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Independence and relative completeness

Definition
I A ≤ B means A is a Boolean subalagebra of B.

I A ∼= B means A and B are isomorphic Boolean alagebras.

I If S ⊂ A, then 〈S〉 =
⋂
{B ≤ A | S ⊂ B}.

I S ⊂ A is independent if, for all distinct x1, . . . , xm+n ∈ S ,

x1 ∧ x2 ∧ · · · ∧ xm 6≤ xm+1 ∨ xm+2 ∨ · · · ∨ xm+n.

I A if free if A = 〈S〉 for some independent S ⊂ A.

I A ≤rc B means A ≤ B and A is relatively complete, that is,
for every b ∈ B, there exists max{a ∈ A | a ≤ b}.

Remark
I Up to isomorphism, free Boolean algebras are exactly the

clopen algebras of generalized Cantor spaces 2κ.
I The stone dual of a relative complete subalgebra is a

continuous open surjection.
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Projective Boolean algebras

Convention: Unless stated otherwise, all maps between Boolean
algebras are Boolean homormorphisms and all maps between
topological spaces are continuous.

Theorem
For each Boolean algebra A, the following are equivalent.

I A is projective, that is, for every f : A→ B/I , there is
g : A→ B such that g/I = f .

I The Stone space X = Ult(A) is an injective object, that is, for
every compact Hausdorff 0-dimensional Z , closed Y ⊂ Z, and
f : Y → X, there is g : Z → X extending f .

I A is retract of a free Boolean algebra F , that is, there is
r : F → A′ such that A ∼= A′ and r(a) = a for all a ∈ A′.

I The Stone space X = Ult(A) is a retract of some 2κ, that is,
there is r : 2κ → X ′ such that X ∼= X ′ and r(x) = x for all
x ∈ X ′.
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Properties of projective Boolean algebras
A few preservation properties:
I A retract of a projective Boolean algebra is projective.
I A coproduct of projective Boolean algebras is projective.

Countable ⇒ projective ⇒ ccc:
I Every closed subspace of 2ω is a retract of 2ω.
I Every continuous image of 2κ has the ccc.

Theorem (Ščepin)

If A is projective, |A| ≥ ℵ1, and no ultrafilter of A is generated by
a set of size less than |A|, then A is free.

Theorem (Koppelberg)

A Boolean algebra A is projective iff it is tightly rc-filtered, that is,
there is transfinite sequence (xα | α < η) such that
A = 〈{xα | α < η}〉 and, for all α < η,

〈{xβ | β < α}〉 ≤rc 〈{xβ | β < α + 1}〉 .
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If A is projective, |A| ≥ ℵ1, and no ultrafilter of A is generated by
a set of size less than |A|, then A is free.

Theorem (Koppelberg)

A Boolean algebra A is projective iff it is tightly rc-filtered, that is,
there is transfinite sequence (xα | α < η) such that
A = 〈{xα | α < η}〉 and, for all α < η,

〈{xβ | β < α}〉 ≤rc 〈{xβ | β < α + 1}〉 .

3 / 18



Another view of projective Boolean algebras

Definition
I [A]<ℵ1 denotes the set of all countable subsets of A.

I E ⊂ [A]<ℵ1 is cofinal if for every every S ∈ [A]<ℵ1 there is
some T ∈ E such that S ⊂ T .

I E ⊂ [A]<ℵ1 is closed if
⋃
C ∈ E for all countable chains C ⊂ E .

Remark. For each closed cofinal E , there are functions fn : An → A
for n < ω such that, for every B ∈ [A]<ℵ1 , if fn[Bn] ⊂ B for all n,
then B ∈ E .

Theorem (Ščepin, c. 1980)

I A Boolean algebra A is projective iff there is a closed cofinal
E ⊂ [A]<ℵ1 such that 〈

⋃
S〉 ≤rc A for all S ⊂ E .

I Among Boolean algebras of size ℵ2, but not among those of
size ℵ1, there exists A that is not projective but is rc-filtered,
that is, such that S ≤rc A for all S in some closed cofinal
E ⊂ [A]<ℵ1 .
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Projective Boolean algebras of size ℵn
Question (Geschke, 2002)

Suppose A is a Boolean algebra with is doubly rc-filtered, that is,
such that 〈S ∪ T 〉 ≤rc A for all S ,T in some closed cofinal
E ⊂ [A]<ℵ1 . Must A be projective?

Main Theorem (M., arXiv:1607.07944)

The answer is, “no.” Moreover, for each n < ω:

I There is a non-projective Boolean algebra A with size ℵn and
a closed cofinal E ⊂ [A]<ℵ1 such that 〈S1 ∪ · · · ∪ Sn−1〉 ≤rc A
for all S1, . . . ,Sn−1 ∈ E .

