Order properties of bases in products

David Milovich
Texas A&M International University
http://www.tamiu.edu/~dmilovich
david.milovich@tamiu.edu

Joint work with Guit-Jan Ridderbos and Santi Spadaro

Mar. 20, 2010 Spring Topology and Dynamics Conference Mississippi State University

Definition

- ▶ A preorder P is κ -directed if every subset smaller than κ has an (upper) bound in P.
- ▶ **Directed** means ℵ₀-directed.

Definition

- ▶ A preorder P is κ -directed if every subset smaller than κ has an (upper) bound in P.
- ▶ **Directed** means ℵ₀-directed.

Conversely:

- ▶ A preorder P is κ -**founded** if every bounded subset is smaller than κ .
- ▶ **Flat** means ℵ₀-founded.

Definition

- ▶ A preorder P is κ -directed if every subset smaller than κ has an (upper) bound in P.
- ▶ **Directed** means ℵ₀-directed.

Conversely:

- ▶ A preorder P is κ -**founded** if every bounded subset is smaller than κ .
- ▶ **Flat** means ℵ₀-founded.

Definition

A preorder P is **almost** κ -**founded** if it has a κ -founded cofinal suborder.

Definition

- ▶ A preorder P is κ -directed if every subset smaller than κ has an (upper) bound in P.
- ▶ **Directed** means ℵ₀-directed.

Conversely:

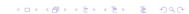
- ▶ A preorder P is κ -**founded** if every bounded subset is smaller than κ .
- ▶ **Flat** means ℵ₀-founded.

Definition

A preorder P is **almost** κ -**founded** if it has a κ -founded cofinal suborder.

Convention

Order sets like κ , $[\lambda]^{\kappa}$, and $2^{<\kappa}$ by \subseteq .



Topological preliminaries

Convention

- ▶ All spaces are Hausdorff (T_2) .
- ▶ Families of open sets are ordered by \supseteq .

Topological preliminaries

Convention

- ▶ All spaces are Hausdorff (T_2) .
- ► Families of open sets are ordered by ⊇.

Notation

- ightharpoonup au(X) is the set of open subsets of X.
- $ightharpoonup au^+(X)$ is the set of nonempty open subsets of X
- ightharpoonup au(p,X) is the set of open neighborhoods of p in X.

Topological preliminaries

Convention

- All spaces are Hausdorff (T₂).
- ► Families of open sets are ordered by ⊇.

Notation

- ightharpoonup au(X) is the set of open subsets of X.
- $ightharpoonup au^+(X)$ is the set of nonempty open subsets of X
- ightharpoonup au(p,X) is the set of open neighborhoods of p in X.

Definition

- ▶ A **local base** at p is a cofinal subset of $\tau(p, X)$.
- ▶ A π -base is a cofinal subset of $\tau^+(X)$.
- ▶ A **base** is a subset \mathcal{B} of $\tau(X)$ that includes a local base at every point.

The weight	The Noetherian type
w(X) of X is	Nt(X) of X is
the least $\kappa \geq \aleph_0$ such that	the least $\kappa \geq leph_0$ such that
X has a base that is	X has a base that is
of size $\leq \kappa$.	κ -founded.
The π -weight	The Noetherian π -type
$\pi(X)$ of X is	$\pi \operatorname{Nt}(X)$ of X is
the least $\kappa \geq \aleph_0$ such that	the least $\kappa \geq leph_0$ such that
X has a π -base that is	X has a π -base that is
of size $\leq \kappa$.	κ -founded.
The character	The local Noetherian type
$\chi(p,X)$ of p in X is	$\chi \mathrm{Nt}(p,X)$ of p in X is
the least $\kappa \geq \aleph_0$ such that	the least $\kappa \geq leph_0$ such that
p has a local base that is	p has a local base that is
of size $< \kappa$.	κ -founded.
or size $\leq \kappa$.	70 Tourided.

History

- ▶ Malykhin, Peregudov, and Šapirovskii studied the properties $\operatorname{Nt}(X) \leq \aleph_1$, $\pi\operatorname{Nt}(X) \leq \aleph_1$, $\operatorname{Nt}(X) = \aleph_0$, and $\pi\operatorname{Nt}(X) = \aleph_0$ in the 1970s and 1980s.
- ▶ Peregudov introduced Noetherian type and Noetherian π -type in 1997.
- ▶ Bennett and Lutzer rediscovered the property $Nt(X) = \aleph_0$ in 1998.
- ▶ In 2005, Milovich introduced local Noetherian type and rediscovered Noetherian type and Noetherian π -type.

Easy upper bounds

Lemma

Every preorder P is almost cf(P)-founded.

