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Independence and relative completeness
Definition
» A < B means A is a Boolean subalagebra of B.
» A= B means A and B are isomorphic Boolean alagebras.
» If SCA then (S)=({B<A | SCB}.
> S C Ais independent if, for all distinct xi,...,Xm+n € S,

XIAX2 A AXm L Xma1 V Xma2 VooV Xman-

> Aif free if A= (S) for some independent S C A.

> A <,. B means A< B and A is relatively complete, that is,
for every b € B, there exists max{a € A | a < b}.

Remark
» Up to isomorphism, free Boolean algebras are exactly the
clopen algebras of generalized Cantor spaces 2~.
» The stone dual of a relative complete subalgebra is a

continuous open surjection.
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Projective Boolean algebras

Convention: Unless stated otherwise, all maps between Boolean
algebras are Boolean homormorphisms and all maps between
topological spaces are continuous.

Theorem
For each Boolean algebra A, the following are equivalent.

» A is projective, that is, for every f: A — B/I, there is
g: A— B such that g/l = f.
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» The Stone space X = UIt(A) is an injective object, that is, for
every compact Hausdorff O-dimensional Z, closed Y C Z, and
f: Y —= X, thereis g: Z — X extending f.

> A is retract of a free Boolean algebra F, that is, there is
r: F— A such that A~ A" and r(a) = a for alla € A'.

» The Stone space X = Ult(A) is a retract of some 2", that is,
there is r: 2% — X' such that X = X’ and r(x) = x for all
xeX.
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Properties of projective Boolean algebras
A few preservation properties:
> A retract of a projective Boolean algebra is projective.
» A coproduct of projective Boolean algebras is projective.
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» A coproduct of projective Boolean algebras is projective.
Countable = projective = ccc:
» Every closed subspace of 2% is a retract of 2¥.
» Every continuous image of 2% has the ccc.

Theorem (Stepin)

If A is projective, |A| > N1, and no ultrafilter of A is generated by
a set of size less than |A|, then A is free.

Theorem (Koppelberg)

A Boolean algebra A is projective iff it is tightly rc-filtered, that is,
there is transfinite sequence (xo | o < n) such that

A= ({xa | @ <n}) and, forall o <,

({xs | B<a}) <oe({xg | B<a+1}).

3/18



Another view of projective Boolean algebras
Definition
> [A]"™ denotes the set of all countable subsets of A.

> £ C [A]"™ is cofinal if for every every S € [A]™™ there is
some T € Esuchthat SC T.

> & C [A™™ is closed if | JC € & for all countable chains C C £.

Remark. For each closed cofinal £, there are functions f,: A" — A
for n < w such that, for every B € [A]™, if £,[B"] C B for all n,
then B € £.
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> & C [A™™ is closed if | JC € & for all countable chains C C £.

Remark. For each closed cofinal £, there are functions f,: A" — A
for n < w such that, for every B € [A]"™, if £,[B"] C B for all n,
then B € £.

Theorem (Séepin, c. 1980)
» A Boolean algebra A is projective iff there is a closed cofinal
& C [AI™™ such that (JS) <. A forall S C €.

» Among Boolean algebras of size X, but not among those of
size N1, there exists A that is not projective but is rc-filtered,
that is, such that S <,.. A for all S in some closed cofinal

£ c [A™M.
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Projective Boolean algebras of size N,

Question (Geschke, 2002)

Suppose A is a Boolean algebra with is doubly rc-filtered, that is,
such that (SU T) <. A for all S, T in some closed cofinal

£ C [A™™. Must A be projective?
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> A Boolean algebra A of size < N, is projective iff there is a
closed cofinal £ C [A]<N1 such that (S U---US,) <, A for
all 51,...,5, € &.

» A Boolean algebra A of size > N, is projective iff there is a
closed cofinal €& C [A]<N1 such that (S U---U Sp) < A for
allm< wand 51,...,5, € €.
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My motivation to study higher amalgamation
e Answering Geschke's question requires constructing a Boolean
algebra of size N3.
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N2 X € Xi.

