Amalgamating many overlapping Boolean algebras

David Milovich

Texas A&M International University

ASL Winter Meeting January 6, 2017 Atlanta

Ternary obstructions to amalgamation

Definition. A sequence $(A_i)_{i < n}$ of Boolean algebras is overlapping if, for all i, j, the Boolean operators of A_i and A_j agree when restricted to their common domain.

Given a pair of overlapping Boolean algebras A, B, there is a Boolean algebra C extending both of them.

Moreover, an arbitrary Δ -system of overlapping Boolean algebras also has a common extension. (Koppelberg)

But three overlapping Boolean algebras (or just posets) A, B, C may not have a common extension. Minimal example:

$$x <_A y <_B < z <_C x$$
.

(Generate A from x, y and the relation $x \land -y = 0$; similarly construct B and C.)

Some direct limits need ternary amalgamation

A set D of sets is directed if each pair $x, y \in D$ satisfies $x \cup y \subset z$ for some $z \in D$.

Proposition. If D is a directed set of countable sets and $|\bigcup D| \geq \aleph_n$, then there are $x_1, \ldots, x_n \in D$ such that $\bigcap_{j \neq i} x_j \not\subset x_i$ for all i.

Therefore, any construction of a Boolean algebra of size $\geq \aleph_3$ as a directed union of countable Boolean algebras must amalgamate non- Δ -system triples of overlapping algebras.

To ease such constructions, we combine:

- 1. Algebra: a sufficient condition for amalgamation.
- 2. Set theory: Long ω_1 -approximation sequences (also known as Davies sequences).

Algebra: n-ary pushouts

Definition. A pushout of overlapping Boolean algebras $(A_i)_{i < n}$ is a Boolean algebra $\bigoplus_{i < n} A_i$ generated by:

- ▶ Distinct generators $\bigoplus_i(x)$ for i < n and $x \in A_i \setminus \{0_{A_i}, 1_{A_i}\}$.
- Relations:
 - $\blacksquare_i(x \land y) = \boxplus_i(x) \land \boxplus_i(y) \text{ for } x, y \in A_i.$
 - $\blacksquare_i(-x) = \boxplus_i(x) \text{ for } x \in A_i.$
 - $\blacksquare_i(x) = \boxplus_j(x) \text{ if } x \in A_i \cap A_j.$

In the category of Boolean algebras and Boolean homomorphisms, $\boxminus_{i < n} A_i$, along with the morphisms $\boxminus_i : A_i \to \boxminus_{i < n} A_i$, is a colimit of the commutative diagram of inclusion maps id: $\bigcap_{i \in s} A_i \to \bigcap_{i \in t} A_i$ for $\varnothing \neq t \subset s \subset n$.

Algebra: *n*-wise commuting subalgebras

Notation: $A \leq B$ means A is a subalgebra of B.

Definition (n = 2): Heindorf and Shapiro). Given $A_i \leq B$ for i < n, we say $(A_i)_{i < n}$ commutes in B if, for every tuple of ultrafilters $U_i \in \text{Ult}(A_i)$ for i < n, if $U_i \cap A_j = U_j \cap A_i$ for all i, j < n, then there is an ultrafilter $V \in \text{Ult}(B)$ extending every U_i .

Lemma. $(A_i)_{i < n}$ commutes in B iff we can choose $\bigoplus_{i < n} A_i$ such that $A_i \leq \bigoplus_{i < n} A_i \leq B$ for all i < n.

Application: An *n*-ary interpolation theorem

The Interpolation Theorem of Proposition Logic.

If $\varphi \vdash \psi$, then $\varphi \vdash \chi \vdash \psi$ for some χ with all its propositional variables common to φ and ψ .

The Interpolation Theorem can be reinterpreted as a corollary of certain pairs of subalgebras of a free Boolean algebra commuting.

An *n*-ary generalization.

If $\bigwedge_{i \le n} \varphi_i \vdash \bot$, then there exist χ_i for i < n such that:

- $\triangleright \varphi_i \vdash \chi_i$ for each *i*.
- $ightharpoonup \bigwedge_{i < n} \chi_i \vdash \perp$.
- For each i, each propositional variable in χ_i is in φ_i and in at least one other φ_j.

Algebra: a sufficient condition for amalgamation

Notation: $\langle S \rangle$ denotes the Boolean closure of a subset S of a Boolean algebra.

