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Definition
» A preorder P is k-directed if every subset smaller than k has
an (upper) bound in P.

» Directed means Ny-directed.

Conversely:

» A preorder P is k-founded if every bounded subset is smaller
than k.

» Flat means Np-founded.

Definition
A preorder P is almost k-founded if it has a k-founded cofinal
suborder.

Convention
Order sets like x, [A]", and 2<" by C.
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Topological preliminaries
Convention

» All spaces are Hausdorff (T3).

» Families of open sets are ordered by D.

Notation

» 7(X) is the set of open subsets of X.
» 71(X) is the set of nonempty open subsets of X
» 7(p, X) is the set of open neighborhoods of p in X.

Definition
» A local base at p is a cofinal subset of 7(p, X).

» A m-base is a cofinal subset of 71 (X).

» A base is a subset B of 7(X) that includes a local base at
every point.



The weight

w(X) of X is

the least K > N such that
X has a base that is

of size < k.

The Noetherian type

Nt (X) of X is

the least K > N such that
X has a base that is
k-founded.

The m-weight

7(X) of X is

the least ¥ > Ng such that
X has a m-base that is

of size < k.

The Noetherian 7-type
7Nt (X) of X is

the least K > N such that
X has a m-base that is
k-founded.

The character

x(p, X) of piin X is

the least K > Ng such that
p has a local base that is
of size < k.

The local Noetherian type
xNt (p, X) of pin X is

the least k > Ng such that
p has a local base that is
k-founded.

X(X) = sup,ex x(p, X)

| XNt (X) = sup,ex XNt (p, X) |




History

» Malykhin, Peregudov, and éapirovskiT studied the properties
Nt (X) < N, 7Nt (X) < 8y, Nt (X) = Rg, and 7Nt (X) = Np
in the 1970s and 1980s.

» Peregudov introduced Noetherian type and Noetherian m-type
in 1997.

» Bennett and Lutzer rediscovered the property Nt (X) = Ng in
1998.

» In 2005, Milovich introduced local Noetherian type and
rediscovered Noetherian type and Noetherian m-type.
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Every preorder P is almost cf(P)-founded.

Corollary

For all spaces X,
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Easy upper bounds

Lemma
Every preorder P is almost cf(P)-founded.

Corollary

For all spaces X,
> XNt (p, X) < x(p, X);
> XNE(X) < X(X);
> TNt (X) < m(X).

Even easier:
Every P is |P|"-founded, so Nt (X) < w(X)™.

Example
Nt (ON) = w(BN)" = ¢t because 7(8N) = Xg < cf(w(SN)).



Easy upper bounds for products

Theorem
If pe€ X =][;e; X, then:

> Nt (X) < sup;c; Nt (X;) (Peregudov, 1997)
» 7Nt (X) < SUup;¢y Nt (X,)

> xNt (p, X) < sup;e; XNt (p(i), X;)

> Nt (X) < sup;c; xNt (X)



Large products

Theorem (essentially (Malykhin, 1981))
If X =][pcn Xa and | X,| > 1 for all a < &, then
> k> x(p, X) = xNt(p, X) = Ro;
> k> x(X) = xNt (X) = Ro;
> k> m(X) = 7Nt(X) =N ;
> k> w(X) = Nt (X) = No.
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Corollary
> Nt (X x 27(X)) = Rg. (Malykhin, 1981)
> 7Nt (X x 27(X)) = Ry,
> XNt (X x 2X(X)) = Ry



Corollary

Nt (X x 2%(X)) = Ry. (Malykhin, 1981)
TNt (X x 27(X)) = .

XNt (X x 2X(X)) = Ry,

Nt (Xw(X)) = ,.

TNt (X™(X)) = R

ANt (XX()) =g,

vV vV v v v Vv



Finite powers
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least x for which X has k-founded base (7-base, local base at
p) that consists only of boxes.
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Finite powers

Definition

> In a product space X = [[;c; Xi, let Ntpox(X) denote the
least x for which X has k-founded base (7-base, local base at
p) that consists only of boxes.

» Similarlly define xNtpox(p, X).
> XNtbox(p7 X) = sUppeX XNtbox(p7 X)

Theorem (M.)
For all n € [1,w), for all spaces X:
XNt (pn’Xn): XNtbOX(pnvxn) = xNt (P,X)
(

XNt (X") = XNtpox(X") = xNt
Ntpox(X") = Nt (X)
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Could Nt (X") # Ntpor(X")?
Passing to subsets

» If B is a local base at p in X, then B includes a
XNt (X)-founded local base at p in X.