Corollary

For all spaces X,

- $\lambda \operatorname{Nt}(p,X) \leq \chi(p,X);$
- $\blacktriangleright \ \pi \mathrm{Nt} (X) \leq \pi (X).$

Easy upper bounds

Lemma

Every preorder P is almost cf(P)-founded.

Corollary

For all spaces X,

- $\lambda \operatorname{Nt}(p,X) \leq \chi(p,X);$
- $\pi \mathrm{Nt}(X) \leq \pi(X).$

Even easier:

Every P is $|P|^+$ -founded, so $\operatorname{Nt}(X) \leq w(X)^+$.

Easy upper bounds

Lemma

Every preorder P is almost cf(P)-founded.

Corollary

For all spaces X,

- $\lambda \operatorname{Nt}(p,X) \leq \chi(p,X);$
- $\pi \mathrm{Nt}(X) \leq \pi(X).$

Even easier:

Every P is $|P|^+$ -founded, so $\operatorname{Nt}(X) \leq w(X)^+$.

Example

$$\operatorname{Nt}(\beta\mathbb{N}) = w(\beta\mathbb{N})^+ = \mathfrak{c}^+ \text{ because } \pi(\beta\mathbb{N}) = \aleph_0 < \operatorname{cf}(w(\beta\mathbb{N})).$$

Easy upper bounds for products

Theorem

If $p \in X = \prod_{i \in I} X_i$, then:

- ▶ $\operatorname{Nt}(X) \leq \sup_{i \in I} \operatorname{Nt}(X_i)$ (Peregudov, 1997)
- $\pi \mathrm{Nt}(X) \leq \sup_{i \in I} \pi \mathrm{Nt}(X_i)$
- $\lambda \operatorname{Nt}(p,X) \leq \sup_{i \in I} \chi \operatorname{Nt}(p(i),X_i)$
- $\lambda \operatorname{Nt}(X) \leq \sup_{i \in I} \chi \operatorname{Nt}(X)$

Large products

Theorem (essentially (Malykhin, 1981))

If $X = \prod_{\alpha < \kappa} X_{\alpha}$ and $|X_{\alpha}| > 1$ for all $\alpha < \kappa$, then

- $\kappa \geq \chi(p, X) \Rightarrow \chi \operatorname{Nt}(p, X) = \aleph_0$;
- $\kappa \geq \pi(X) \Rightarrow \pi \operatorname{Nt}(X) = \aleph_0$;

Corollary

▶ $\operatorname{Nt}\left(X \times 2^{w(X)}\right) = \aleph_0$. (Malykhin, 1981)

Corollary

- ▶ $\operatorname{Nt}\left(X \times 2^{w(X)}\right) = \aleph_0$. (Malykhin, 1981)

Corollary

- ▶ Nt $(X \times 2^{w(X)}) = \aleph_0$. (Malykhin, 1981)

- ▶ Nt $(X^{w(X)}) = \aleph_0$.

Finite powers

Definition

- ▶ In a product space $X = \prod_{i \in I} X_i$, let $\mathrm{Nt}_{\mathsf{box}}(X)$ denote the least κ for which X has κ -founded base (π -base, local base at p) that consists only of boxes.
- ▶ Similarly define $\chi Nt_{box}(p, X)$.
- $\lambda \operatorname{Nt}_{\mathsf{box}}(p, X) = \sup_{p \in X} \chi \operatorname{Nt}_{\mathsf{box}}(p, X).$

Finite powers

Definition

- ▶ In a product space $X = \prod_{i \in I} X_i$, let $\mathrm{Nt}_{\mathrm{box}}(X)$ denote the least κ for which X has κ -founded base (π -base, local base at p) that consists only of boxes.
- Similarly define $\chi Nt_{box}(\rho, X)$.
- $\lambda \operatorname{Nt}_{\mathsf{box}}(p, X) = \sup_{p \in X} \chi \operatorname{Nt}_{\mathsf{box}}(p, X).$

Theorem (M.)

For all $n \in [1, \omega)$, for all spaces X:

$$\begin{array}{cccc} \chi \mathrm{Nt} \left(p^{n}, X^{n} \right) = & \chi \mathrm{Nt}_{\mathsf{box}} (p^{n}, X^{n}) & = & \chi \mathrm{Nt} \left(p, X \right) \\ \chi \mathrm{Nt} \left(X^{n} \right) = & \chi \mathrm{Nt}_{\mathsf{box}} (X^{n}) & = & \chi \mathrm{Nt} \left(X \right) \\ & & \mathrm{Nt}_{\mathsf{box}} (X^{n}) & = & \mathrm{Nt} \left(X \right) \end{array}$$

Passing to subsets

▶ If \mathcal{B} is a local base at p in X, then \mathcal{B} includes a $\chi \mathrm{Nt}(X)$ -founded local base at p in X.

