Higher-order amalgamation of algebraic structures, Part II

David Milovich http://dkmj.org

Welkin Sciences Colorado Springs, CO

DU Algebra and Logic Seminar Oct. 25, 2019

Independence and relative completeness

Definition

- ▶ $A \le B$ means A is a Boolean subalagebra of B.
- ▶ $A \cong B$ means A and B are isomorphic Boolean alagebras.
- ▶ If $S \subset A$, then $\langle S \rangle = \bigcap \{B \leq A \mid S \subset B\}$.
- ▶ $S \subset A$ is independent if, for all distinct $x_1, \ldots, x_{m+n} \in S$,

$$x_1 \wedge x_2 \wedge \cdots \wedge x_m \nleq x_{m+1} \vee x_{m+2} \vee \cdots \vee x_{m+n}.$$

- ▶ *A* if free if $A = \langle S \rangle$ for some independent $S \subset A$.
- ▶ $A \leq_{\mathrm{rc}} B$ means $A \leq B$ and A is <u>relatively complete</u>, that is, for every $b \in B$, there exists $\max\{a \in A \mid a \leq b\}$.

Remark

- ▶ Up to isomorphism, free Boolean algebras are exactly the clopen algebras of generalized Cantor spaces 2^{κ} .
- ► The stone dual of a relative complete subalgebra is a continuous open surjection.

Convention: Unless stated otherwise, all maps between Boolean algebras are Boolean homormorphisms and all maps between topological spaces are continuous.

Theorem

For each Boolean algebra A, the following are equivalent.

▶ A is <u>projective</u>, that is, for every $f: A \rightarrow B/I$, there is $g: A \rightarrow B$ such that g/I = f.

Convention: Unless stated otherwise, all maps between Boolean algebras are Boolean homormorphisms and all maps between topological spaces are continuous.

Theorem

For each Boolean algebra A, the following are equivalent.

- ▶ A is <u>projective</u>, that is, for every $f: A \rightarrow B/I$, there is $g: A \rightarrow B$ such that g/I = f.
- ▶ The Stone space X = Ult(A) is an <u>injective object</u>, that is, for every compact Hausdorff 0-dimensional Z, closed $Y \subset Z$, and $f: Y \to X$, there is $g: Z \to X$ extending f.

Convention: Unless stated otherwise, all maps between Boolean algebras are Boolean homormorphisms and all maps between topological spaces are continuous.

Theorem

For each Boolean algebra A, the following are equivalent.

- ▶ A is <u>projective</u>, that is, for every $f: A \rightarrow B/I$, there is $g: A \rightarrow B$ such that g/I = f.
- ▶ The Stone space X = Ult(A) is an <u>injective object</u>, that is, for every compact Hausdorff 0-dimensional Z, closed $Y \subset Z$, and $f: Y \to X$, there is $g: Z \to X$ extending f.
- A is retract of a free Boolean algebra F, that is, there is $r: F \to A'$ such that $A \cong A'$ and r(a) = a for all $a \in A'$.

Convention: Unless stated otherwise, all maps between Boolean algebras are Boolean homormorphisms and all maps between topological spaces are continuous.

Theorem

For each Boolean algebra A, the following are equivalent.

- ▶ A is <u>projective</u>, that is, for every $f: A \rightarrow B/I$, there is $g: A \rightarrow B$ such that g/I = f.
- ▶ The Stone space X = Ult(A) is an <u>injective object</u>, that is, for every compact Hausdorff 0-dimensional Z, closed $Y \subset Z$, and $f: Y \to X$, there is $g: Z \to X$ extending f.
- ▶ A is <u>retract</u> of a free Boolean algebra F, that is, there is $r: F \to A'$ such that $A \cong A'$ and r(a) = a for all $a \in A'$.
- ▶ The Stone space X = Ult(A) is a retract of some 2^{κ} , that is, there is $r: 2^{\kappa} \to X'$ such that $X \cong X'$ and r(x) = x for all $x \in X'$.

A few preservation properties:

- ▶ A retract of a projective Boolean algebra is projective.
- ▶ A coproduct of projective Boolean algebras is projective.

A few preservation properties:

- ► A retract of a projective Boolean algebra is projective.
- ▶ A coproduct of projective Boolean algebras is projective.

Countable \Rightarrow projective \Rightarrow ccc:

- Every closed subspace of 2^{ω} is a retract of 2^{ω} .
- Every continuous image of 2^{κ} has the ccc.

A few preservation properties:

- ► A retract of a projective Boolean algebra is projective.
- ▶ A coproduct of projective Boolean algebras is projective.

Countable \Rightarrow projective \Rightarrow ccc:

- Every closed subspace of 2^{ω} is a retract of 2^{ω} .
- Every continuous image of 2^{κ} has the ccc.

Theorem (Ščepin)

If A is projective, $|A| \ge \aleph_1$, and no ultrafilter of A is generated by a set of size less than |A|, then A is free.

A few preservation properties:

- ▶ A retract of a projective Boolean algebra is projective.
- ▶ A coproduct of projective Boolean algebras is projective.

Countable \Rightarrow projective \Rightarrow ccc:

- **E**very closed subspace of 2^{ω} is a retract of 2^{ω} .
- Every continuous image of 2^{κ} has the ccc.

Theorem (Ščepin)

If A is projective, $|A| \ge \aleph_1$, and no ultrafilter of A is generated by a set of size less than |A|, then A is free.

Theorem (Koppelberg)

A Boolean algebra A is projective iff it is <u>tightly rc-filtered</u>, that is, there is transfinite sequence $(x_{\alpha} \mid \alpha < \eta)$ such that $A = \langle \{x_{\alpha} \mid \alpha < \eta\} \rangle$ and, for all $\alpha < \eta$,

$$\langle \{x_{\beta} \mid \beta < \alpha\} \rangle \leq_{\mathrm{rc}} \langle \{x_{\beta} \mid \beta < \alpha + 1\} \rangle.$$

Another view of projective Boolean algebras

Definition

- \triangleright [A]^{< \aleph_1} denotes the set of all countable subsets of A.
- ▶ $\mathcal{E} \subset [A]^{<\aleph_1}$ is <u>cofinal</u> if for every every $S \in [A]^{<\aleph_1}$ there is some $T \in \mathcal{E}$ such that $S \subset T$.
- ▶ $\mathcal{E} \subset [A]^{<\aleph_1}$ is closed if $\bigcup \mathcal{C} \in \mathcal{E}$ for all countable chains $\mathcal{C} \subset \mathcal{E}$.

Remark. For each closed cofinal \mathcal{E} , there are functions $f_n \colon A^n \to A$ for $n < \omega$ such that, for every $B \in [A]^{<\aleph_1}$, if $f_n[B^n] \subset B$ for all n, then $B \in \mathcal{E}$.

Another view of projective Boolean algebras

Definition

- ▶ $[A]^{<\aleph_1}$ denotes the set of all countable subsets of A.
- ▶ $\mathcal{E} \subset [A]^{<\aleph_1}$ is <u>cofinal</u> if for every every $S \in [A]^{<\aleph_1}$ there is some $T \in \mathcal{E}$ such that $S \subset T$.
- ▶ $\mathcal{E} \subset [A]^{<\aleph_1}$ is closed if $\bigcup \mathcal{C} \in \mathcal{E}$ for all countable chains $\mathcal{C} \subset \mathcal{E}$.

