Homeomorphism classes of hypergraph spaces

David Milovich http://dkmj.org

Welkin Sciences Colorado Springs, CO

Spring Topology and Dynamical Systems Conference May 15, 2021

Table of Contents

Main Theorem

Team games

Characterizing retracts of 2^k

Motivation

Definition

The *n*th symmetric power $SP^n(X)$ of X is X^n/\sim where $a\sim b$ iff $a=b\circ\pi$ for some bijection $\pi\colon n\to n$.

Theorem (Ščepin)

If
$$2 \le n < \omega \le \kappa < \omega_2$$
, then $\mathsf{SP}^n\left(2^\kappa\right) \cong 2^\kappa$.
But if $\kappa \ge \omega_2$ and $2 \le n < n'$, then

$$2^{\kappa} \not\cong SP^{n}(2^{\kappa}) \not\cong SP^{n'}(2^{\kappa}).$$

Ščepin proved this and several similar results \sim 40 years ago, all with ω_2 as the critical cardinal.

Are there theorems in the same spirit with critical cardinal ω_3 or higher?

Hypergraph spaces

Definition

 $[S]^d$ is the set of all subsets of S with cardinality d.

Definition

The space of <u>d-regular hypergraphs</u> $X(\kappa,d)$ on κ is the power set $\mathcal{P}([\kappa]^d)$ naturally identified with the product space $2^{[\kappa]^d}$.

There's no topology here.

$$X(\kappa, d) \cong 2^{\kappa}$$
 for $1 \leq d < \omega \leq \kappa$ because $|[\kappa]^d| = |\kappa|$.

More interesting hypergraph spaces

Definition

Say that $\Gamma \subset [\kappa]^d$ has no *n*-cliques if $[\sigma]^d \not\subset \Gamma$ for all $\sigma \in [\kappa]^n$.

(The only nontrivial case is $d < n < \kappa$.) For example, a graph $\Gamma \subset [\kappa]^2$ is triangle-free iff it has no 3-cliques.

Definition

Let $X(\kappa, d, n)$ be the subspace of $X(\kappa, d)$ consisting of all $\Gamma \subset [\kappa]^d$ that have no *n*-cliques.

 $X(\kappa, d, n)$ is compact Hausdorff if $d, n < \omega$. Topologically, the only nontrivial subcase of that is

$$2 \le d < n < \omega < \omega_1 \le \kappa$$
.

A classification problem

Definition (repeated)

 $X(\kappa, d, n)$ is the space of all $\Gamma \subset [\kappa]^d$ without *n*-cliques (copies of $[n]^d$).

Problem

Assume $2 \le d < n < \omega$ and $2 \le d' < n' < \omega$. When are $X(\kappa, d, n)$ and $X(\kappa, d', n')$ homeomorphic?

The answer is not obvious. In particular, by a Δ -system argument:

- Both $X(\kappa, d, n)$ and $X(\kappa, d', n')$ are ccc and
- ullet both have every regular uncountable λ as a caliber.

Definition

 λ is a <u>caliber</u> of a space if every λ -sequence of nonempty open sets has a $\overline{\lambda}$ -long subsequence that contains a common point.

Main Theorem

Definition (repeated)

 $X(\kappa, d, n)$ is the space of all $\Gamma \subset [\kappa]^d$ without *n*-cliques.

Theorem

Assume $2 \le d < n < \omega$ and $2 \le d' < n' < \omega$. If $\omega < \kappa < \omega_d, \omega_{d'}$, then

$$2^{\kappa} \cong X(\kappa, d, n) \cong X(\kappa, d', n').$$

But if $\kappa > \omega_d$ and d < d', then

$$2^{\kappa} \not\cong X(\kappa, d, n) \not\cong X(\kappa, d', n').$$

Open problem: is $X(\omega_2, 2, 3) \cong X(\omega_2, 2, 4)$?

Broader questions

If " $X(\omega_2,2,3)\cong X(\omega_2,2,4)$?" sounds interesting to you...

Definition

Given a family \mathcal{F} of finite d-uniform hypergraphs, let $X(\kappa, d, \mathcal{F})$ be the set of all $\Gamma \subset [\kappa]^d$ without an induced sub-hypergraph in \mathcal{F} .

Question

Given $d, d', \mathcal{F}, \mathcal{F}'$, what is the least κ , if any, for which $X(\kappa, d, \mathcal{F}) \not\cong X(\kappa, d', \mathcal{F}')$?

Table of Contents

Main Theorem

Team games

Characterizing retracts of 2^k

Team games

Suppose G is a game where I and II take turns playing sequences of fixed length τ .