Corollary

If D is directed, every X € D is countable, and || JD| > N3, there
exist Xy, X1, Xo C D such that {X; | i <3} is not a A-system.

e So, | have to amalgamate non-A-systems.
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» Let 0 denote an uncountable regular cardinal large enough for
the argument at hand.
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{ANM | M= $H}N[A~™ contains a closed and cofinal
subset of [A]~™" (provided A € H(6)).

If D is directed and M < § for all M € D, then D < $.
If M,N < $, then M NN < $. (This is where | use Cy.)
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Davies sequences

Definition
A Davies sequence (a.k.a. a sage Davies tree; a.k.a. a long
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High-level construction strategy
Theorem (M., 2008)

For each ordinal «, there is an {a}-definable finite interval
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0. A=U{As | a<wn}.
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A new way to build an N,-sized algebra A:
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1. (Ma)a<w, will be a Davies sequence with (Ag)g<q € M.
2. An C M, and A, ﬂUﬁ<a Mg C UB<QA5.
3. A, must amalgamate up to n overlapping countable algebras

Asi=|J{As | BeZi(a)nM,}.

Requirements 1-3 ensure that {A, | @ < w,} and
{As | B € Ii(a) N My} will be directed.
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How to guarantee amalgamation
Because any two overlapping Boolean algebras amalgamate, it is
sufficient that Aa 0, Aa,1; - - - s Aa,(a)—1 Satisfy the following three
conditions for linear amalgamation (from Part | of this talk):

For all i < T1(«) and all terms s, t generated by A, ; N UJ-<,-A,1J:
(a) If s=tin Ay, then s =t is already implied by how
Aao N Ay, Aai—1 N Aq,i overlap.
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(a) If s=tin Ay, then s =t is already implied by how

Aao N Agis- - Aai—1 N Aq,i overlap.
(b) If s =t is implied by how A, g, ..., Aq,i—1 overlap, then it is
already implied by how A, 0N Ay, ..., Aqi—1 N Aq,i overlap.

(c) If k <i, u€ Ay and s = uis implied by how
Aa0;---,Aqi—1 overlap, then already u € A, x N Aq,i-

Conditions (b) and (c) are closure conditions on A, ; and follow
from inductively assuming Requirements 1-3 for all 8 < «.

Condition (a) follows from choosing (Ag)s<q such that:
4. For all terms p, g generated by UJ<-‘ Agj, if p=gqin Ag,
then p = q is already implied by how Agp, 5 Ag(8)-1

overlap. 10/18



Boolean algebra construction strategy
e Recall that a pushout [{;_,, Bi of overlapping algebraic
structures By, ..., Bn_1 is generated by a disjoint union of copies
ei(B;) of B;j and relations saying that each e; is an isomorphism
and ej(x) = ¢gj(y) forall i <j <mand x,y € B;N B;.
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1. (Ma)a<w, will be a Davies sequence with (Ag)g<q € Mq.
2. A, C M, and A, ﬂU5<a Mg C U5<aA5.

where Ay ; = | J{Ag | B € Zi(e) N Mu}.

e If requirements 1-4 are met for o/ < «, then:
» Each {Ag | B € Zi(a) N M,} is directed.
> We may choose [H]; (4 Aa,j such that
Aa,i < jEs Aa,j < j<'i(a) Aa,j foralliescC _I(Oé)
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Strategy for answering's Geschke's question

0. A=U{As | @ <wpy} where n > 3.
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0. A=U{As | @ <wpy} where n > 3.
1. (Ma)a<w, will be a Davies sequence with (Ag)g<q € Mq.
2. A, C M, and A, ﬂUB<a Mz C U5<QAB-
344 Aai < Wies Aai < Bjera) Aay < Aa for all i € s € TI(a)

where A, ; = U{Ag | B €Zi(a) N M,}.