Remark. For each closed cofinal \mathcal{E} , there are functions $f_n \colon A^n \to A$ for $n < \omega$ such that, for every $B \in [A]^{\leq \aleph_1}$, if $f_n[B^n] \subset B$ for all n, then $B \in \mathcal{E}$.

Theorem (Ščepin, c. 1980)

▶ A Boolean algebra A is projective iff there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle \bigcup \mathcal{S} \rangle \leq_{\mathrm{rc}} A$ for all $\mathcal{S} \subset \mathcal{E}$.

Another view of projective Boolean algebras

Definition

- \triangleright $[A]^{<\aleph_1}$ denotes the set of all countable subsets of A.
- ▶ $\mathcal{E} \subset [A]^{<\aleph_1}$ is <u>cofinal</u> if for every every $S \in [A]^{<\aleph_1}$ there is some $T \in \mathcal{E}$ such that $S \subset T$.
- \triangleright $\mathcal{E} \subset [A]^{<\aleph_1}$ is closed if $\bigcup \mathcal{C} \in \mathcal{E}$ for all countable chains $\mathcal{C} \subset \mathcal{E}$.

Remark. For each closed cofinal \mathcal{E} , there are functions $f_n \colon A^n \to A$ for $n < \omega$ such that, for every $B \in [A]^{\leq \aleph_1}$, if $f_n[B^n] \subset B$ for all n, then $B \in \mathcal{E}$.

Theorem (Ščepin, c. 1980)

- ▶ A Boolean algebra A is projective iff there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle \bigcup \mathcal{S} \rangle \leq_{\mathrm{rc}} A$ for all $\mathcal{S} \subset \mathcal{E}$.
- ▶ Among Boolean algebras of size \aleph_2 , but not among those of size \aleph_1 , there exists A that is not projective but is <u>rc-filtered</u>, that is, such that $S \leq_{\rm rc} A$ for all S in some closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$.

Question (Geschke, 2002)

Suppose A is a Boolean algebra with is <u>doubly rc-filtered</u>, that is, such that $\langle S \cup T \rangle \leq_{\operatorname{rc}} A$ for all S, T in some closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$. Must A be projective?

Question (Geschke, 2002)

Suppose A is a Boolean algebra with is doubly rc-filtered, that is, such that $\langle S \cup T \rangle \leq_{\mathrm{rc}} A$ for all S, T in some closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$. Must A be projective?

Main Theorem (M., arXiv:1607.07944)

The answer is, "no." Moreover, for each $n < \omega$:

▶ There is a non-projective Boolean algebra A with size \aleph_n and a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_{n-1} \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_{n-1} \in \mathcal{E}$.

Question (Geschke, 2002)

Suppose A is a Boolean algebra with is doubly rc-filtered, that is, such that $\langle S \cup T \rangle \leq_{\mathrm{rc}} A$ for all S, T in some closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$. Must A be projective?

Main Theorem (M., arXiv:1607.07944)

The answer is, "no." Moreover, for each $n < \omega$:

- ▶ There is a non-projective Boolean algebra A with size \aleph_n and a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_{n-1} \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_{n-1} \in \mathcal{E}$.
- ▶ A Boolean algebra A of size $\leq \aleph_n$ is projective iff there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_n \in \mathcal{E}$.

Question (Geschke, 2002)

Suppose A is a Boolean algebra with is doubly rc-filtered, that is, such that $\langle S \cup T \rangle \leq_{\mathrm{rc}} A$ for all S, T in some closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$. Must A be projective?

Main Theorem (M., arXiv:1607.07944)

The answer is, "no." Moreover, for each $n < \omega$:

- ▶ There is a non-projective Boolean algebra A with size \aleph_n and a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_{n-1} \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_{n-1} \in \mathcal{E}$.
- ▶ A Boolean algebra A of size $\leq \aleph_n$ is projective iff there is a closed cofinal $\mathcal{E} \subset [A]^{\leq \aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_n \in \mathcal{E}$.
- ▶ A Boolean algebra A of size $\geq \aleph_{\omega}$ is projective iff there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_m \rangle \leq_{\mathrm{rc}} A$ for all $m < \omega$ and $S_1, \ldots, S_m \in \mathcal{E}$.

ullet Answering Geschke's question requires constructing a Boolean algebra of size \aleph_3 .

- ullet Answering Geschke's question requires constructing a Boolean algebra of size \aleph_3 .
- My construction is a directed union of overlapping countable Boolean algebras.

- ullet Answering Geschke's question requires constructing a Boolean algebra of size \aleph_3 .
- My construction is a directed union of overlapping countable Boolean algebras.

Definition

A nonempty family of sets \mathcal{D} is <u>directed</u> if for every two $X,Y\in\mathcal{D}$ there exists $Z\in\mathcal{D}$ such that $X\cup Y\subset Z$.

Theorem

If \mathcal{D} is directed, every $X \in \mathcal{D}$ is countable, and $|\bigcup \mathcal{D}| \geq \aleph_n$, then there exist $X_0, \ldots, X_{n-1} \in \mathcal{D}$ such that, for each i < n, $\bigcap_{j \neq i} X_j \not\subset X_i$.

- Answering Geschke's question requires constructing a Boolean algebra of size \aleph_3 .
- My construction is a directed union of overlapping countable Boolean algebras.

Definition

A nonempty family of sets \mathcal{D} is <u>directed</u> if for every two $X,Y\in\mathcal{D}$ there exists $Z\in\mathcal{D}$ such that $X\cup Y\subset Z$.

Theorem

If \mathcal{D} is directed, every $X \in \mathcal{D}$ is countable, and $|\bigcup \mathcal{D}| \geq \aleph_n$, then there exist $X_0, \ldots, X_{n-1} \in \mathcal{D}$ such that, for each i < n, $\bigcap_{j \neq i} X_j \not\subset X_i$.

Corollary

If $\mathcal D$ is directed, every $X \in \mathcal D$ is countable, and $|\bigcup \mathcal D| \ge \aleph_3$, there exist $X_0, X_1, X_2 \subset \mathcal D$ such that $\{X_i \mid i < 3\}$ is not a Δ -system.

- \bullet Answering Geschke's question requires constructing a Boolean algebra of size $\aleph_3.$
- My construction is a directed union of overlapping countable Boolean algebras.

Definition

A nonempty family of sets \mathcal{D} is <u>directed</u> if for every two $X,Y\in\mathcal{D}$ there exists $Z\in\mathcal{D}$ such that $X\cup Y\subset Z$.

Theorem

If \mathcal{D} is directed, every $X \in \mathcal{D}$ is countable, and $|\bigcup \mathcal{D}| \geq \aleph_n$, then there exist $X_0, \ldots, X_{n-1} \in \mathcal{D}$ such that, for each i < n, $\bigcap_{j \neq i} X_j \not\subset X_i$.