Passing to subsets

- ▶ If \mathcal{B} is a local base at p in X, then \mathcal{B} includes a $\chi \operatorname{Nt}(X)$ -founded local base at p in X.
- ▶ If \mathcal{B} is a π -base of X, then \mathcal{B} includes a $\pi \mathrm{Nt}(X)$ -founded π -base of X.

Passing to subsets

- ▶ If \mathcal{B} is a local base at p in X, then \mathcal{B} includes a $\chi \operatorname{Nt}(X)$ -founded local base at p in X.
- ▶ If \mathcal{B} is a π -base of X, then \mathcal{B} includes a $\pi \mathrm{Nt}(X)$ -founded π -base of X.
- ▶ The analogous claim for bases is false.

Passing to subsets

- ▶ If \mathcal{B} is a local base at p in X, then \mathcal{B} includes a $\chi \mathrm{Nt}(X)$ -founded local base at p in X.
- ▶ If \mathcal{B} is a π -base of X, then \mathcal{B} includes a $\pi \mathrm{Nt}(X)$ -founded π -base of X.
- ▶ The analogous claim for bases is false.

Theorem (Bennett, Lutzer, 1998)

Every metrizable space has a flat base.

Proof: For each $n < \omega$, pick a locally finite open cover refining the balls of radius 2^{-n} . Take the union of these covers.

Passing to subsets

- ▶ If \mathcal{B} is a π -base of X, then \mathcal{B} includes a $\pi \mathrm{Nt}(X)$ -founded π -base of X.
- ▶ The analogous claim for bases is false.

Theorem (Bennett, Lutzer, 1998)

Every metrizable space has a flat base.

Proof: For each $n < \omega$, pick a locally finite open cover refining the balls of radius 2^{-n} . Take the union of these covers.

Example (M., 2009)

Set $X = \omega^{\omega}$. Let \mathcal{B} be the set of all sets of the form $U_{s,n}$ where $s \in \omega^{<\omega}$, $n < \omega$, and $U_{s,n}$ is the set of all $f \in X$ such that $s \cap i \subseteq f$ for some $i \leq n$. \mathcal{B} a base of X, but \mathcal{B} has no flat subcover.

Open Question

Is $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X)$ possible? (Recall $\operatorname{Nt}(X) = \operatorname{Nt}_{\mathsf{box}}(X^2)$.)

Open Question

Is $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X)$ possible? (Recall $\operatorname{Nt}(X) = \operatorname{Nt}_{\operatorname{box}}(X^2)$.) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) = \aleph_0$ is possible.)

Open Question

```
Is \operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) possible? (Recall \operatorname{Nt}(X) = \operatorname{Nt}_{\operatorname{box}}(X^2).) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if \operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) = \aleph_0 is possible.)
```

Partial answers (M., Spadaro)

"No," if:

X is locally compact and metrizable;

Open Question

Is $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X)$ possible? (Recall $\operatorname{Nt}(X) = \operatorname{Nt}_{\operatorname{box}}(X^2)$.) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) = \aleph_0$ is possible.)

Partial answers (M., Spadaro)

- X is locally compact and metrizable;
- X is σ-compact and metrizable;

Open Question

Is $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X)$ possible? (Recall $\operatorname{Nt}(X) = \operatorname{Nt}_{\operatorname{box}}(X^2)$.) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) = \aleph_0$ is possible.)

Partial answers (M., Spadaro)

- X is locally compact and metrizable;
- \triangleright X is σ -compact and metrizable;
- ▶ X is compact and $\chi(p,X) = w(X)$ for all $p \in X$

Open Question

Is $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X)$ possible? (Recall $\operatorname{Nt}(X) = \operatorname{Nt}_{\operatorname{box}}(X^2)$.) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) = \aleph_0$ is possible.)

Partial answers (M., Spadaro)

- X is locally compact and metrizable;
- X is σ -compact and metrizable;
- ▶ X is compact and $\chi(p,X) = w(X)$ for all $p \in X$ (a special case: X is a compact group);

Open Question

Is $\operatorname{Nt}\left(X^{2}\right) \neq \operatorname{Nt}\left(X\right)$ possible? (Recall $\operatorname{Nt}\left(X\right) = \operatorname{Nt}_{\mathsf{box}}(X^{2})$.) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if $\operatorname{Nt}\left(X^{2}\right) \neq \operatorname{Nt}\left(X\right) = \aleph_{0}$ is possible.)

Partial answers (M., Spadaro)

- X is locally compact and metrizable;
- \triangleright X is σ -compact and metrizable;
- ▶ X is compact and $\chi(p,X) = w(X)$ for all $p \in X$ (a special case: X is a compact group);
- ▶ X is compact, has regular weight κ , and has a dense set of points with π -character $< \kappa$

Open Question

Is $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X)$ possible? (Recall $\operatorname{Nt}(X) = \operatorname{Nt}_{\operatorname{box}}(X^2)$.) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) = \aleph_0$ is possible.)