I A Boolean algebra A of size ≤ ℵn is projective iff there is a
closed cofinal E ⊂ [A]<ℵ1 such that 〈S1 ∪ · · · ∪ Sn〉 ≤rc A for
all S1, . . . ,Sn ∈ E .

I A Boolean algebra A of size ≥ ℵω is projective iff there is a
closed cofinal E ⊂ [A]<ℵ1 such that 〈S1 ∪ · · · ∪ Sm〉 ≤rc A for
all m < ω and S1, . . . ,Sm ∈ E .
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My motivation to study higher amalgamation
• Answering Geschke’s question requires constructing a Boolean
algebra of size ℵ3.

• My construction is a directed union of overlapping countable
Boolean algebras.

Definition
A nonempty family of sets D is directed if for every two X ,Y ∈ D
there exists Z ∈ D such that X ∪ Y ⊂ Z .

Theorem
If D is directed, every X ∈ D is countable, and |

⋃
D| ≥ ℵn, then

there exist X0, . . . ,Xn−1 ∈ D such that, for each i < n,⋂
j 6=i Xj 6⊂ Xi .

Corollary

If D is directed, every X ∈ D is countable, and |
⋃
D| ≥ ℵ3, there

exist X0,X1,X2 ⊂ D such that {Xi | i < 3} is not a ∆-system.

• So, I have to amalgamate non-∆-systems.
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Elementary submodels

I Let θ denote an uncountable regular cardinal large enough for
the argument at hand.

I H(θ) is the set of all sets x satisfying |x | < θ and
∀y ∈ x |y | < θ and ∀y ∈ x ∀z ∈ y |z | < θ and . . .

I (H(θ),∈) satisfies all the axioms of ZFC except possibly Power
Set, but it has enough power sets for the argument at hand.

I Let H = (H(θ),∈,@θ) for some well-ordering @θ of θ.

I We say M ⊂ H(θ) is an elementary submodel and write
M ≺ H if x ∈ M for every x ∈ H(θ) that is definable in H by
a first-order {∈,@θ}-formula with parameters only from M.

I {A ∩M | M ≺ H} ∩ [A]<ℵ1 contains a closed and cofinal
subset of [A]<ℵ1 (provided A ∈ H(θ)).

I If D is directed and M ≺ H for all M ∈ D, then
⋃
D ≺ H.

I If M,N ≺ H, then M ∩ N ≺ H. (This is where I use @θ.)
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Davies sequences

Definition
A Davies sequence (a.k.a. a sage Davies tree; a.k.a. a long
ω1-approximation sequence) is a transfinite sequence (Mβ)β<α
such that:

I Mβ ≺ H,

I |Mβ| = ℵ0, and

I The sequence (Mγ)γ<β is an element of Mβ.

Warning: if α > ω1, then (Mβ)β<α is not a chain:
if δ = ω1 ∩Mω1 , then δ ∈ Mδ \Mω1

and ω2 ∩
⋃
β<ω1

Mβ ∈ Mω1 \Mδ.
In general, Mγ ( Mβ ⇔ Mγ ∈ Mβ ⇔ γ ∈ β ∩Mβ.

Theorem (M., 2008)

For each ordinal α, there is an {α}-definable finite interval
partition (Ii (α) | i < k(α)) of α such that, for every Davies
sequence (Mβ)β<α, {Mβ | β ∈ Ii (α)} is directed.
Moreover, if α < ωn, then k(α) ≤ n; if α = |α|, then k(α) ≤ 1.
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High-level construction strategy

Theorem (M., 2008)

For each ordinal α, there is an {α}-definable finite interval
partition (Ii (α) | i < k(α)) of α such that, for every Davies
sequence (Mβ)β<α, {Mβ | β ∈ Ii (α)} is directed.
Moreover, if α < ωn, then k(α) ≤ n; if α = |α|, then k(α) ≤ 1.

A new way to build an ℵn-sized algebra A:

0. A =
⋃
{Aα | α < ωn}.

1. (Mα)α<ωn will be a Davies sequence with (Aβ)β<α ∈ Mα.

2. Aα ⊂ Mα and Aα ∩
⋃
β<αMβ ⊂

⋃
β<α Aβ.

3. Aα must amalgamate up to n overlapping countable algebras

Aα,i =
⋃
{Aβ | β ∈ Ii (α) ∩Mα}.

Requirements 1–3 ensure that {Aα | α < ωn} and
{Aβ | β ∈ Ii (α) ∩Mα} will be directed.
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How to guarantee amalgamation
Because any two overlapping Boolean algebras amalgamate, it is
sufficient that Aα,0,Aα,1, . . . ,Aα,k(α)−1 satisfy the following three
conditions for linear amalgamation (from Part I of this talk):

For all i < k(α) and all terms s, t generated by Aα,i ∩
⋃

j<i Aα,j :

(a) If s = t in Aα,i , then s = t is already implied by how
Aα,0 ∩ Aα,i , . . . ,Aα,i−1 ∩ Aα,i overlap.