Corollary

If \mathcal{D} is directed, every $X \in \mathcal{D}$ is countable, and $|\bigcup \mathcal{D}| \ge \aleph_3$, there exist $X_0, X_1, X_2 \subset \mathcal{D}$ such that $\{X_i \mid i < 3\}$ is not a Δ -system.

• So, I have to amalgamate non- Δ -systems.

Let θ denote an uncountable regular cardinal large enough for the argument at hand.

- Let θ denote an uncountable regular cardinal large enough for the argument at hand.
- ▶ $H(\theta)$ is the set of all sets x satisfying $|x| < \theta$ and $\forall y \in x \ |y| < \theta$ and $\forall y \in x \ \forall z \in y \ |z| < \theta$ and ...

- Let θ denote an uncountable regular cardinal large enough for the argument at hand.
- ▶ $H(\theta)$ is the set of all sets x satisfying $|x| < \theta$ and $\forall y \in x \ |y| < \theta$ and $\forall y \in x \ \forall z \in y \ |z| < \theta$ and ...
- ▶ $(H(\theta), \in)$ satisfies all the axioms of ZFC except possibly Power Set, but it has enough power sets for the argument at hand.

- Let θ denote an uncountable regular cardinal large enough for the argument at hand.
- ▶ $H(\theta)$ is the set of all sets x satisfying $|x| < \theta$ and $\forall y \in x \ |y| < \theta$ and $\forall y \in x \ \forall z \in y \ |z| < \theta$ and ...
- ▶ $(H(\theta), \in)$ satisfies all the axioms of ZFC except possibly Power Set, but it has enough power sets for the argument at hand.
- ▶ Let $\mathfrak{H} = (H(\theta), \in, \sqsubseteq_{\theta})$ for some well-ordering \sqsubseteq_{θ} of θ .

- Let θ denote an uncountable regular cardinal large enough for the argument at hand.
- ▶ $H(\theta)$ is the set of all sets x satisfying $|x| < \theta$ and $\forall y \in x \ |y| < \theta$ and $\forall y \in x \ \forall z \in y \ |z| < \theta$ and ...
- ▶ $(H(\theta), \in)$ satisfies all the axioms of ZFC except possibly Power Set, but it has enough power sets for the argument at hand.
- ▶ Let $\mathfrak{H} = (H(\theta), \in, \sqsubseteq_{\theta})$ for some well-ordering \sqsubseteq_{θ} of θ .
- ▶ We say $M \subset H(\theta)$ is an <u>elementary submodel</u> and write $M \prec \mathfrak{H}$ if $x \in M$ for every $x \in H(\theta)$ that is definable in \mathfrak{H} by a first-order $\{\in, \sqsubseteq_{\theta}\}$ -formula with parameters only from M.

- Let θ denote an uncountable regular cardinal large enough for the argument at hand.
- ▶ $H(\theta)$ is the set of all sets x satisfying $|x| < \theta$ and $\forall y \in x \ |y| < \theta$ and $\forall y \in x \ \forall z \in y \ |z| < \theta$ and ...
- ▶ $(H(\theta), \in)$ satisfies all the axioms of ZFC except possibly Power Set, but it has enough power sets for the argument at hand.
- ▶ Let $\mathfrak{H} = (H(\theta), \in, \sqsubseteq_{\theta})$ for some well-ordering \sqsubseteq_{θ} of θ .
- ▶ We say $M \subset H(\theta)$ is an <u>elementary submodel</u> and write $M \prec \mathfrak{H}$ if $x \in M$ for every $x \in H(\theta)$ that is definable in \mathfrak{H} by a first-order $\{\in, \sqsubseteq_{\theta}\}$ -formula with parameters only from M.
- ▶ $\{A \cap M \mid M \prec \mathfrak{H}\} \cap [A]^{<\aleph_1}$ contains a closed and cofinal subset of $[A]^{<\aleph_1}$ (provided $A \in H(\theta)$).

- Let θ denote an uncountable regular cardinal large enough for the argument at hand.
- ▶ $H(\theta)$ is the set of all sets x satisfying $|x| < \theta$ and $\forall y \in x \ |y| < \theta$ and $\forall y \in x \ \forall z \in y \ |z| < \theta$ and ...
- ▶ $(H(\theta), \in)$ satisfies all the axioms of ZFC except possibly Power Set, but it has enough power sets for the argument at hand.
- ▶ Let $\mathfrak{H} = (H(\theta), \in, \sqsubseteq_{\theta})$ for some well-ordering \sqsubseteq_{θ} of θ .
- ▶ We say $M \subset H(\theta)$ is an <u>elementary submodel</u> and write $M \prec \mathfrak{H}$ if $x \in M$ for every $x \in H(\theta)$ that is definable in \mathfrak{H} by a first-order $\{\in, \sqsubseteq_{\theta}\}$ -formula with parameters only from M.
- ▶ $\{A \cap M \mid M \prec \mathfrak{H}\} \cap [A]^{<\aleph_1}$ contains a closed and cofinal subset of $[A]^{<\aleph_1}$ (provided $A \in H(\theta)$).
- ▶ If \mathcal{D} is directed and $M \prec \mathfrak{H}$ for all $M \in \mathcal{D}$, then $\bigcup \mathcal{D} \prec \mathfrak{H}$.

- Let θ denote an uncountable regular cardinal large enough for the argument at hand.
- ▶ $H(\theta)$ is the set of all sets x satisfying $|x| < \theta$ and $\forall y \in x \ |y| < \theta$ and $\forall y \in x \ \forall z \in y \ |z| < \theta$ and ...
- ▶ $(H(\theta), \in)$ satisfies all the axioms of ZFC except possibly Power Set, but it has enough power sets for the argument at hand.
- ▶ Let $\mathfrak{H} = (H(\theta), \in, \sqsubseteq_{\theta})$ for some well-ordering \sqsubseteq_{θ} of θ .
- ▶ We say $M \subset H(\theta)$ is an <u>elementary submodel</u> and write $M \prec \mathfrak{H}$ if $x \in M$ for every $x \in H(\theta)$ that is definable in \mathfrak{H} by a first-order $\{\in, \sqsubseteq_{\theta}\}$ -formula with parameters only from M.
- ▶ $\{A \cap M \mid M \prec \mathfrak{H}\} \cap [A]^{<\aleph_1}$ contains a closed and cofinal subset of $[A]^{<\aleph_1}$ (provided $A \in H(\theta)$).
- ▶ If \mathcal{D} is directed and $M \prec \mathfrak{H}$ for all $M \in \mathcal{D}$, then $\bigcup \mathcal{D} \prec \mathfrak{H}$.
- ▶ If $M, N \prec \mathfrak{H}$, then $M \cap N \prec \mathfrak{H}$. (This is where I use \sqsubseteq_{θ} .)

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> ω_1 -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H},$
- $ightharpoonup |M_{\beta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma<\beta}$ is an element of M_{β} .

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> $\underline{\omega_1}$ -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H},$
- $ightharpoonup |M_{\beta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma<\beta}$ is an element of M_{β} .

Warning: if $\alpha > \omega_1$, then $(M_\beta)_{\beta < \alpha}$ is not a chain:

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> $\underline{\omega_1}$ -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H},$
- $ightharpoonup |M_{eta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma<\beta}$ is an element of M_{β} .