Theorem 1 (M., 2016). Overlapping Boolean algebras $(A_i)_{i < n}$ mutually extend to a pushout $\bigoplus_{i < n} A_i$ if, for all $k < m \le n$,

- 1. $(A_i \cap A_m)_{i < m}$ commutes in A_m ,
- 2. $(\coprod_i [A_i \cap A_m])_{i < m}$ commutes in $\coprod_{i < m} A_i$, and
- 3. $\boxplus_k [A_k \cap A_m] = \boxplus_k [A_k] \cap \langle \bigcup_{i < m} \boxplus_i [A_i \cap A_m] \rangle$ in $\bigoplus_{i < m} A_i$.

It's not fun to verify all these conditions. Fortunately, there is a set-theoretic black box that hides these conditions behind one simpler condition.

Set theory: Long ω_1 -approximation sequences

Let \mathfrak{H} be the structure $(H(\theta), \in, \sqsubseteq_{\theta})$ where:

- lacktriangledown heta is a sufficiently large regular cardinal.
- ▶ $H(\theta)$ is the set of all sets hereditarily smaller than θ .
- ightharpoonup \sqsubseteq_{θ} well orders of $H(\theta)$.

Definition (M., 2008).

A transfinite sequence $(M_{\alpha})_{\alpha<\eta}$ is a long ω_1 -approximation sequence if, for each α :

- M_{α} is a countable elementary substructure of \mathfrak{H} .
- ▶ The sequence $(M_{\beta})_{\beta < \alpha}$ is an element of M_{α} .

Lemma. Given $(M_{\alpha})_{\alpha<\eta}$ as above,

$$M_{\beta} \subsetneq M_{\alpha} \Leftrightarrow M_{\beta} \in M_{\alpha} \Leftrightarrow \beta \in \alpha \cap M_{\alpha}.$$

Warning. $\{M_{\alpha} \mid \alpha < \eta\}$ is not a chain if $\eta > \omega_1$.

Set theory: Coherence properties

Lemma. Given a long ω_1 -approximation sequence $(M_\alpha)_{\alpha<\eta}$:

For each $\alpha < \eta$ and $B \subset \eta$, if $M_{\alpha} \subset \bigcup_{\beta \in B} M_{\beta}$, then $M_{\alpha} \subset M_{\beta}$ for some $\beta \in B$.

For each nonempty $S \subset \eta$, $\bigcap_{\alpha \in S} M_{\alpha}$ is the *directed* union of of its subsets of the form M_{β} .

Each $\alpha \leq \eta$ has a *finite* interval partition $I_{\alpha}^{0}, \ldots, I_{\alpha}^{\neg(\alpha)-1}$ such that each $\{M_{\beta} \mid \beta \in I_{\alpha}^{k}\}$ is *directed*.

If $\alpha < \omega_n$, then $\Im(\alpha) \leq n$; if α is a cardinal, then $\Im(\alpha) = 1$.

Set theory: Pairing each M_{α} with a Boolean algebra

Definition. A Boolean ω_1 -complex is a sequence $(A_\alpha, M_\alpha)_{\alpha < \eta}$ such that $(M_\alpha)_{\alpha < \eta}$ is a long ω_1 -approximation sequence and, for all $\alpha < \eta$:

- 1. A_{α} is a Boolean algebra.
- 2. A_{α} is a subset of M_{α} .
- 3. $A_{\beta} \leq A_{\alpha}$ for all $M_{\beta} \in M_{\alpha}$.
- 4. $A_{\alpha} \setminus \bigcup_{\beta < \alpha} A_{\beta}$ is disjoint from $\bigcup_{\beta < \alpha} M_{\beta}$.
- 5. $(A_{\beta})_{\beta<\alpha}\in M_{\alpha}$.
- 6. $(A_{\alpha}^{k})_{k< \exists (\alpha)}$ commutes in A_{α} where $A_{\alpha}^{k} = \bigcup \{A_{\beta} \mid \beta \in I_{\alpha}^{k} \cap M_{\alpha}\}.$

Conditions 1–5 are trivial to satisfy provided \vec{A} and \vec{M} are constructed in parallel.

Condition 6 will guarantee that the sequence can be extended. $\bigcup_{\alpha<\eta}A_\alpha \text{ is a directed union if } \eta \text{ is a cardinal.}$

Set theory: an easier amalgamation theorem

Theorem 2 (M., 2016.) If:

- $(A_{\alpha}, M_{\alpha})_{\alpha < \eta}$ is a Boolean ω_1 -complex,
- $(M_{\alpha})_{\alpha<\eta+1}$ is a long ω_1 -approximation sequence, and
- $\blacktriangleright (A_{\alpha})_{\alpha<\eta}\in M_{\eta},$

then $B=\coprod_{k<\daleth(\eta)}A_{\eta}^{k}$ extends A_{α} for all $M_{\alpha}\in M_{\eta}.$

Therefore, to extend to a longer Boolean ω_1 -complex $(A_\alpha,M_\alpha)_{\alpha<\eta+1}$, we may choose any A_η meeting the following requirements.