- Call I a team of size τ .
- Call $(p_i^0, p_i^1, p_i^2, ...)$ the plays of player I_i .
- Call a strategy σ for team II <u>uncoordinated</u> if each q_i^n played according to σ depends only on p_i^m for m < n.
- In other words, each player II_i following an uncoordinated strategy for II ignores I_i and II_i for j ≠ i.

The club game for teams

- The club game $\mathsf{Club}_{\tau}(S,\mathcal{E})$ for finite team size τ :
 - Let S be a set S and $\mathcal{E} \subset [S]^{\omega}$.
 - I and II play τ -sequences of elements of S for ω rounds.

I
$$(p_i^0)_{i < \tau}$$
 $(p_i^1)_{i < \tau}$ \cdots
II $(q_i^0)_{i < \tau}$ $(q_i^1)_{i < \tau}$ \cdots

- II wins iff $\bigcup_{i < \tau} \bigcup_{\alpha < \omega} \{ p_i^{\alpha}, q_i^{\alpha} \} \in \mathcal{E}$.
- ullet II has a winning strategy iff ${\mathcal E}$ contains a club subset of $[S]^\omega.$
- II has an <u>uncoordinated</u> winning strategy iff there is a club $\mathcal{C} \subset [S]^{\omega}$ such that $\bigcup_{i < \tau} A_i \in \mathcal{E}$ for all $A_0, \dots, A_{\tau-1} \in \mathcal{C}$.

A game separating $X(\kappa, d, n)$ and $X(\kappa, d', n')$

Definition

- C(X) is the set of all continuous $f: X \to \mathbb{R}$.
- For each $K \subset C(X)$, define the quotient space X/K by a/K = b/K iff f(a) = f(b) for all $f \in K$.
- Let $\mathcal{Q}(X)$ be the set of $K \in [C(X)]^{\omega}$ for which $a \mapsto a/K$ is an open map from X to X/K.
- Let $G_{\tau}(X) = \text{Club}_{\tau}(C(X), \mathcal{Q}(X))$.

Theorem

Assume $2 \le d < n < \omega$ and $2 \le d' < n' < \omega$.

- If $\omega \leq \kappa$ and $\tau < d'$, then II has an uncoordinated winning strategy for $G_{\tau}(X(\kappa, d', n'))$.
- If $\omega_d \leq \kappa$, then II does not have an uncoordinated winning strategy for $G_d(X(\kappa, d, n))$.

A combinatorial reason for ω_d to be critical

Theorem (repeated)

If $2 \le d < n < \omega$ and $\omega_d \le \kappa$, then II does not have an uncoordinated winning strategy for $G_d(X(\kappa, d, n))$.

Definition

A set \mathcal{I} is independent if $\bigcap \mathcal{A} \not\subset \bigcup \mathcal{B}$ for all disjoint finite $\mathcal{A}, \mathcal{B} \subset \mathcal{I}$.

Lemma

Assume $2 \le d < \omega$. The following are equivalent.

- $\kappa > \omega_d$
- For every club $\mathcal{E} \subset [\kappa]^{\omega}$, some $\mathcal{S} \in [\mathcal{E}]^d$ is independent.

To defeat an uncoordinated strategy ζ for II in $G_d(X(\kappa, d, n))$, I use d independent " ζ -closed" subsets of C(X).

An uncoordinated winning strategy outline

Theorem (repeated)

If $2 \le d' < n' < \omega \le \kappa$ and $\tau < d'$, then II has an uncoordinated winning strategy for $G_{\tau}(X(\kappa, d', n'))$.

- Each player II_i of team II aims for the set K_i of moves made by him and I_i to be such that $X(\kappa, d', n')/K_i$ is naturally identified with $X(C_i, d', n')$ for some $C_i \in [\kappa]^{\omega}$.
- To prove the quotient map $a \mapsto a/\bigcup_{i < \tau} K_i$ is open, the essential step is showing that $\tau + 1$ arbitrary finite quotients $(X(F_i, d', n'))_{i < \tau + 1}$ interact only in trivial ways.
- That heart of that triviality argument is...

...a very easy lemma

Lemma

Given a cardinal r and sets A and B_i for i < r, if $\emptyset \neq [A]^r \subset \bigcup_{i < r} [B_i]^r$, then there exists i < r such that $A \subset B_i$.

Proof.

We prove the contrapositive.

- Suppose $v_i \in A \setminus B_i$ for each i.
- Choose $e \in [A]^r$ such that $\{v_i \mid i < r\} \subset e$.
- For each i, we have $e \notin [B_i]^r$ because $e \not\subset B_i$.
- Thus, $[A]^r \not\subset \bigcup_{i < r} [B_i]^r$.