Warning: if $\alpha>\omega_1$, then $(M_\beta)_{\beta<\alpha}$ is not a chain: if $\delta=\omega_1\cap M_{\omega_1}$, then $\delta\in M_\delta\setminus M_{\omega_1}$

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> $\underline{\omega_1}$ -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H},$
- $ightharpoonup |M_{\beta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma<\beta}$ is an element of M_{β} .

Warning: if $\alpha>\omega_1$, then $(M_\beta)_{\beta<\alpha}$ is not a chain: if $\delta=\omega_1\cap M_{\omega_1}$, then $\delta\in M_\delta\setminus M_{\omega_1}$ and $\omega_2\cap\bigcup_{\beta<\omega_1}M_\beta\in M_{\omega_1}\setminus M_\delta$.

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> $\underline{\omega_1}$ -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H},$
- $ightharpoonup |M_{eta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma<\beta}$ is an element of M_{β} .

Warning: if $\alpha > \omega_1$, then $(M_\beta)_{\beta < \alpha}$ is not a chain: if $\delta = \omega_1 \cap M_{\omega_1}$, then $\delta \in M_\delta \setminus M_{\omega_1}$ and $\omega_2 \cap \bigcup_{\beta < \omega_1} M_\beta \in M_{\omega_1} \setminus M_\delta$. In general, $M_\gamma \subsetneq M_\beta \Leftrightarrow M_\gamma \in M_\beta \Leftrightarrow \gamma \in \beta \cap M_\beta$.

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> $\underline{\omega_1}$ -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H}$,
- $ightharpoonup |M_{eta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma<\beta}$ is an element of M_{β} .

Warning: if $\alpha > \omega_1$, then $(M_\beta)_{\beta < \alpha}$ is not a chain: if $\delta = \omega_1 \cap M_{\omega_1}$, then $\delta \in M_\delta \setminus M_{\omega_1}$ and $\omega_2 \cap \bigcup_{\beta < \omega_1} M_\beta \in M_{\omega_1} \setminus M_\delta$. In general, $M_\gamma \subsetneq M_\beta \Leftrightarrow M_\gamma \in M_\beta \Leftrightarrow \gamma \in \beta \cap M_\beta$.

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \neg(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed.

Davies sequences

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> ω_1 -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H},$
- $ightharpoonup |M_{\beta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma < \beta}$ is an element of M_{β} .

Warning: if $\alpha > \omega_1$, then $(M_\beta)_{\beta < \alpha}$ is not a chain: if $\delta = \omega_1 \cap M_{\omega_1}$, then $\delta \in M_\delta \setminus M_{\omega_1}$ and $\omega_2 \cap \bigcup_{\beta < \omega_1} M_\beta \in M_{\omega_1} \setminus M_\delta$. In general, $M_\gamma \subsetneq M_\beta \Leftrightarrow M_\gamma \in M_\beta \Leftrightarrow \gamma \in \beta \cap M_\beta$.

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \mathbb{k}(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed. Moreover, if $\alpha < \omega_n$, then $\mathbb{k}(\alpha) \leq n$;

Davies sequences

Definition

A <u>Davies sequence</u> (a.k.a. a <u>sage Davies tree</u>; a.k.a. a <u>long</u> ω_1 -approximation sequence) is a transfinite sequence $(M_\beta)_{\beta<\alpha}$ such that:

- $ightharpoonup M_{\beta} \prec \mathfrak{H}$,
- $|M_{\beta}| = \aleph_0$, and
- ▶ The sequence $(M_{\gamma})_{\gamma<\beta}$ is an element of M_{β} .

Warning: if $\alpha > \omega_1$, then $(M_\beta)_{\beta < \alpha}$ is not a chain: if $\delta = \omega_1 \cap M_{\omega_1}$, then $\delta \in M_\delta \setminus M_{\omega_1}$ and $\omega_2 \cap \bigcup_{\beta < \omega_1} M_\beta \in M_{\omega_1} \setminus M_\delta$. In general, $M_\gamma \subsetneq M_\beta \Leftrightarrow M_\gamma \in M_\beta \Leftrightarrow \gamma \in \beta \cap M_\beta$.

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \mathbb{k}(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed. Moreover, if $\alpha < \omega_n$, then $\mathbb{k}(\alpha) \leq n$; if $\alpha = |\alpha|$, then $\mathbb{k}(\alpha) \leq 1$.

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \neg(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed. Moreover, if $\alpha < \omega_n$, then $\neg(\alpha) \leq n$; if $\alpha = |\alpha|$, then $\neg(\alpha) \leq 1$.

$$0. \ A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}.$$

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \neg(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed. Moreover, if $\alpha < \omega_n$, then $\neg(\alpha) \leq n$; if $\alpha = |\alpha|$, then $\neg(\alpha) \leq 1$.

- 0. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}.$
- 1. $(M_{\alpha})_{\alpha < \omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta < \alpha} \in M_{\alpha}$.

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \neg(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed. Moreover, if $\alpha < \omega_n$, then $\neg(\alpha) \leq n$; if $\alpha = |\alpha|$, then $\neg(\alpha) \leq 1$.

- 0. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}.$
- 1. $(M_{\alpha})_{\alpha<\omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \neg(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed. Moreover, if $\alpha < \omega_n$, then $\neg(\alpha) \leq n$; if $\alpha = |\alpha|$, then $\neg(\alpha) \leq 1$.

- 0. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}.$
- 1. $(M_{\alpha})_{\alpha < \omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta < \alpha} \in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3. A_{α} must amalgamate up to n overlapping countable algebras

$$A_{\alpha,i}=\bigcup\{A_\beta\mid\beta\in\mathcal{I}_i(\alpha)\cap M_\alpha\}.$$

Theorem (M., 2008)

For each ordinal α , there is an $\{\alpha\}$ -definable finite interval partition $(\mathcal{I}_i(\alpha) \mid i < \neg(\alpha))$ of α such that, for every Davies sequence $(M_\beta)_{\beta < \alpha}$, $\{M_\beta \mid \beta \in \mathcal{I}_i(\alpha)\}$ is directed. Moreover, if $\alpha < \omega_n$, then $\neg(\alpha) \leq n$; if $\alpha = |\alpha|$, then $\neg(\alpha) \leq 1$.

A new way to build an \aleph_n -sized algebra A:

- 0. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}.$
- 1. $(M_{\alpha})_{\alpha<\omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3. A_{α} must amalgamate up to n overlapping countable algebras

$$A_{\alpha,i}=\bigcup\{A_\beta\mid\beta\in\mathcal{I}_i(\alpha)\cap M_\alpha\}.$$

Requirements 1–3 ensure that $\{A_{\alpha} \mid \alpha < \omega_n\}$ and $\{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}$ will be directed.

Because any two overlapping Boolean algebras amalgamate, it is sufficient that $A_{\alpha,0}, A_{\alpha,1}, \ldots, A_{\alpha, \Im(\alpha)-1}$ satisfy the following three conditions for linear amalgamation (from Part I of this talk):

For all $i < \neg(\alpha)$ and all terms s,t generated by $A_{\alpha,i} \cap \bigcup_{j < i} A_{\alpha,j}$: (a) If s = t in $A_{\alpha,i}$, then s = t is already implied by how $A_{\alpha,0} \cap A_{\alpha,i}, \ldots, A_{\alpha,i-1} \cap A_{\alpha,i}$ overlap.