» If B is a m-base of X, then B includes a 7Nt (X)-founded
m-base of X.

» The analogous claim for bases is false.

Theorem (Bennett, Lutzer, 1998)

Every metrizable space has a flat base.
Proof: For each n < w, pick a locally finite open cover refining the
balls of radius 2~". Take the union of these covers.

Example (M., 2009)

Set X = w”. Let B be the set of all sets of the form U , where
s €w<¥, n<w, and Us, is the set of all f € X such that s~/ C f
for some i < n. B a base of X, but B has no flat subcover.
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The Square Problem

Open Question

Is Nt (X?) # Nt (X) possible? (Recall Nt (X) = Ntpox(X?).)
(Balogh, Bennett, Burke, Gruenhage, Lutzer, and Mashburn
(2001) asked if Nt (X?) # Nt (X) = R is possible.)

Partial answers (M., Spadaro)
“No," if:
» X is locally compact and metrizable;

» X is o-compact and metrizable;

» X is compact and x(p, X) = w(X) for all p € X
(a special case: X is a compact group);

» X is compact, has regular weight x, and has a dense set of
points with w-character < &
(a special case: X is Ts, compact, and has regular weight);

» X is compact, homogeneous, and has regular weight.
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A surprising finite product

» For directed sets P, Q, the relation P <1 @ means there is
map from @ to P sending cofinal sets to cofinal sets.

> (Todortevi¢, 1985) If cf(x) = k = ™0, then there exist
directed P, Q with P, Q <7 P x Q =7 [k]<™.

» (M., 2010) Using these P and @, we can build compact X, Y
such that xNt (X) = xNt (Y) =83 and xNt (X x Y) = Ro.
We canset Z =X ® Y to get p,q, Z with
XNt ((p, ), Z%) = No < N1 = xNt (p, Z) = xNt(q, 2).

» (Spadaro, 2010) Using a hyperspace-like construction, we can
modify X and Y to get Nt (X),Nt(Y) >Ry and
Nt (X x Y) = No.

» Open: Are there compact X, Y with
Nt (X x Y) < min{Nt (X),Nt(Y)}?



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(Nl) 2. We then have m(X) = w(X) = X%,

a<N,



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(Nl) 2. We then have m(X) = w(X) = X%,

<N,
> Ry <Nt (X) < Nt (X) <.



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(04N<12~tw 2. We then have m(X) = w(X) = X%,
> Ny < 7Nt (X) < Nt (X) < ¢

> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(04N<12~tw 2. We then have m(X) = w(X) = X%,
> Ny < 7Nt (X) < Nt (X) < ¢
> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.

> (Kojman) Nt (X) < cf ([R,]™0)



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(féizw 2. We then have m(X) = w(X) = X%,
> Ny < 7Nt (X) < Nt (X) < ¢
> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.

> (Kojman) Nt (X) < cf ([R,]Y)< Ry, (Shelah).



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(féizw 2. We then have m(X) = w(X) = X%,
> Ny < 7Nt (X) < Nt (X) < ¢

> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.

> (Kojman) Nt (X) < cf ([R,]Y)< Ry, (Shelah).

» (Spadaro) ¢ < Vi1 = Nt (X) < Nyyq.



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(féizw 2. We then have m(X) = w(X) = X%,

> Ny < 7Nt (X) < Nt (X) < ¢

> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.

> (Kojman) Nt (X) < cf ([R,]Y)< Ry, (Shelah).

> (Spadaro) ¢ < N, 11 = Nt (X) <N 41. Open: can we have
Nt (X) > Nyp17?



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(féizw 2. We then have m(X) = w(X) = X%,

> Ny < 7Nt (X) < Nt (X) < ¢

> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.

> (Kojman) Nt (X) < cf ([R,]Y)< Ry, (Shelah).

> (Spadaro) ¢ < N, 11 = Nt (X) <N 41. Open: can we have
Nt (X) > Nyp17?

> (Soukup) (Ru41,Ry) = (R1,No) = Nt (X) = Ro.



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(féizw 2. We then have m(X) = w(X) = X%,

> Ny < 7Nt (X) < Nt (X) <.

> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.

> (Kojman) Nt (X) < cf ([R,]Y)< Ry, (Shelah).