- ▶ $B \leq A_{\eta}$.
- A_{η} is a subset of M_{η} .
- ▶ $A_{\eta} \setminus \bigcup_{\alpha < \eta} M_{\alpha}$ is disjoint from $\bigcup_{\alpha < \eta} M_{\alpha}$.

Application: a higher-arity Freese-Nation property

Definition.

- ▶ Given $B \le A$, we say B is relatively complete in A and write $B \le_{\rm rc} A$ if for every $x \in A$ the set $\{y \in B \mid y \le x\}$ has a maximum element.
- ▶ A Boolean algebra A has the n-ary FN if there is a club $\mathcal C$ of countable subalgebras of A such that $\langle B_1 \cup \cdots \cup B_{n-1} \rangle \leq_{\mathrm{rc}} A$ for all $B_1, \ldots, B_{n-1} \in \mathcal C$.
- ▶ A Boolean algebra A is projective if it is a retract of some free Boolean algebra F. (Retract means $A \leftarrow_r F \leftarrow_e A$; $r \circ e = id$)

Theorem 3 (M., 2016).

- ▶ A is projective iff it has the *n*-ary FN for all *n*.
- ▶ If $|A| < \aleph_n$ and A has the n-ary FN, then A is projective.
- ▶ For each n, there is a Boolean algebra of size \aleph_n with the n-ary FN but without the (n+1)-ary FN.

Application: a higher-arity strong Freese-Nation property

Definition (n = 2: Heindorf and Shapiro).

A Boolean A has the n-ary strong FN if it has a cofinal family $\mathcal C$ of *finite* subalgebras such that B_1, \ldots, B_n commutes in A for $B_1, \ldots, B_n \in \mathcal C$.

Theorem 4 (M., 2016).

- ▶ The *n*-ary strong FN implies the *n*-ary FN.
- ▶ A is projective iff it has the *n*-ary strong FN for all *n*.
- ▶ If $|A| < \aleph_n$ and A has the n-ary strong FN, then A is projective.

Finitary applications

Let F be Stone dual of the Vietoris hyperspace functor or a nontrivial symmetric power functor.

F destroys the projectivity of the free Boolean algebra of size \aleph_2 . (Ščepin)

Corollary (M., 2016). There is a *finite* Boolean algebra A with subalgebras B_1 , B_2 , B_3 that commute in A but $F(B_1)$, $F(B_2)$, $F(B_3)$ do not commute in F(A).

The above corollary is non-constructive and gives no bound on the size of A. One of my students, René Montemayor, found that the minimal A is $\mathcal{P}(4)$.

Open problems

- To what extent do the amalgamation theorems 1 and 2 generalize to arbitrary categories? At minimum, we must assume the category has limit and colimits of all finite diagrams.
- For all $n \ge 1$, the n-ary FN does not imply the (n + 1)-ary FN. For the strong FN, this is only known for n = 1, 2. Is the 4-ary strong FN stricter stronger than the 3-ary strong FN?
- The binary strong FN is known to be strictly stronger than the binary FN. (M., 2014) Is the ternary strong FN strictly stronger than the ternary FN?
- What is the algorithmic complexity of deciding a given list of overlapping finite Boolean algebras, reasonably encoded in N bits, has a common extension? A brute force search algorithm gives upper bounds of $\mathrm{CoNP^{NP}}$ and space complexity $O(\sqrt{N})$.

References

- L. HEINDORF AND L. B. SHAPIRO. *Nearly Projective Boolean Algebras*. with an appendix by S. Fuchino, Lecture Notes in Mathematics **1596**, Springer-Verlag, 1994.
- S. KOPPELBERG. *Handbook of Boolean algebras, Vol. 1.* edited by J. D. Monk with R. Bonnet, North-Holland, 1989.
- D. MILOVICH, Amalgamating many overlapping Boolean algebras. arXiv:1607.07944.
- D. MILOVICH, Noetherian types of homogeneous compacta and dyadic compacta, *Topology and its Applications* **156** (2008), 443–464.
- D. MILOVICH. *On the Strong Freese-Nation property.* to appear in Order. See also arXiv:1412.7443.
- E. V. Shchepin. Functors and uncountable powers of compacta. Russian Math. Surveys, **36** (1981), no. 3, 1–71.