Because any two overlapping Boolean algebras amalgamate, it is sufficient that $A_{\alpha,0}, A_{\alpha,1}, \dots, A_{\alpha, \Im(\alpha)-1}$ satisfy the following three conditions for linear amalgamation (from Part I of this talk):

For all $i < \Im(\alpha)$ and all terms s, t generated by $A_{\alpha,i} \cap \bigcup_{i < i} A_{\alpha,j}$:

- (a) If s=t in $A_{\alpha,i}$, then s=t is already implied by how $A_{\alpha,0}\cap A_{\alpha,i},\ldots,A_{\alpha,i-1}\cap A_{\alpha,i}$ overlap.
- (b) If s=t is implied by how $A_{\alpha,0},\ldots,A_{\alpha,i-1}$ overlap, then it is already implied by how $A_{\alpha,0}\cap A_{\alpha,i},\ldots,A_{\alpha,i-1}\cap A_{\alpha,i}$ overlap.

Because any two overlapping Boolean algebras amalgamate, it is sufficient that $A_{\alpha,0}, A_{\alpha,1}, \dots, A_{\alpha, \Im(\alpha)-1}$ satisfy the following three conditions for linear amalgamation (from Part I of this talk):

For all $i < \Im(\alpha)$ and all terms s, t generated by $A_{\alpha,i} \cap \bigcup_{i < i} A_{\alpha,j}$:

- (a) If s=t in $A_{\alpha,i}$, then s=t is already implied by how $A_{\alpha,0}\cap A_{\alpha,i},\ldots,A_{\alpha,i-1}\cap A_{\alpha,i}$ overlap.
- (b) If s=t is implied by how $A_{\alpha,0},\ldots,A_{\alpha,i-1}$ overlap, then it is already implied by how $A_{\alpha,0}\cap A_{\alpha,i},\ldots,A_{\alpha,i-1}\cap A_{\alpha,i}$ overlap.
- (c) If k < i, $u \in A_{\alpha,k}$, and s = u is implied by how $A_{\alpha,0}, \ldots, A_{\alpha,i-1}$ overlap, then already $u \in A_{\alpha,k} \cap A_{\alpha,i}$.

Because any two overlapping Boolean algebras amalgamate, it is sufficient that $A_{\alpha,0}, A_{\alpha,1}, \dots, A_{\alpha, \Im(\alpha)-1}$ satisfy the following three conditions for linear amalgamation (from Part I of this talk):

For all $i < \Im(\alpha)$ and all terms s, t generated by $A_{\alpha,i} \cap \bigcup_{j < i} A_{\alpha,j}$:

- (a) If s=t in $A_{\alpha,i}$, then s=t is already implied by how $A_{\alpha,0}\cap A_{\alpha,i},\ldots,A_{\alpha,i-1}\cap A_{\alpha,i}$ overlap.
- (b) If s=t is implied by how $A_{\alpha,0},\ldots,A_{\alpha,i-1}$ overlap, then it is already implied by how $A_{\alpha,0}\cap A_{\alpha,i},\ldots,A_{\alpha,i-1}\cap A_{\alpha,i}$ overlap.
- (c) If k < i, $u \in A_{\alpha,k}$, and s = u is implied by how $A_{\alpha,0}, \ldots, A_{\alpha,i-1}$ overlap, then already $u \in A_{\alpha,k} \cap A_{\alpha,i}$.

Conditions (b) and (c) are closure conditions on $A_{\alpha,i}$ and follow from inductively assuming Requirements 1-3 for all $\beta < \alpha$.

Because any two overlapping Boolean algebras amalgamate, it is sufficient that $A_{\alpha,0}, A_{\alpha,1}, \dots, A_{\alpha, \Im(\alpha)-1}$ satisfy the following three conditions for linear amalgamation (from Part I of this talk):

For all $i < \Im(\alpha)$ and all terms s, t generated by $A_{\alpha,i} \cap \bigcup_{i < j} A_{\alpha,j}$:

- (a) If s = t in $A_{\alpha,i}$, then s = t is already implied by how $A_{\alpha,0} \cap A_{\alpha,i}, \ldots, A_{\alpha,i-1} \cap A_{\alpha,i}$ overlap.
- (b) If s=t is implied by how $A_{\alpha,0},\ldots,A_{\alpha,i-1}$ overlap, then it is already implied by how $A_{\alpha,0}\cap A_{\alpha,i},\ldots,A_{\alpha,i-1}\cap A_{\alpha,i}$ overlap.
- (c) If k < i, $u \in A_{\alpha,k}$, and s = u is implied by how $A_{\alpha,0}, \ldots, A_{\alpha,i-1}$ overlap, then already $u \in A_{\alpha,k} \cap A_{\alpha,i}$.

Conditions (b) and (c) are closure conditions on $A_{\alpha,i}$ and follow from inductively assuming Requirements 1-3 for all $\beta < \alpha$.

Condition (a) follows from choosing $(A_{\beta})_{\beta < \alpha}$ such that:

4. For all terms p, q generated by $\bigcup_{j < \mathbb{k}(\beta)} A_{\beta,j}$, if p = q in A_{β} , then p = q is already implied by how $A_{\beta,0}, \ldots, A_{\beta,\mathbb{k}(\beta)-1}$ overlap.

Boolean algebra construction strategy

• Recall that a <u>pushout</u> $\bigoplus_{i < m} B_i$ of overlapping algebraic structures B_0, \ldots, B_{m-1} is generated by a disjoint union of copies $e_i(B_i)$ of B_i and relations saying that each e_i is an isomorphism and $e_i(x) = e_i(y)$ for all i < j < m and $x, y \in B_i \cap B_i$.

Boolean algebra construction strategy

- Recall that a <u>pushout</u> $\bigoplus_{i < m} B_i$ of overlapping algebraic structures B_0, \ldots, B_{m-1} is generated by a disjoint union of copies $e_i(B_i)$ of B_i and relations saying that each e_i is an isomorphism and $e_i(x) = e_j(y)$ for all i < j < m and $x, y \in B_i \cap B_j$.
- A new way to build an \aleph_n -sized Boolean algebra A:
 - 0. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}.$
 - 1. $(M_{\alpha})_{\alpha<\omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
 - 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3.+4. $A_{\alpha,i} \leq \bigoplus_{j < \Im(\alpha)} A_{\alpha,j} \leq A_{\alpha}$ for all $i < \Im(\alpha)$

where
$$A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$$

Boolean algebra construction strategy

- Recall that a <u>pushout</u> $\bigoplus_{i < m} B_i$ of overlapping algebraic structures B_0, \ldots, B_{m-1} is generated by a disjoint union of copies $e_i(B_i)$ of B_i and relations saying that each e_i is an isomorphism and $e_i(x) = e_j(y)$ for all i < j < m and $x, y \in B_i \cap B_j$.
- A new way to build an \aleph_n -sized Boolean algebra A:
 - 0. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}.$
 - 1. $(M_{\alpha})_{\alpha < \omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta < \alpha} \in M_{\alpha}$.
 - 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3.+4. $A_{\alpha,i} \leq \bigoplus_{j < \Im(\alpha)} A_{\alpha,j} \leq A_{\alpha}$ for all $i < \Im(\alpha)$

where
$$A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$$

- If requirements 1–4 are met for $\alpha' < \alpha$, then:
 - ▶ Each $\{A_{\beta} \mid \beta \in \mathcal{I}_{i}(\alpha) \cap M_{\alpha}\}$ is directed.
 - We may choose $\bigoplus_{j<\Im(\alpha)} A_{\alpha,j}$ such that $A_{\alpha,i} \leq \bigoplus_{j\in s} A_{\alpha,j} \leq \bigoplus_{j<\Im(\alpha)} A_{\alpha,j}$ for all $i \in s \subset \Im(\alpha)$.