5. [Hjes Aaj Sre Aq for all s C TT(a) of size less than n.
6. () Aa Zre A if T(a) = n.

e Condition 5 (and n > 3) ensure that A is doubly rc-filtered.

e Condition 6 ensures that A is not projective.
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How to achieve conditions 5 and 6
5. Hjes Aaj Sre Aq for all s C TT(a) of size less than n.
6. J<-[(Oc) Aa,_/ grc Aa if _[(OZ) = n.

e The “gadget” that accomplishes conditions 5 and 6 is (the Stone
dual of) any perfect subset P of (2¥)" x 2 such that, for all k < n:
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» Let P=(Py x {0})U(P1 x {1})
where P, = {(x,-),-<,, | DicnXi € Kh}
where (X; + Xj)m = (Xi)m + (Xj)m mod 2.
> T\ (k) is open: given > . x; € Ky and x; = y; for i # k,
choose yi = xi + Z#k(x,- +yi) & Xk

e Verifying Condition 5 also requires some tricky lemmas about
how and <., interact.
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Some useful coherence properties
Assume 7 is an ordinal and, for all « < n and i < T(«):
1. (My)a<y is a Davies sequence with (Ag)g<q € M,.
2. Aq C My and Ay N Ugoo Ms C Uy As.
3. Aa 2 Aai = U{As | B € Zi(a) N Ma}.

Then, for all a <7, i <j < T(«), s C N«), and E C #:
> If A, C UﬁeEAﬁ, then A, C Ag for some 3 € E.
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The easier half of the Main Theorem
If:

A'is a Boolean algebra of size < X, and there is a closed cofinal
EC [A]<N1 such that (S U---US,) <;c Aforall 51,...,5, €€,

then A is projective.
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EC [A]<Nl such that (S U---US,) <;c Aforall 51,...,5, €€,

then A is projective.

Proof.
» Let (M,)a<w, be a Davies sequence with £ € M.
> Let A, = AN M,.

> Then (U{As | 6 € anMa}) = (Uperoy Ani) Se An

By elementarity, <U5<a A5> <;c A.
Haydon's theorem: A is projective iff A is of the form

<Ua<n Ca> where

» each C, is countable and
> <Uﬁ<a C»3> Sre <UB<04+1 Cﬁ>'

vV Yy
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A finitary characterization of projective Boolean algebras

Theorem (M., arXiv:1607.07944)

A Boolean algebra A is projective if and only if there exists D such
that:

» D s a directed set of finite subalgebras of A,
» |UD = A, and

» forallm< wandall By,...,Bn_1 ED
for all terms s, t generated by | J;_,, B
ifs=tinA,

then s =t is already implied by how By, ... B;,—1 overlap.

The proof uses lemmas about how and <,. interact, and
Koppelberg's representation of any projective A as
A= ({xa | @ <n}) where

({xs | B<a}) <ee ({xs | B<a+1}).
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An open problem

Suppose that A has the ternary SFN
(where SFN = strong Freese-Nation property), that is,
> D is a directed set of finite Boolean algebras,
» UD=A and
» forallm<3andall By,...,Bm_1 ED,
for all terms s, t generated by | J;

ifs=tinA,
then s = t is already implied by how By, ... B;,—1 overlap.

I<m

Must A be projective?

» | know that the following two implications are true:
projective = ternary SFN = doubly rc-filtered.
» | know that at least one of them is strict. But which?
» | know that neither is strict for Boolean algebras of size < Nj.
» | know that both of the following implications are strict:

projective = binary SFN = rc-filtered.
17/18



Another open problem
Stepin’s examples of rc-filtered non-projective Boolean algebras
include the clopen algebra of the symmetric square of 2*2. Is there
a similarly “natural” example of a doubly rc-filtered non-projective
Boolean algebra?
» Main obstacle: Stepin uses functors F: Bool — Bool for
which
F(A)B F(B) 2 F(AHE B).
This is necessary for any “natural” F that breaks the doubly
rc-filtered property while preserving the rc-filtered property.
» |s there a “natural” F: Bool — Bool such that, for all A, B,

F(A)B F(B) = F(AHE B),
but for some Ag, A1, A>,
F ( A,-) # HF(A)?
i<3 i<3
(Recall that [H{; 5 A; is not (Ag HH A1) H Az in general.)
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