Table of Contents

Main Theorem

Team games

Characterizing retracts of 2^{κ}

Improving retractions to homeomorphisms

Theorem (repeated)

If
$$2 \le d < n < \omega \le \kappa < \omega_d$$
, then $X(\kappa, d, n) \cong 2^{\kappa}$.

To prove the above, I use Ščepin's theorem.

Definition

X is a <u>retract</u> of Y if there a continuous maps $e: X \to Y$ and $r: Y \to X$ such that $r \circ e = \mathrm{id}_X$.

Theorem (Ščepin)

If X is a retract of some 2^{λ} and $\chi(p, X) = \kappa \ge \omega$ for all $p \in X$, then $X \cong 2^{\kappa}$.

Every closed $C \subset 2^{\omega}$ is a retract of 2^{ω} . Thus, Ščepin's theorem is the right generalization of " $P \cong 2^{\omega}$ for every perfect $P \subset 2^{\omega}$."

Retractions from uncoodinated strategies

Theorem (Ščepin)

A compact 0-dimensional space X is a retract of some 2^{λ} iff there is a club $\mathcal{E} \subset [C(X)]^{\omega}$ with $a \mapsto a/\bigcup \mathcal{S}$ is open for all $\mathcal{S} \subset \mathcal{E}$.

I proved a variant of the above with restrictions on |S|.

Theorem

Given a compact 0-dimensional space X of weight κ , the following are equivalent.

- X is a retract of some 2^{λ} .
- For each finite τ satisfying $\omega_{\tau} \leq \kappa$, II has an uncoordinated winning strategy for $G_{\tau}(X)$.

Corollary

If $2 \le d < n < \omega \le \kappa < \omega_d$, then $X(\kappa, d, n) \cong 2^{\kappa}$.

Why ω_d is again critical

Theorem (repeated)

A compact 0-dimensional space X of weight κ is a retract of some 2^{λ} iff, each finite τ satisfying $\omega_{\tau} \leq \kappa$, II has an uncoordinated winning strategy for $G_{\tau}(X)$.

To prove that above, the following lemma is essential.

Lemma

Each ordinal α has a uniformly definable <u>finite</u> interval partition $\{\beta \mid \beta < \alpha\} = \bigcup \{I_i(\alpha) \mid i < \neg(\alpha)\}$ such that:

- The partition size $\mathbb{k}(\alpha)$ is $\leq \tau$ if $1 \leq n < \omega$ and $\alpha < \omega_{\tau}$.
- If, for each $\beta < \alpha$,
 - M_{β} is a countable elementary submodel of $H(\theta)$
 - and $(M_{\gamma})_{\gamma<\beta}\in M_{\beta}$,

then \bigcup {M_β | β ∈ $I_i(\alpha)$ } is an elementary submodel of $H(\theta)$.

Characterizion theorem: proof outline

• Given X and countable elementary submodels $(M_{\alpha})_{\alpha < w(X)}$, open quotient maps $X/\bigcup_{\beta < \alpha+1} M_{\beta} \to X/\bigcup_{\beta < \alpha} M_{\beta}$ are enough:

Theorem (Haydon)

Given a compact Hausdorff space X, the following are equivalent.

- X is a retract of some 2^{λ} .
- X is the inverse limit of some continuous inverse limit system $(f_{\alpha,\beta}\colon X_{\alpha}\to X_{\beta})_{\beta<\alpha<\kappa}$ such that:
 - $X_0 \subset 2^\omega$,
 - $X_{\alpha+1} \subset X_{\alpha} \times 2^{\omega}$, and
 - $f_{\alpha+1,\alpha} \colon X_{\alpha+1} \to X_{\alpha}$ is a continuous <u>open</u> surjection.
- Using elementarity, I can reduce the problem to openness of the quotient map $X \to X/(M_\alpha \cap \bigcup_{\beta < \alpha} M_\beta)$.
- Using the lemma, I arrange for $M_{\alpha} \cap \bigcup_{\beta < \alpha} M_{\beta}$ to be a <u>finite</u> union of countable elementary submodels of $H(\theta)$.

Other characterizations by team games

The co-absolutes of powers of 2 can also be characterized in terms of uncoordinated winning strategies for finite teams.

I will save the details for a potential future talk. But here is the game:

- In round $n < \omega$, team I plays open sets $(U_{n,i})_{i < \tau}$.
- Then team II plays open sets $(V_{n,i})_{i < \tau}$.
- If $\bigcap_i U_{n,i} \neq \emptyset$, then II loses if $\bigcap_i V_{n,i} = \emptyset$ or $\bigcap_i V_{n,i} \not\subset \bigcap_i U_{n,i}$.
- I wins if $\bigcup_n \bigcap_i V_i$ is dense.

This a team version of the Daniel-Kunen-Zhou open-open game.