- 0'. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}$ where $n \geq 3$.
- 1. $(M_{\alpha})_{\alpha < \omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta < \alpha} \in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.

- 0'. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}$ where $n \geq 3$.
- 1. $(M_{\alpha})_{\alpha < \omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta < \alpha} \in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.

3.+4'.
$$A_{\alpha,i} \leq \bigoplus_{j \in s} A_{\alpha,j} \leq \bigoplus_{j \in \exists (\alpha)} A_{\alpha,j} \leq A_{\alpha}$$
 for all $i \in s \subset \exists (\alpha)$

where
$$A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$$

- 0'. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}$ where $n \geq 3$.
- 1. $(M_{\alpha})_{\alpha<\omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.

3.+4'.
$$A_{\alpha,i} \leq \bigoplus_{j \in s} A_{\alpha,j} \leq \bigoplus_{j \in \neg(\alpha)} A_{\alpha,j} \leq A_{\alpha}$$
 for all $i \in s \subset \neg(\alpha)$

where
$$A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$$

- 5. $\bigoplus_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
- 6. $\coprod_{j<\Im(\alpha)} A_{\alpha,j} \not\leq_{\mathrm{rc}} A_{\alpha}$ if $\Im(\alpha) = n$.

- 0'. $A = \bigcup \{A_{\alpha} \mid \alpha < \omega_n\}$ where $n \geq 3$.
- 1. $(M_{\alpha})_{\alpha < \omega_n}$ will be a Davies sequence with $(A_{\beta})_{\beta < \alpha} \in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3.+4'. $A_{\alpha,i} \leq \bigoplus_{j \in s} A_{\alpha,j} \leq \bigoplus_{j \in \neg(\alpha)} A_{\alpha,j} \leq A_{\alpha}$ for all $i \in s \subset \neg(\alpha)$

where
$$A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$$

- 5. $\bigoplus_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
- 6. $\coprod_{j<\Im(\alpha)} A_{\alpha,j} \not\leq_{\mathrm{rc}} A_{\alpha}$ if $\Im(\alpha) = n$.
- Condition 5 (and $n \ge 3$) ensure that A is doubly rc-filtered.
- Condition 6 ensures that *A* is not projective.

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j < \mathbb{k}(\alpha)} A_{\alpha,j} \nleq_{\mathrm{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j \in \mathbb{k}(\alpha)} A_{\alpha,j} \not\leq_{\mathrm{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:
 - $\pi_{n\setminus\{k\}}: P \to (2^{\omega})^{n\setminus\{k\}}, ((x_i)_{i\leq n}, y) \mapsto (x_i)_{i\neq k}$, is open.

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j \in \mathbb{k}(\alpha)} A_{\alpha,j} \not\leq_{\mathrm{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:
 - $\pi_{n \setminus \{k\}} : P \to (2^{\omega})^{n \setminus \{k\}}, ((x_i)_{i < n}, y) \mapsto (x_i)_{i \neq k}, \text{ is open.}$
 - \blacktriangleright $\pi_n: P \to (2^{\omega})^n$, $((x_i)_{i \le n}, y) \mapsto (x_i)_{i \le n}$, is surjective but not open.

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j \in \mathbb{k}(\alpha)} A_{\alpha,j} \not\leq_{\mathrm{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:
 - $\pi_{n \setminus \{k\}} : P \to (2^{\omega})^{n \setminus \{k\}}, ((x_i)_{i < n}, y) \mapsto (x_i)_{i \neq k}, \text{ is open.}$
 - \blacktriangleright $\pi_n: P \to (2^{\omega})^n$, $((x_i)_{i \le n}, y) \mapsto (x_i)_{i \le n}$, is surjective but not open.
- An example construction of P:
 - Let $K_0 \cup K_1 = 2^{\omega}$ where each K_h is perfect but not open.

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j \in \mathbb{k}(\alpha)} A_{\alpha,j} \not\leq_{\mathrm{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:
 - $\pi_{n \setminus \{k\}} : P \to (2^{\omega})^{n \setminus \{k\}}, ((x_i)_{i < n}, y) \mapsto (x_i)_{i \neq k}, \text{ is open.}$
 - \blacktriangleright $\pi_n: P \to (2^{\omega})^n$, $((x_i)_{i \le n}, y) \mapsto (x_i)_{i \le n}$, is surjective but not open.
- An example construction of P:
 - Let $K_0 \cup K_1 = 2^{\omega}$ where each K_h is perfect but not open.
 - ▶ Let $P = (P_0 \times \{0\}) \cup (P_1 \times \{1\})$

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\operatorname{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j < \mathbb{k}(\alpha)} A_{\alpha,j} \nleq_{\operatorname{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:

 - \blacktriangleright $\pi_n: P \to (2^{\omega})^n$, $((x_i)_{i \le n}, y) \mapsto (x_i)_{i \le n}$, is surjective but not open.
- An example construction of P:
 - ▶ Let $K_0 \cup K_1 = 2^{\omega}$ where each K_h is perfect but not open.
 - ▶ Let $P = (P_0 \times \{0\}) \cup (P_1 \times \{1\})$ where $P_h = \{(x_i)_{i \le n} \mid \sum_{i \le n} x_i \in K_h\}$

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\operatorname{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j < \mathbb{k}(\alpha)} A_{\alpha,j} \nleq_{\operatorname{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:

 - \blacktriangleright $\pi_n: P \to (2^{\omega})^n$, $((x_i)_{i \le n}, y) \mapsto (x_i)_{i \le n}$, is surjective but not open.
- An example construction of P:
 - ▶ Let $K_0 \cup K_1 = 2^{\omega}$ where each K_h is perfect but not open.
 - ▶ Let $P = (P_0 \times \{0\}) \cup (P_1 \times \{1\})$ where $P_h = \{(x_i)_{i < n} \mid \sum_{i < n} x_i \in K_h\}$ where $(x_i + x_i)_m = (x_i)_m + (x_i)_m \mod 2$.