Partial answers (M., Spadaro)

- X is locally compact and metrizable;
- X is σ-compact and metrizable;
- ▶ X is compact and $\chi(p,X) = w(X)$ for all $p \in X$ (a special case: X is a compact group);
- ▶ X is compact, has regular weight κ , and has a dense set of points with π -character $< \kappa$ (a special case: X is T_5 , compact, and has regular weight);

Open Question

Is $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X)$ possible? (Recall $\operatorname{Nt}(X) = \operatorname{Nt}_{\operatorname{box}}(X^2)$.) (Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn (2001) asked if $\operatorname{Nt}(X^2) \neq \operatorname{Nt}(X) = \aleph_0$ is possible.)

Partial answers (M., Spadaro)

- X is locally compact and metrizable;
- \triangleright X is σ -compact and metrizable;
- ▶ X is compact and $\chi(p,X) = w(X)$ for all $p \in X$ (a special case: X is a compact group);
- X is compact, has regular weight κ, and has a dense set of points with π-character < κ
 (a special case: X is T₅, compact, and has regular weight);
- ▶ *X* is compact, homogeneous, and has regular weight.

A surprising finite product

▶ For directed sets P, Q, the relation $P ext{ ≤}_T Q$ means there is map from Q to P sending cofinal sets to cofinal sets.

A surprising finite product

- ▶ For directed sets P, Q, the relation $P ext{ ≤}_T Q$ means there is map from Q to P sending cofinal sets to cofinal sets.
- ► (Todorčević, 1985) If $cf(\kappa) = \kappa = \kappa^{\aleph_0}$, then there exist directed P, Q with $P, Q <_T P \times Q \equiv_T [\kappa]^{<\aleph_0}$.

- ▶ For directed sets P, Q, the relation $P ext{ ≤}_T Q$ means there is map from Q to P sending cofinal sets to cofinal sets.
- ► (Todorčević, 1985) If $cf(\kappa) = \kappa = \kappa^{\aleph_0}$, then there exist directed P, Q with $P, Q <_T P \times Q \equiv_T [\kappa]^{<\aleph_0}$.
- ▶ (M., 2010) Using these P and Q, we can build compact X, Y such that $\chi \operatorname{Nt}(X) = \chi \operatorname{Nt}(Y) = \aleph_1$ and $\chi \operatorname{Nt}(X \times Y) = \aleph_0$.

- ▶ For directed sets P, Q, the relation $P ext{ ≤}_T Q$ means there is map from Q to P sending cofinal sets to cofinal sets.
- ► (Todorčević, 1985) If $cf(\kappa) = \kappa = \kappa^{\aleph_0}$, then there exist directed P, Q with $P, Q <_T P \times Q \equiv_T [\kappa]^{<\aleph_0}$.
- ▶ (M., 2010) Using these P and Q, we can build compact X, Y such that $\chi \mathrm{Nt}(X) = \chi \mathrm{Nt}(Y) = \aleph_1$ and $\chi \mathrm{Nt}(X \times Y) = \aleph_0$. We can set $Z = X \oplus Y$ to get p, q, Z with $\chi \mathrm{Nt}(\langle p, q \rangle, Z^2) = \aleph_0 < \aleph_1 = \chi \mathrm{Nt}(p, Z) = \chi \mathrm{Nt}(q, Z)$.

- ▶ For directed sets P, Q, the relation $P \leq_T Q$ means there is map from Q to P sending cofinal sets to cofinal sets.
- ► (Todorčević, 1985) If $cf(\kappa) = \kappa = \kappa^{\aleph_0}$, then there exist directed P, Q with $P, Q <_T P \times Q \equiv_T [\kappa]^{<\aleph_0}$.
- (M., 2010) Using these P and Q, we can build compact X, Y such that $\chi \mathrm{Nt}(X) = \chi \mathrm{Nt}(Y) = \aleph_1$ and $\chi \mathrm{Nt}(X \times Y) = \aleph_0$. We can set $Z = X \oplus Y$ to get p, q, Z with $\chi \mathrm{Nt}(\langle p, q \rangle, Z^2) = \aleph_0 < \aleph_1 = \chi \mathrm{Nt}(p, Z) = \chi \mathrm{Nt}(q, Z)$.
- ▶ (Spadaro, 2010) Using a hyperspace-like construction, we can modify X and Y to get $\operatorname{Nt}(X)$, $\operatorname{Nt}(Y) \ge \aleph_1$ and $\operatorname{Nt}(X \times Y) = \aleph_0$.

