts
Ðm

i=1 Ai for m = 1, . . . , n such that
⋃n

i=1�
(n)
i and each �≤m are

indentity maps.

A1 ⊂
2

ð

i=1

Ai ⊂
3

ð

i=1

Ai ⊂ · · · ⊂
n

ð

i=1

Ai ⊃
n⋃

i=1

Ai
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Iterated binary amalgamation

• If (
Ðm

i=1 Ai )� Am+1 exists, then it is
Ðm+1

i=1 Ai .

(That is, any structure satisfying the definition of
(
Ðm

i=1 Ai )� Am+1 must also satisfy the definition of
Ðm+1

i=1 Ai .)

• If A1, . . . ,An linearly amalgamate, then (
Ðm

i=1 Ai )� Am+1 exists
for all m < n.

• If V has well-defined pushouts and A1, . . . ,An amalgamate in V
but do not linearly amalgamate in V,

then some (
Ðm

i=1 Ai )� Am+1 does not exist

because Am+1 and
Ðm

i=1 Ai are not overlapping structures.
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Nonlinear amalgamation

Example

Consider the following overlapping abelian groups.
(This example also works for left R-modules.)

A1 = 〈x〉 A2 = 〈y〉 A3 = 〈z〉

A1 ∩ A2 = A2 ∩ A3 = A3 ∩ A1 = {0}

A4 = 〈x , y , z ; x + y + z = 0〉 ⊃ A1 ∪ A2 ∪ A3

Trivially, A4 amalgamates A1,A2,A3,A4. And A4 =
Ð4

i=1 Ai .

But x + y + z 6= 0 in
Ð3

i=1 Ai =
⊕3

i=1 Ai = 〈x , y , z〉.

Hence,
Ð3

i=1 Ai and A4 disagree about x + y + z .

Thus,
(

Ð3
i=1 Ai

)
� A4 does not exist and

Ð3
i=1 Ai 6⊂

Ð4
i=1 Ai . 18 / 23



The direct summand property

Definition
Say that a class V has the direct summand property if

I binary coproducts in V are well-defined and,

I for every A,B ∈ V with A a substructure of B, there exists
C ∈ V such that A⊕ C = B.

Example

The following classes have the direct summand property.

I The class of vector spaces over a fixed field.

I The class of divisible groups.
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The direct summand property applied

Definition
In a class V, if A,B overlap, then let A	 B denote some C ∈ V (if
it exists) such that A = (A ∩ B)⊕ C .

Theorem
In the class of all vector spaces over a common field, and in the
class of all divisible groups, if A1,A2,A3 overlap, then they linearly
amalgamate.

Main idea of proof.

I A1 � A2 = (A1 	 A2)⊕ (A1 ∩ A2)⊕ (A2 	 A1).

I Hence, no proper quotient of A1 � A2 amalgamates A1,A2:

a1 + a12 + a2 ≡ 0⇒ A1 3 a1 + a12 ≡ −a2 ∈ A2.

Remark: three Boolean algebras can nonlinearly amalgamate.
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Characterizing linear amalgamation

Theorem (informal)

Assume V is a “reasonable” class of structures in which every two
overlapping structures amalgamate. Then, overlapping structures
A1,A2, . . . ,An ∈ V linearly amalgamate in V if and only if,

for all m < n and all terms s, t generated by Am+1 ∩
⋃m

i=1 Ai ,

1. if s = t in Am+1, then s = t is already implied by how
A1 ∩ Am+1, . . . ,Am ∩ Am+1 overlap,

2. if s = t is implied by how A1, . . . ,Am overlap, then s = t is
already implied by how A1 ∩ Am+1, . . . ,Am ∩ Am+1 overlap,
and

3. if k ≤ m, u ∈ Ak , and s = u is implied by how A1, . . . ,Am

overlap, then already u ∈ Ak ∩ Am+1.

Condition 1 says Am+1 does not newly equate distinct “old” terms.
Conditions 2 and 3 are closure conditions on Am+1. In Part II,
elementary substructures, which satisfy “every” finitary closure
condition, will be used to satisfy Conditions 2 and 3.
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Characterizing linear amalgamation

Theorem (more formal)

Assume V is a class of structures such that:

I V is closed with respect to isomorphism,

I pushouts are well-defined in V, and

I every two overlapping structures in V amalgamate in V.

Then, overlapping structures A1,A2, . . . ,An ∈ V linearly
amalgamate in V if and only if:

1.
Ðm

i=1 (id : Ai ∩ Am+1 → Am+1) :
Ðm

i=1(Ai ∩ Am+1)→ Am+1

is injective for all m < n,

2.
Ðm

i=1 (id : Ai ∩ Am+1 → Ai ) :
Ðm

i=1(Ai ∩ Am+1)→
Ðm

i=1 Ai

is injective for all m < n, and

3. for all k ≤ m < n, the range of
Ðm

i=1 (id : Ai ∩ Am+1 → Ai ),
intersected with the range of

Ð

k : Ak →
Ðm

i=1 Ai , is a subset
of the image

Ð

k [Ak ∩ Am+1].
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Open Problems

• Given n ≥ 4, is there an interesting example of a class in which
every n but not every n + 1 overlapping structures amalgamate?

• (B.H. and H. Neumann, 1953) If finitely many overlapping finite
groups are amalgamated by a group, are they amalgamated by a
finite group?

• Given n ≥ 3, is there an algorithm for deciding whether n
arbitrary overlapping finite groups amalgamate?

• Investigate “weak” amalgamation of Boolean algebras where it’s
okay to equate distinct elements of Ai ∪ Aj but not okay to equate
distinct elements of Ai .

(The Neumanns’ 1953 paper has an example of four abelian
groups that do not weakly amalgamate in the above sense.)
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