(b) If s = t is implied by how Aα,0, . . . ,Aα,i−1 overlap, then it is
already implied by how Aα,0 ∩ Aα,i , . . . ,Aα,i−1 ∩ Aα,i overlap.

(c) If k < i , u ∈ Aα,k , and s = u is implied by how
Aα,0, . . . ,Aα,i−1 overlap, then already u ∈ Aα,k ∩ Aα,i .

Conditions (b) and (c) are closure conditions on Aα,i and follow
from inductively assuming Requirements 1-3 for all β < α.

Condition (a) follows from choosing (Aβ)β<α such that:

4. For all terms p, q generated by
⋃

j<k(β) Aβ,j , if p = q in Aβ,
then p = q is already implied by how Aβ,0, . . . ,Aβ,k(β)−1
overlap.
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Boolean algebra construction strategy
• Recall that a pushout

Ð

i<m Bi of overlapping algebraic
structures B0, . . . ,Bm−1 is generated by a disjoint union of copies
ei (Bi ) of Bi and relations saying that each ei is an isomorphism
and ei (x) = ej(y) for all i < j < m and x , y ∈ Bi ∩ Bj .

• A new way to build an ℵn-sized Boolean algebra A:

0. A =
⋃
{Aα | α < ωn}.

1. (Mα)α<ωn will be a Davies sequence with (Aβ)β<α ∈ Mα.

2. Aα ⊂ Mα and Aα ∩
⋃
β<αMβ ⊂

⋃
β<α Aβ.

3.+4. Aα,i ≤
Ð

j<k(α) Aα,j ≤ Aα for all i < k(α)

where Aα,i =
⋃
{Aβ | β ∈ Ii (α) ∩Mα}.

• If requirements 1–4 are met for α′ < α, then:

I Each {Aβ | β ∈ Ii (α) ∩Mα} is directed.
I We may choose

Ð

j<k(α) Aα,j such that
Aα,i ≤

Ð

j∈s Aα,j ≤
Ð

j<k(α) Aα,j for all i ∈ s ⊂ k(α).
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Strategy for answering’s Geschke’s question

0′. A =
⋃
{Aα | α < ωn} where n ≥ 3.

1. (Mα)α<ωn will be a Davies sequence with (Aβ)β<α ∈ Mα.

2. Aα ⊂ Mα and Aα ∩
⋃
β<αMβ ⊂

⋃
β<α Aβ.

3.+4′. Aα,i ≤
Ð

j∈s Aα,j ≤
Ð

j<k(α) Aα,j ≤ Aα for all i ∈ s ⊂ k(α)

where Aα,i =
⋃
{Aβ | β ∈ Ii (α) ∩Mα}.

5.
Ð

j∈s Aα,j ≤rc Aα for all s ⊂ k(α) of size less than n.

6.
Ð

j<k(α) Aα,j 6≤rc Aα if k(α) = n.

• Condition 5 (and n ≥ 3) ensure that A is doubly rc-filtered.

• Condition 6 ensures that A is not projective.
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How to achieve conditions 5 and 6
5.

Ð

j∈s Aα,j ≤rc Aα for all s ⊂ k(α) of size less than n.
6.

Ð

j<k(α) Aα,j 6≤rc Aα if k(α) = n.

• The “gadget” that accomplishes conditions 5 and 6 is (the Stone
dual of) any perfect subset P of (2ω)n× 2 such that, for all k < n:

I πn\{k} : P → (2ω)n\{k}, ((xi )i<n, y) 7→ (xi )i 6=k , is open.
I πn : P → (2ω)n, ((xi )i<n, y) 7→ (xi )i<n, is surjective but not

open.

• An example construction of P:
I Let K0 ∪ K1 = 2ω where each Kh is perfect but not open.
I Let P = (P0 × {0}) ∪ (P1 × {1})

where Ph =
{

(xi )i<n |
∑

i<n xi ∈ Kh

}
where (xi + xj)m = (xi )m + (xj)m mod 2.

I πn\{k} is open: given
∑

i<n xi ∈ Kh and xi ≈ yi for i 6= k,
choose yk = xk +

∑
i 6=k(xi + yi ) ≈ xk .

• Verifying Condition 5 also requires some tricky lemmas about
how

Ð

and ≤rc interact.
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Some useful coherence properties
Assume η is an ordinal and, for all α < η and i < k(α):

1. (Mα)α<η is a Davies sequence with (Aβ)β<α ∈ Mα.

2. Aα ⊂ Mα and Aα ∩
⋃
β<αMβ ⊂

⋃
β<α Aβ.