- ▶ For directed sets P, Q, the relation $P ext{ ≤}_T Q$ means there is map from Q to P sending cofinal sets to cofinal sets.
- ► (Todorčević, 1985) If $cf(\kappa) = \kappa = \kappa^{\aleph_0}$, then there exist directed P, Q with $P, Q <_T P \times Q \equiv_T [\kappa]^{<\aleph_0}$.
- ▶ (M., 2010) Using these P and Q, we can build compact X, Y such that $\chi \operatorname{Nt}(X) = \chi \operatorname{Nt}(Y) = \aleph_1$ and $\chi \operatorname{Nt}(X \times Y) = \aleph_0$. We can set $Z = X \oplus Y$ to get p, q, Z with $\chi \operatorname{Nt}(\langle p, q \rangle, Z^2) = \aleph_0 < \aleph_1 = \chi \operatorname{Nt}(p, Z) = \chi \operatorname{Nt}(q, Z)$.
- ▶ (Spadaro, 2010) Using a hyperspace-like construction, we can modify X and Y to get $\operatorname{Nt}(X)$, $\operatorname{Nt}(Y) \ge \aleph_1$ and $\operatorname{Nt}(X \times Y) = \aleph_0$.
- ▶ **Open:** Are there compact X, Y with $Nt(X \times Y) < min\{Nt(X), Nt(Y)\}$?

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

Example

▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- $\aleph_1 \leq \pi \mathrm{Nt}(X) \leq \mathrm{Nt}(X) \leq \mathfrak{c}^+.$
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- $\aleph_1 \leq \pi \mathrm{Nt}(X) \leq \mathrm{Nt}(X) \leq \mathfrak{c}^+.$
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.
- ▶ (Kojman) $\operatorname{Nt}(X) \leq \operatorname{cf}([\aleph_{\omega}]^{\aleph_0})$

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.
- ▶ (Kojman) $\operatorname{Nt}(X) \leq \operatorname{cf}([\aleph_{\omega}]^{\aleph_0}) < \aleph_{\omega_4}$ (Shelah).

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)}$ 2. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- $\aleph_1 \leq \pi \mathrm{Nt}(X) \leq \mathrm{Nt}(X) \leq \mathfrak{c}^+.$
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.
- ▶ (Kojman) $\operatorname{Nt}(X) \leq \operatorname{cf}([\aleph_{\omega}]^{\aleph_0}) < \aleph_{\omega_4}$ (Shelah).
- ▶ (Spadaro) $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)}$ 2. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- $\aleph_1 \leq \pi \mathrm{Nt}(X) \leq \mathrm{Nt}(X) \leq \mathfrak{c}^+.$
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.
- ▶ (Kojman) $\operatorname{Nt}(X) \leq \operatorname{cf}([\aleph_{\omega}]^{\aleph_0}) < \aleph_{\omega_4}$ (Shelah).
- ▶ (Spadaro) $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$. **Open:** can we have $\operatorname{Nt}(X) > \aleph_{\omega+1}$?

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.
- ▶ (Kojman) $\operatorname{Nt}(X) \leq \operatorname{cf}([\aleph_{\omega}]^{\aleph_0}) < \aleph_{\omega_4}$ (Shelah).
- ▶ (Spadaro) $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$. **Open:** can we have $\operatorname{Nt}(X) > \aleph_{\omega+1}$?
- ▶ (Soukup) $(\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0) \Rightarrow \operatorname{Nt}(X) \geq \aleph_2$.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)}$ 2. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- $\aleph_1 \leq \pi \mathrm{Nt}(X) \leq \mathrm{Nt}(X) \leq \mathfrak{c}^+.$
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.
- ▶ (Kojman) $\operatorname{Nt}(X) \leq \operatorname{cf}([\aleph_{\omega}]^{\aleph_0}) < \aleph_{\omega_4}$ (Shelah).
- ▶ (Spadaro) $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$. **Open:** can we have $\operatorname{Nt}(X) > \aleph_{\omega+1}$?
- ▶ (Soukup) $(\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0) \Rightarrow \operatorname{Nt}(X) \geq \aleph_2$.(The hypothesis is consistent with GCH, relative to (roughly) a huge cardinal (Levinski, Magidor, Shelah, 1990).)