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\mathrm{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j \in \mathbb{k}(\alpha)} A_{\alpha,j} \not\leq_{\mathrm{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:

 - \blacktriangleright $\pi_n: P \to (2^{\omega})^n$, $((x_i)_{i \le n}, y) \mapsto (x_i)_{i \le n}$, is surjective but not open.
- An example construction of *P*:
 - ▶ Let $K_0 \cup K_1 = 2^{\omega}$ where each K_h is perfect but not open.
 - ▶ Let $P = (P_0 \times \{0\}) \cup (P_1 \times \{1\})$ where $P_h = \{(x_i)_{i \le n} \mid \sum_{i \le n} x_i \in K_h\}$ where $(x_i + x_i)_m = (x_i)_m + (x_i)_m \mod 2$.
 - $\blacktriangleright \pi_{n\setminus\{k\}}$ is open: given $\sum_{i\leq n} x_i \in K_h$ and $x_i \approx y_i$ for $i\neq k$, choose $y_k = x_k + \sum_{i \neq k} (x_i + y_i) \approx x_k$.

- 5. $\coprod_{j \in s} A_{\alpha,j} \leq_{\operatorname{rc}} A_{\alpha}$ for all $s \subset \mathbb{k}(\alpha)$ of size less than n.
 6. $\coprod_{j < \mathbb{k}(\alpha)} A_{\alpha,j} \nleq_{\operatorname{rc}} A_{\alpha}$ if $\mathbb{k}(\alpha) = n$.
- The "gadget" that accomplishes conditions 5 and 6 is (the Stone dual of) any perfect subset P of $(2^{\omega})^n \times 2$ such that, for all k < n:

 - \blacktriangleright $\pi_n: P \to (2^{\omega})^n$, $((x_i)_{i \le n}, y) \mapsto (x_i)_{i \le n}$, is surjective but not open.
- An example construction of *P*:
 - ▶ Let $K_0 \cup K_1 = 2^{\omega}$ where each K_h is perfect but not open.
 - ▶ Let $P = (P_0 \times \{0\}) \cup (P_1 \times \{1\})$ where $P_h = \{(x_i)_{i \le n} \mid \sum_{i \le n} x_i \in K_h\}$ where $(x_i + x_i)_m = (x_i)_m + (x_i)_m \mod 2$.
 - $\blacktriangleright \pi_{n\setminus\{k\}}$ is open: given $\sum_{i\leq n} x_i \in K_h$ and $x_i \approx y_i$ for $i\neq k$, choose $y_k = x_k + \sum_{i \neq k} (x_i + y_i) \approx x_k$.
- Verifying Condition 5 also requires some tricky lemmas about how \square and $\leq_{\rm rc}$ interact.

Assume η is an ordinal and, for all $\alpha < \eta$ and $i < \Im(\alpha)$:

- 1. $(M_{\alpha})_{\alpha<\eta}$ is a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3". $A_{\alpha} \supseteq A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$

Then, for all $\alpha < \eta$, $i < j < \exists (\alpha)$, $s \subset \exists (\alpha)$, and $E \subset \eta$:

▶ If $A_{\alpha} \subset \bigcup_{\beta \in E} A_{\beta}$, then $A_{\alpha} \subset A_{\beta}$ for some $\beta \in E$.

Assume η is an ordinal and, for all $\alpha < \eta$ and $i < \Im(\alpha)$:

- 1. $(M_{\alpha})_{\alpha<\eta}$ is a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3". $A_{\alpha} \supseteq A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$

- ▶ If $A_{\alpha} \subset \bigcup_{\beta \in F} A_{\beta}$, then $A_{\alpha} \subset A_{\beta}$ for some $\beta \in E$.
- ► There exists $D \subset \eta$ such that $\bigcup_{\beta \in D} A_{\beta} = \bigcap_{\beta \in E} A_{\beta}$ and $\{A_{\beta} \mid \beta \in D\}$ is directed.

Assume η is an ordinal and, for all $\alpha < \eta$ and $i < \Im(\alpha)$:

- 1. $(M_{\alpha})_{\alpha<\eta}$ is a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3". $A_{\alpha} \supseteq A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$

- ▶ If $A_{\alpha} \subset \bigcup_{\beta \in E} A_{\beta}$, then $A_{\alpha} \subset A_{\beta}$ for some $\beta \in E$.
- ► There exists $D \subset \eta$ such that $\bigcup_{\beta \in D} A_{\beta} = \bigcap_{\beta \in E} A_{\beta}$ and $\{A_{\beta} \mid \beta \in D\}$ is directed.
- ▶ Hence, there exists $D \subset \eta$ such that $\bigcup_{\beta \in D} A_{\beta} = \bigcap_{k \in s} A_{\alpha,k}$ and $\{A_{\beta} \mid \beta \in D\}$ is directed.

Assume η is an ordinal and, for all $\alpha < \eta$ and $i < \Im(\alpha)$:

- 1. $(M_{\alpha})_{\alpha<\eta}$ is a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3". $A_{\alpha} \supseteq A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$

- ▶ If $A_{\alpha} \subset \bigcup_{\beta \in E} A_{\beta}$, then $A_{\alpha} \subset A_{\beta}$ for some $\beta \in E$.
- ► There exists $D \subset \eta$ such that $\bigcup_{\beta \in D} A_{\beta} = \bigcap_{\beta \in E} A_{\beta}$ and $\{A_{\beta} \mid \beta \in D\}$ is directed.
- ▶ Hence, there exists $D \subset \eta$ such that $\bigcup_{\beta \in D} A_{\beta} = \bigcap_{k \in s} A_{\alpha,k}$ and $\{A_{\beta} \mid \beta \in D\}$ is directed.
- ▶ If $\{A_{\beta} \mid \beta \in E\}$ is directed, then: $A_{\alpha} \subset A_{\beta}$ for some $\beta \in E$ or $A_{\alpha} \cap \bigcup_{\beta \in E} A_{\beta} \subset A_{\alpha,k}$ for some $k < \Im(\alpha)$.

Assume η is an ordinal and, for all $\alpha < \eta$ and $i < \Im(\alpha)$:

- 1. $(M_{\alpha})_{\alpha<\eta}$ is a Davies sequence with $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 2. $A_{\alpha} \subset M_{\alpha}$ and $A_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta} \subset \bigcup_{\beta < \alpha} A_{\beta}$.
- 3". $A_{\alpha} \supseteq A_{\alpha,i} = \bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_i(\alpha) \cap M_{\alpha}\}.$

- ▶ If $A_{\alpha} \subset \bigcup_{\beta \in E} A_{\beta}$, then $A_{\alpha} \subset A_{\beta}$ for some $\beta \in E$.
- ► There exists $D \subset \eta$ such that $\bigcup_{\beta \in D} A_{\beta} = \bigcap_{\beta \in E} A_{\beta}$ and $\{A_{\beta} \mid \beta \in D\}$ is directed.
- ▶ Hence, there exists $D \subset \eta$ such that $\bigcup_{\beta \in D} A_{\beta} = \bigcap_{k \in s} A_{\alpha,k}$ and $\{A_{\beta} \mid \beta \in D\}$ is directed.
- ▶ If $\{A_{\beta} \mid \beta \in E\}$ is directed, then: $A_{\alpha} \subset A_{\beta}$ for some $\beta \in E$ or $A_{\alpha} \cap \bigcup_{\beta \in E} A_{\beta} \subset A_{\alpha,k}$ for some $k < \exists (\alpha)$.
- ▶ $\bigcup \{A_{\beta} \mid \beta \in \mathcal{I}_{i}(\alpha)\} \in M_{\alpha} \cap M_{\beta} \text{ for all } \beta \in \mathcal{I}_{j}(\alpha).$

<u>If</u>:

A is a Boolean algebra of size $\leq \aleph_n$ and there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \dots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \dots, S_n \in \mathcal{E}$, then A is projective.