3′′. Aα ) Aα,i =
⋃
{Aβ | β ∈ Ii (α) ∩Mα}.

Then, for all α < η, i < j < k(α), s ⊂ k(α), and E ⊂ η:

I If Aα ⊂
⋃
β∈E Aβ, then Aα ⊂ Aβ for some β ∈ E .

I There exists D ⊂ η such that⋃
β∈D Aβ =

⋂
β∈E Aβ and {Aβ | β ∈ D} is directed.

I Hence, there exists D ⊂ η such that⋃
β∈D Aβ =

⋂
k∈s Aα,k and {Aβ | β ∈ D} is directed.

I If {Aβ | β ∈ E} is directed, then:
Aα ⊂ Aβ for some β ∈ E or
Aα ∩

⋃
β∈E Aβ ⊂ Aα,k for some k < k(α).

I
⋃
{Aβ | β ∈ Ii (α)} ∈ Mα ∩Mβ for all β ∈ Ij(α).
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The easier half of the Main Theorem
If:

A is a Boolean algebra of size ≤ ℵn and there is a closed cofinal
E ⊂ [A]<ℵ1 such that 〈S1 ∪ · · · ∪ Sn〉 ≤rc A for all S1, . . . ,Sn ∈ E ,

then A is projective.

Proof.
I Let (Mα)α<ωn be a Davies sequence with E ∈ M0.

I Let Aα = A ∩Mα.

I Then 〈
⋃
{Aβ | β ∈ α ∩Mα}〉 =

〈⋃
i<k(α) Aα,i

〉
≤rc Aα.

I By elementarity,
〈⋃

β<α Aβ

〉
≤rc A.

I Haydon’s theorem: A is projective iff A is of the form〈⋃
α<η Cα

〉
where

I each Cα is countable and
I
〈⋃

β<α Cβ
〉
≤rc

〈⋃
β<α+1 Cβ

〉
.
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I Let Aα = A ∩Mα.

I Then 〈
⋃
{Aβ | β ∈ α ∩Mα}〉 =

〈⋃
i<k(α) Aα,i

〉
≤rc Aα.

I By elementarity,
〈⋃

β<α Aβ

〉
≤rc A.

I Haydon’s theorem: A is projective iff A is of the form〈⋃
α<η Cα

〉
where

I each Cα is countable and
I
〈⋃

β<α Cβ
〉
≤rc

〈⋃
β<α+1 Cβ

〉
.
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A finitary characterization of projective Boolean algebras

Theorem (M., arXiv:1607.07944)

A Boolean algebra A is projective if and only if there exists D such
that:

I D is a directed set of finite subalgebras of A,

I
⋃
D = A, and

I for all m < ω and all B0, . . . ,Bm−1 ∈ D,
for all terms s, t generated by

⋃
i<m Bi ,

if s = t in A,
then s = t is already implied by how B0, . . .Bm−1 overlap.

The proof uses lemmas about how
Ð

and ≤rc interact, and
Koppelberg’s representation of any projective A as
A = 〈{xα | α < η}〉 where

〈{xβ | β < α}〉 ≤rc 〈{xβ | β < α + 1}〉 .
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An open problem
Suppose that A has the ternary SFN
(where SFN = strong Freese-Nation property), that is,

I D is a directed set of finite Boolean algebras,

I
⋃
D = A, and

I for all m ≤ 3 and all B0, . . . ,Bm−1 ∈ D,
for all terms s, t generated by

⋃
i<m Bi ,

if s = t in A,
then s = t is already implied by how B0, . . .Bm−1 overlap.

Must A be projective?

I I know that the following two implications are true:

projective ⇒ ternary SFN ⇒ doubly rc-filtered.

I I know that at least one of them is strict. But which?

I I know that neither is strict for Boolean algebras of size ≤ ℵ2.

I I know that both of the following implications are strict:

projective ⇒ binary SFN ⇒ rc-filtered.
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Another open problem
Ščepin’s examples of rc-filtered non-projective Boolean algebras
include the clopen algebra of the symmetric square of 2ω2 . Is there
a similarly “natural” example of a doubly rc-filtered non-projective
Boolean algebra?
I Main obstacle: Ščepin uses functors F : Bool→ Bool for

which
F (A)� F (B) 6∼= F (A� B).

This is necessary for any “natural” F that breaks the doubly
rc-filtered property while preserving the rc-filtered property.

I Is there a “natural” F : Bool→ Bool such that, for all A,B,

F (A)� F (B) ∼= F (A� B),

but for some A0,A1,A2,

F

(
ð

i<3

Ai

)
6∼=

ð

i<3

F (Ai )?

(Recall that
Ð

i<3 Ai is not (A0 � A1)� A2 in general.)
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