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

- ▶ Let $p \in X = \prod_{\alpha < \aleph_{\omega}}^{(\aleph_1)} 2$. We then have $\pi(X) = w(X) = \aleph_{\omega}^{\aleph_0}$.
- $\aleph_1 \leq \pi \mathrm{Nt}(X) \leq \mathrm{Nt}(X) \leq \mathfrak{c}^+.$
- ▶ (Kojman) If $\square_{\aleph_{\omega}}$ and $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+1}$, then $\operatorname{Nt}(X) = \aleph_1$.
- ▶ (Kojman) $\operatorname{Nt}(X) \leq \operatorname{cf}([\aleph_{\omega}]^{\aleph_0}) < \aleph_{\omega_4}$ (Shelah).
- ▶ (Spadaro) $\mathfrak{c} \leq \aleph_{\omega+1} \Rightarrow \operatorname{Nt}(X) \leq \aleph_{\omega+1}$. **Open:** can we have $\operatorname{Nt}(X) > \aleph_{\omega+1}$?
- ▶ (Soukup) $(\aleph_{\omega+1}, \aleph_{\omega}) \rightarrow (\aleph_1, \aleph_0) \Rightarrow \operatorname{Nt}(X) \geq \aleph_2$.(The hypothesis is consistent with GCH, relative to (roughly) a huge cardinal (Levinski, Magidor, Shelah, 1990).)
- ▶ **Open:** Can we have $\pi Nt(X) > \aleph_1$? Equivalently, can $\langle Fn(\aleph_{\omega}, 2, \aleph_1), \subseteq \rangle$ fail to be almost \aleph_1 -founded?

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Patterns

► Every known compact homogeneous space (CHS) is a continuous image of a product of compacta with weight at most c.

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Patterns

- Every known compact homogeneous space (CHS) is a continuous image of a product of compacta with weight at most c.
- ▶ It follows that every known CHS has cellularity at most c. (Why? Easy: c⁺ is a caliber of any such space.)
- ▶ Van Douwen's Problem asks whether $c(X) \le \mathfrak{c}$ for every CHS X. This is open after \sim 40 years, in all models of ZFC.

Definition

The **cellularity** c(X) of X is the least infinite upper bound of the cardinalities of its **cellular families**, *i.e.*, pairwise disjoint open families.

Patterns

- Every known compact homogeneous space (CHS) is a continuous image of a product of compacta with weight at most c.
- ▶ It follows that every known CHS has cellularity at most c. (Why? Easy: c⁺ is a caliber of any such space.)
- ▶ Van Douwen's Problem asks whether $c(X) \le \mathfrak{c}$ for every CHS X. This is open after \sim 40 years, in all models of ZFC.
- ▶ (M., 2007) It also follows that every known CHS has Noetherian type at most c^+ . (Why? Not as easy...)

Sharp bounds

Example (Maurice, 1964)

The lexicographically ordered space $X=2_{\mathrm{lex}}^{\omega\cdot\omega}$ is a CHS satisfying $c\left(X\right)=\mathfrak{c}.$

Example (Peregudov, 1997)

The double-arrow space X is compact, homogeneous, and $\operatorname{Nt}(X)=\mathfrak{c}^+.$

Another Pattern

Every known CHS X satisfies $\pi Nt(X) \leq \aleph_1$ and $\chi Nt(X) = \aleph_0$.

Another Pattern

Every known CHS X satisfies $\pi Nt(X) \leq \aleph_1$ and $\chi Nt(X) = \aleph_0$.

Theorems (M., 2007)

▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \mathrm{Nt}\,(X) = \aleph_0$

Another Pattern

Every known CHS X satisfies $\pi Nt(X) \leq \aleph_1$ and $\chi Nt(X) = \aleph_0$.

Theorems (M., 2007)

- ▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \mathrm{Nt}\,(X) = \aleph_0$
- ▶ Assuming GCH, $\chi Nt(X) \le c(X)$ if X is a CHS.

Another Pattern

Every known CHS X satisfies $\pi \mathrm{Nt}\left(X\right) \leq \aleph_1$ and $\chi \mathrm{Nt}\left(X\right) = \aleph_0$.

Theorems (M., 2007)

- ▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \mathrm{Nt}\,(X) = \aleph_0$
- ▶ Assuming GCH, $\chi Nt(X) \le c(X)$ if X is a CHS.

Attacking Van Douwen's Problem

▶ If we found a model of GCH with a CHS X with a local base \mathcal{B} such that \mathcal{B} is not almost \aleph_1 -founded, then $c(X) > \mathfrak{c}$.

Another Pattern

Every known CHS X satisfies $\pi Nt(X) \leq \aleph_1$ and $\chi Nt(X) = \aleph_0$.

Theorems (M., 2007)

- ▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \mathrm{Nt}\,(X) = \aleph_0$
- ▶ Assuming GCH, $\chi Nt(X) \le c(X)$ if X is a CHS.

Attacking Van Douwen's Problem

- ▶ If we found a model of GCH with a CHS X with a local base \mathcal{B} such that \mathcal{B} is not almost \aleph_1 -founded, then $c(X) > \mathfrak{c}$.
- ▶ $X = 2_{\text{lex}}^{\omega} \times 2_{\text{lex}}^{\omega_1} \times 2_{\text{lex}}^{\omega_2}$ is compact, and not local base of X is almost \aleph_1 -founded, but X is not homogeneous.