> (Spadaro) ¢ < N, 11 = Nt (X) <N 41. Open: can we have
Nt (X) > R417?

> (Soukup) (Ry11,Ry) = (N1, Rg) = Nt (X) > No.(The
hypothesis is consistent with GCH, relative to (roughly) a
huge cardinal (Levinski, Magidor, Shelah, 1990).)



Connections with PCF theory and large cardinals

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example

> Let pe X = H(féizw 2. We then have m(X) = w(X) = X%,

> Ny < 7Nt (X) < Nt (X) <.

> (Kojman) If Oy, and X0 =R, 11, then Nt (X) = ;.

> (Kojman) Nt (X) < cf ([R,]Y)< Ry, (Shelah).

> (Spadaro) ¢ < N, 11 = Nt (X) <N 41. Open: can we have
Nt (X) > R417?

> (Soukup) (Ry11,Ry) = (N1, Rg) = Nt (X) > No.(The
hypothesis is consistent with GCH, relative to (roughly) a
huge cardinal (Levinski, Magidor, Shelah, 1990).)

» Open: Can we have 7Nt (X) > R;? Equivalently, can
(Fn(N,, 2, X;), C) fail to be almost N;-founded?
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Van Douwen’s Problem

Definition
The cellularity ¢ (X) of X is the least infinite upper bound of the
cardinalities of its cellular families, i.e., pairwise disjoint open

families.

Patterns

» Every known compact homogeneous space (CHS) is a
continuous image of a product of compacta with weight at
most ¢.

» It follows that every known CHS has cellularity at most c.
(Why? Easy: ¢* is a caliber of any such space.)

» Van Douwen’s Problem asks whether ¢ (X) < ¢ for every CHS
X. This is open after ~40 years, in all models of ZFC.

» (M., 2007) It also follows that every known CHS has
Noetherian type at most ¢*. (Why? Not as easy...)



Sharp bounds

Example (Maurice, 1964)

The lexicographically ordered space X = 21 is a CHS satisfying
c(X)=rc

Example (Peregudov, 1997)

The double-arrow space X is compact, homogeneous, and
Nt (X) =c¢*.
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Another Pattern
Every known CHS X satisfies 7Nt (X) <R3 and xNt (X) = No.

Theorems (M., 2007)

» If X is a separable CHS and w(X) < p, then xNt (X) = 8o
» Assuming GCH, xNt (X) < ¢ (X) if X is a CHS.

Attacking Van Douwen’s Problem

» If we found a model of GCH with a CHS X with a local base
B such that B is not almost X;-founded, then ¢ (X) > c.

> X =29 x 20 x 212 is compact, and not local base of X is
almost Nj-founded, but X is not homogeneous.

> (Arhangel’ski, 2005) If a product of linear orders is a CHS,
then all factors are first countable, and hence have cellularity

at most c.
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A partial answer

Perhaps an even easier question:
Does GCH imply xNt (X) < d(X) for all PHC X?

Theorem (M., Ridderbos, 2007)

Given GCH, X PHC, and maxpex x(p, X) = cf(x(X)) > d(X),
there is a nonempty open U C X such that xNt (p, X) = R for all

peU.
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Local bases in powers

» (M., 2007) If f: X — Y is continuous and open at p, then
XNt (p, X) < xNt (f(p), V).
Hence, 0 < v < B = XNt (p, X?) < xNt (p | ar, X?).

> (M., 2009) If 0 < v < wy, then xNt (p7, X7) = xNt (p, X)
and yNt (X7) = xNt (X).
However, there are examples of YNt (X“1) < xNt (X) with
N < cf(x(X)).

» (Ridderbos, 2007) If 0 < v < cf(x(p, X)), then
XNt (p7, X7) = xNt (p, X).

> (M., 2009) If cf(x(p, X)) < v < x(p, X), then
XNt (p7, X7) < XNt (p, X) < xNt (p?, X7)*.

» (M., 2005) If x(p,X) <~ and |X| > 1, then
XNt (p7, X7) = No.
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Singular character and box products

Definition
Hfg), X; denotes the set [];., X; with the topology generated by
(< k)-supported products of open subsets of the factors.

Example (M., 2009)
> let pe X = H(Nl) H(ﬂN::)la 2.

a<wi
> x(p, X) =3,
> XNt (p, X) = R,

> Nt (p¥1, X1) = R,,.