<u>If:</u>

A is a Boolean algebra of size $\leq \aleph_n$ and there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_n \in \mathcal{E}$, then A is projective.

Proof.

▶ Let $(M_{\alpha})_{\alpha<\omega_n}$ be a Davies sequence with $\mathcal{E}\in M_0$.

<u>If:</u>

A is a Boolean algebra of size $\leq \aleph_n$ and there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_n \in \mathcal{E}$, then A is projective.

- ▶ Let $(M_{\alpha})_{\alpha<\omega_n}$ be a Davies sequence with $\mathcal{E}\in M_0$.
- ▶ Let $A_{\alpha} = A \cap M_{\alpha}$.

<u>If:</u>

A is a Boolean algebra of size $\leq \aleph_n$ and there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_n \in \mathcal{E}$, then A is projective.

- ▶ Let $(M_{\alpha})_{\alpha<\omega_n}$ be a Davies sequence with $\mathcal{E}\in M_0$.
- ▶ Let $A_{\alpha} = A \cap M_{\alpha}$.
- ▶ Then $\langle \bigcup \{A_\beta \mid \beta \in \alpha \cap M_\alpha \} \rangle = \left\langle \bigcup_{i < \exists (\alpha)} A_{\alpha,i} \right\rangle \leq_{\mathrm{rc}} A_\alpha$.

<u>If:</u>

A is a Boolean algebra of size $\leq \aleph_n$ and there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_n \in \mathcal{E}$, then A is projective.

- ▶ Let $(M_{\alpha})_{\alpha<\omega_n}$ be a Davies sequence with $\mathcal{E}\in M_0$.
- ▶ Let $A_{\alpha} = A \cap M_{\alpha}$.
- ▶ Then $\langle \bigcup \{A_{\beta} \mid \beta \in \alpha \cap M_{\alpha} \} \rangle = \left\langle \bigcup_{i < \exists (\alpha)} A_{\alpha,i} \right\rangle \leq_{\mathrm{rc}} A_{\alpha}.$
- ▶ By elementarity, $\left\langle \bigcup_{\beta < \alpha} A_{\beta} \right\rangle \leq_{\mathrm{rc}} A$.

<u>lf</u>:

A is a Boolean algebra of size $\leq \aleph_n$ and there is a closed cofinal $\mathcal{E} \subset [A]^{<\aleph_1}$ such that $\langle S_1 \cup \cdots \cup S_n \rangle \leq_{\mathrm{rc}} A$ for all $S_1, \ldots, S_n \in \mathcal{E}$, then A is projective.

- ▶ Let $(M_{\alpha})_{\alpha<\omega_n}$ be a Davies sequence with $\mathcal{E}\in M_0$.
- ▶ Let $A_{\alpha} = A \cap M_{\alpha}$.
- ▶ Then $\langle \bigcup \{A_\beta \mid \beta \in \alpha \cap M_\alpha \} \rangle = \langle \bigcup_{i < \exists (\alpha)} A_{\alpha,i} \rangle \leq_{\mathrm{rc}} A_\alpha$.
- ▶ By elementarity, $\left\langle \bigcup_{\beta < \alpha} A_{\beta} \right\rangle \leq_{\mathrm{rc}} A$.
- ► Haydon's theorem: A is projective iff A is of the form $\left\langle \bigcup_{\alpha < \eta} C_{\alpha} \right\rangle$ where
 - ightharpoonup each C_{α} is countable and
 - $\blacktriangleright \left\langle \bigcup_{\beta < \alpha} C_{\beta} \right\rangle \leq_{\mathrm{rc}} \left\langle \bigcup_{\beta < \alpha + 1} C_{\beta} \right\rangle.$

A finitary characterization of projective Boolean algebras

Theorem (M., arXiv:1607.07944)

A Boolean algebra A is projective if and only if there exists $\mathcal D$ such that:

- $ightharpoonup \mathcal{D}$ is a directed set of finite subalgebras of A,
- $\triangleright \bigcup \mathcal{D} = A$, and
- for all $m < \omega$ and all $B_0, \ldots, B_{m-1} \in \mathcal{D}$, for all terms s, t generated by $\bigcup_{i < m} B_i$, $\underline{if} \ s = t$ in A, $\underline{then} \ s = t$ is already implied by how $B_0, \ldots B_{m-1}$ overlap.

The proof uses lemmas about how \boxplus and $\leq_{\rm rc}$ interact, and Koppelberg's representation of any projective A as $A=\langle\{x_{\alpha}\mid \alpha<\eta\}\rangle$ where

$$\langle \{x_{\beta} \mid \beta < \alpha\} \rangle \leq_{\mathrm{rc}} \langle \{x_{\beta} \mid \beta < \alpha + 1\} \rangle.$$

An open problem

Suppose that A has the <u>ternary SFN</u> (where SFN = <u>strong Freese-Nation property</u>), that is,

- $ightharpoonup \mathcal{D}$ is a directed set of finite Boolean algebras,
- $\triangleright \bigcup \mathcal{D} = A$, and
- for all $m \leq 3$ and all $B_0, \ldots, B_{m-1} \in \mathcal{D}$, for all terms s, t generated by $\bigcup_{i < m} B_i$, $\underline{\text{if }} s = t \text{ in } A$, $\underline{\text{then }} s = t \text{ is already implied by how } B_0, \ldots B_{m-1} \text{ overlap.}$

Must *A* be projective?

- I know that the following two implications are true: projective ⇒ ternary SFN ⇒ doubly rc-filtered.
- ▶ I know that at least one of them is strict. But which?
- ▶ I know that neither is strict for Boolean algebras of size $\leq \aleph_2$.
- I know that both of the following implications are strict: projective ⇒ binary SFN ⇒ rc-filtered.

Another open problem

Ščepin's examples of rc-filtered non-projective Boolean algebras include the clopen algebra of the symmetric square of 2^{ω_2} . Is there a similarly "natural" example of a doubly rc-filtered non-projective Boolean algebra?

Main obstacle: Ščepin uses functors F: Bool → Bool for which

$$F(A) \boxplus F(B) \ncong F(A \boxplus B)$$
.

This is necessary for any "natural" *F* that breaks the doubly rc-filtered property while preserving the rc-filtered property.

▶ Is there a "natural" $F : \operatorname{Bool} \to \operatorname{Bool}$ such that, for all A, B,

$$F(A) \boxplus F(B) \cong F(A \boxplus B),$$

but for some A_0, A_1, A_2 ,

$$F\left(\bigoplus_{i<3}A_i\right)\ncong\bigoplus_{i<3}F(A_i)$$
?

(Recall that $\coprod_{i < 3} A_i$ is not $(A_0 \boxplus A_1) \boxplus A_2$ in general.)