Another Pattern

Every known CHS X satisfies $\pi \operatorname{Nt}(X) \leq \aleph_1$ and $\chi \operatorname{Nt}(X) = \aleph_0$.

Theorems (M., 2007)

- ▶ If X is a separable CHS and $w(X) < \mathfrak{p}$, then $\chi \mathrm{Nt}\,(X) = \aleph_0$
- ▶ Assuming GCH, $\chi Nt(X) \le c(X)$ if X is a CHS.

Attacking Van Douwen's Problem

- ▶ If we found a model of GCH with a CHS X with a local base \mathcal{B} such that \mathcal{B} is not almost \aleph_1 -founded, then $c(X) > \mathfrak{c}$.
- ▶ $X = 2_{\text{lex}}^{\omega} \times 2_{\text{lex}}^{\omega_1} \times 2_{\text{lex}}^{\omega_2}$ is compact, and not local base of X is almost \aleph_1 -founded, but X is not homogeneous.
- (Arhangel'skiĭ, 2005) If a product of linear orders is a CHS, then all factors are first countable, and hence have cellularity at most c.

Definition (Van Douwen)

Definition (Van Douwen)

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.

Definition (Van Douwen)

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.
- ▶ However, it is unknown whether every PHC X satisfies $c(X) \le \mathfrak{c}$.

Definition (Van Douwen)

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.
- ▶ However, it is unknown whether every PHC X satisfies $c(X) \le \mathfrak{c}$.
- ▶ It is also unknown whether every PHC X has a flat local base.

Definition (Van Douwen)

- Many results about homogeneous compact spaces have been generalized to power homogeneous compact (PHC) spaces.
- (Ridderbos, 2006) For example, $2^{\chi(X)} \le 2^{\pi\chi(X)c(X)}$ for all PHC X.
- ▶ However, it is unknown whether every PHC X satisfies $c(X) \le \mathfrak{c}$.
- ▶ It is also unknown whether every PHC X has a flat local base.
- ▶ Perhaps an easier question: Does GCH imply $\chi \operatorname{Nt}(X) \leq c(X)$ for all PHC X?

A partial answer

Perhaps an even easier question:

Does GCH imply $\chi Nt(X) \leq d(X)$ for all PHC X?

A partial answer

Perhaps an even easier question:

Does GCH imply $\chi Nt(X) \leq d(X)$ for all PHC X?

Theorem (M., Ridderbos, 2007)

Given GCH, X PHC, and $\max_{p\in X}\chi(p,X)=\operatorname{cf}(\chi(X))>d(X)$, there is a nonempty open $U\subseteq X$ such that $\chi\operatorname{Nt}(p,X)=\aleph_0$ for all $p\in U$.

▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \operatorname{Nt}(p, X) \leq \chi \operatorname{Nt}(f(p), Y)$.

▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \mathrm{Nt}(p,X) \leq \chi \mathrm{Nt}(f(p),Y)$. Hence, $0 < \alpha < \beta \Rightarrow \chi \mathrm{Nt}(p,X^{\beta}) \leq \chi \mathrm{Nt}(p \upharpoonright \alpha, X^{\alpha})$.

- (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \mathrm{Nt}(p,X) \leq \chi \mathrm{Nt}(f(p),Y)$. Hence, $0 < \alpha < \beta \Rightarrow \chi \mathrm{Nt}(p,X^{\beta}) \leq \chi \mathrm{Nt}(p \upharpoonright \alpha, X^{\alpha})$.
- ▶ (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \mathrm{Nt}\left(p^{\gamma}, X^{\gamma}\right) = \chi \mathrm{Nt}\left(p, X\right)$ and $\chi \mathrm{Nt}\left(X^{\gamma}\right) = \chi \mathrm{Nt}\left(X\right)$.

- ▶ (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \mathrm{Nt}(p,X) \leq \chi \mathrm{Nt}(f(p),Y)$. Hence, $0 < \alpha < \beta \Rightarrow \chi \mathrm{Nt}(p,X^{\beta}) \leq \chi \mathrm{Nt}(p \upharpoonright \alpha, X^{\alpha})$.
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \mathrm{Nt}(p^{\gamma}, X^{\gamma}) = \chi \mathrm{Nt}(p, X)$ and $\chi \mathrm{Nt}(X^{\gamma}) = \chi \mathrm{Nt}(X)$. However, there are examples of $\chi \mathrm{Nt}(X^{\omega_1}) < \chi \mathrm{Nt}(X)$ with $\aleph_1 < \mathrm{cf}(\chi(X))$.

- (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \mathrm{Nt}(p,X) \leq \chi \mathrm{Nt}(f(p),Y)$. Hence, $0 < \alpha < \beta \Rightarrow \chi \mathrm{Nt}(p,X^{\beta}) \leq \chi \mathrm{Nt}(p \upharpoonright \alpha, X^{\alpha})$.
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \mathrm{Nt}\left(p^{\gamma}, X^{\gamma}\right) = \chi \mathrm{Nt}\left(p, X\right)$ and $\chi \mathrm{Nt}\left(X^{\gamma}\right) = \chi \mathrm{Nt}\left(X\right)$. However, there are examples of $\chi \mathrm{Nt}\left(X^{\omega_1}\right) < \chi \mathrm{Nt}\left(X\right)$ with $\aleph_1 < \mathrm{cf}(\chi(X))$.
- ► (Ridderbos, 2007) If $0 < \gamma < \text{cf}(\chi(p, X))$, then $\chi \text{Nt}(p^{\gamma}, X^{\gamma}) = \chi \text{Nt}(p, X)$.

- (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \mathrm{Nt}(p,X) \leq \chi \mathrm{Nt}(f(p),Y)$. Hence, $0 < \alpha < \beta \Rightarrow \chi \mathrm{Nt}(p,X^{\beta}) \leq \chi \mathrm{Nt}(p \upharpoonright \alpha, X^{\alpha})$.
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \mathrm{Nt}\left(p^{\gamma}, X^{\gamma}\right) = \chi \mathrm{Nt}\left(p, X\right)$ and $\chi \mathrm{Nt}\left(X^{\gamma}\right) = \chi \mathrm{Nt}\left(X\right)$. However, there are examples of $\chi \mathrm{Nt}\left(X^{\omega_1}\right) < \chi \mathrm{Nt}\left(X\right)$ with $\aleph_1 < \mathrm{cf}(\chi(X))$.
- ► (Ridderbos, 2007) If $0 < \gamma < \text{cf}(\chi(p, X))$, then $\chi \text{Nt}(p^{\gamma}, X^{\gamma}) = \chi \text{Nt}(p, X)$.
- ► (M., 2009) If $\operatorname{cf}(\chi(p,X)) \leq \gamma < \chi(p,X)$, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) \leq \chi \operatorname{Nt}(p,X) \leq \chi \operatorname{Nt}(p^{\gamma}, X^{\gamma})^{+}$.

- (M., 2007) If $f: X \to Y$ is continuous and open at p, then $\chi \mathrm{Nt}(p,X) \leq \chi \mathrm{Nt}(f(p),Y)$. Hence, $0 < \alpha < \beta \Rightarrow \chi \mathrm{Nt}(p,X^{\beta}) \leq \chi \mathrm{Nt}(p \upharpoonright \alpha, X^{\alpha})$.
- (M., 2009) If $0 < \gamma < \omega_1$, then $\chi \mathrm{Nt}\left(p^{\gamma}, X^{\gamma}\right) = \chi \mathrm{Nt}\left(p, X\right)$ and $\chi \mathrm{Nt}\left(X^{\gamma}\right) = \chi \mathrm{Nt}\left(X\right)$. However, there are examples of $\chi \mathrm{Nt}\left(X^{\omega_1}\right) < \chi \mathrm{Nt}\left(X\right)$ with $\aleph_1 < \mathrm{cf}(\chi(X))$.
- ► (Ridderbos, 2007) If $0 < \gamma < \text{cf}(\chi(p, X))$, then $\chi \text{Nt}(p^{\gamma}, X^{\gamma}) = \chi \text{Nt}(p, X)$.
- ► (M., 2009) If $\operatorname{cf}(\chi(p,X)) \leq \gamma < \chi(p,X)$, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) \leq \chi \operatorname{Nt}(p,X) \leq \chi \operatorname{Nt}(p^{\gamma}, X^{\gamma})^{+}$.
- ▶ (M., 2005) If $\chi(p, X) \le \gamma$ and |X| > 1, then $\chi \operatorname{Nt}(p^{\gamma}, X^{\gamma}) = \aleph_0$.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

Example (M., 2009)

▶ Let $p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \beth_\alpha}^{(\aleph_\omega)} 2$.

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

Example (M., 2009)

- ▶ Let $p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \beth_\alpha}^{(\aleph_\omega)} 2$.
- $\chi(p,X) = \beth_{\omega_1}.$

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

Example (M., 2009)

- ▶ Let $p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \beth_\alpha}^{(\aleph_\omega)} 2$.
- $\chi(p,X) = \beth_{\omega_1}.$

Definition

 $\prod_{i\in I}^{(\kappa)} X_i$ denotes the set $\prod_{i\in I} X_i$ with the topology generated by $(<\kappa)$ -supported products of open subsets of the factors.

Example (M., 2009)

- ▶ Let $p \in X = \prod_{\alpha < \omega_1}^{(\aleph_1)} \prod_{\beta < \beth_\alpha}^{(\aleph_\omega)} 2$.
- $\chi(p,X) = \beth_{\omega_1}.$