A locally finite characterization of AE(0) and related classes of compacta

David Milovich
Texas A&M International University
david.milovich@tamiu.edu
http://www.tamiu.edu/~dmilovich/

March 13, 2014
Spring Topology and Dynamics Conference
University of Richmond

Stone duality notation

- ▶ A compactum is a compact Hausdorff space.
- ▶ A boolean space is a compactum with a clopen base.
- Clop is the contravarient functor from boolean spaces and continuous maps to boolean algebras and homomorphisms.
 - ▶ Clop(X) is ({ $K \subseteq X : K \text{ clopen}$ }, \cap , \cup , $K \mapsto X \setminus K$ }).
 - $Clop(f)(K) = f^{-1}[K].$
- ▶ Modulo isomorphism, the inverse of Clop is the functor Ult:
 - ▶ Ult(A) is { $U \subseteq A : U$ ultrafilter} with clopen base {{ $U \in Ult(A) : a \in U$ } : $a \in A$ };
 - Ult $(\phi)(U) = \phi^{-1}[U]$.

Open is dual to relatively complete.

- ▶ A boolean subalgebra A of B is called *relatively complete* if every $b \in B$ has a least upper bound in A.
 - ▶ Let $A \leq_{rc} B$ abbreviate "A is relatively complete in B."
- ▶ A boolean homomorphism $\phi: A \to B$ is called relatively complete if $\phi[A] \leq_{\mathsf{rc}} B$.
- ▶ A boolean homomorphism ϕ is relatively complete iff $Ult(\phi)$ is open.

AE(0) spaces

Definition

A boolean space X is an absolute extensor of dimension zero, or AE(0) for short, if, for every continuous $f: Y \to X$ with $Y \subseteq Z$ boolean, f extends to a continuous $g: Z \to X$.

AE(0) spaces

Definition

A boolean space X is an absolute extensor of dimension zero, or AE(0) for short, if, for every continuous $f: Y \to X$ with $Y \subseteq Z$ boolean, f extends to a continuous $g: Z \to X$.

Given a boolean space X of weight $\leq \kappa$, the following are known to be equivalent:

- X is AE(0).
- X is Dugundji, *i.e.*, a retract of 2^{κ} .
- $X \times 2^{\kappa} \cong 2^{\kappa}$.
- ▶ There exists Y such that $X \cong Y \subseteq 2^{\kappa}$ and, for all $\alpha < \beta < \kappa$, the projection $\pi_{\alpha,\beta} \colon Y \upharpoonright \beta \to Y \upharpoonright \alpha$ is open.
- ▶ Clop(X) has an additive rc-skeleton, *i.e.*, if $n < \omega$, θ is a regular cardinal, and Clop(X) ∈ $N_i \prec H(\theta)$ for all i < n, then $\langle \operatorname{Clop}(X) \cap \bigcup_{i < n} N_i \rangle \leq_{\operatorname{rc}} \operatorname{Clop}(X)$.

Multicommutativity

- A poset diagram of boolean spaces is pair of sequences (\vec{X}, \vec{f}) with
 - ▶ $dom(\vec{X})$ a poset,
 - ▶ X_i a boolean space for all $i \in \text{dom}(\vec{X})$,
 - ▶ $f_{j,i}$: $X_i \to X_j$ continuous for all j < i, and
 - $f_{k,i} = f_{k,j} \circ f_{j,i}$ for all k < j < i.
- ▶ Given a poset diagram (\vec{X}, \vec{f}) and $I \subseteq dom(\vec{X})$, let

$$\lim(X_i : i \in I) = \left\{ p \in \prod_{i \in I} X_i : \forall \{j < i\} \subseteq I \ p(j) = f_{j,i}(p(i)) \right\}.$$

▶ Call a poset diagram (\vec{X}, \vec{f}) multicommutative if, for all $i \in \text{dom}(\vec{X})$, $\prod_{j < i} f_{j,i}$ maps X_i onto $\text{lim}(X_j : j < i)$.

A new characterization of AE(0)

- ▶ A poset *P* is called *locally finite* if every lower cone is finite.
- ▶ A poset diagram (\vec{X}, \vec{f}) is *locally finite* if dom (\vec{X}) is locally finite and every X_i is finite.
- ▶ A poset diagram (\vec{X}, \vec{f}) is called a *lattice diagram* if dom (\vec{X}) is a lattice and $\{(p,q): f_{i \land j, i \lor j}(p) = f_{i \land j, i \lor j}(q)\}$ is the least closed transitive relation containing $\bigcup_{k \in \{i,j\}} \{(p,q): f_{k,i \lor j}(p) = f_{k,i \lor j}(q)\}.$

Theorem (M.)

Given a boolean space X, the following are equivalent.

- X is AE(0).
- ► X is homeomorphic to the limit of a multicommutative locally finite poset diagram.
- ► X is homeomorphic to the limit of a multicommutative locally finite lattice diagram.

Long ω_1 -approximation sequences

- For every ordinal α , let

Long ω_1 -approximation sequences

- ▶ For every ordinal α , let
 - $|\alpha| = \max\{\beta \leq \alpha : \beta < \omega_1 \text{ or } \exists \gamma |\alpha| \cdot \gamma = \beta\};$

 - $[\alpha]_0 = \alpha;$
 - $\bullet \ [\alpha]_{n+1} = [[\alpha]_n];$
 - $\blacktriangleright \left[\alpha\right]_n = \sum_{i < n} \left[\left[\alpha\right]_i\right];$

Long ω_1 -approximation sequences

- ▶ For every ordinal α , let
 - $|\alpha| = \max\{\beta \leq \alpha : \beta < \omega_1 \text{ or } \exists \gamma |\alpha| \cdot \gamma = \beta\};$

 - $[\alpha]_0 = \alpha;$
 - $\qquad [\alpha]_{n+1} = [[\alpha]_n];$
 - $\blacktriangleright \left[\alpha\right]_n = \sum_{i < n} \left[\left[\alpha\right]_i\right];$

 - ▶ If $1 \le k < \omega$ and $\alpha \le \omega_k$, then $\neg(\alpha) \le k$.
- ▶ Given θ regular and uncountable, a long ω_1 -approximation sequence is a transfinite sequence $(M_\alpha)_{\alpha<\eta}$ of countable elementary substructures of $H(\theta)$ such that $(M_\beta)_{\beta<\alpha}\in M_\alpha$ for all $\alpha<\eta$.
- (M., 2008) If \vec{M} is a long ω_1 -approximation sequence and $\alpha, \beta \in \text{dom}(\vec{M})$, then
 - $\qquad \qquad M_{\beta} \in M_{\alpha} \Leftrightarrow \beta \in \alpha \cap M_{\alpha} \Leftrightarrow M_{\beta} \subsetneq M_{\alpha};$
 - ▶ for all $i < \neg(\alpha)$, $M_{\alpha}^i = \bigcup \{M_{\gamma} : \lfloor \alpha \rfloor_i \leq \gamma < \lfloor \alpha \rfloor_{i+1} \}$ is a directed union; hence, $M_{\alpha}^i \prec H(\theta)$.

- ▶ Call a lattice diagram (\vec{X}, \vec{f}) *n-commutative* on I if, for all $i, j_0, \ldots, j_{n-1} \in I$ with $j_0, \ldots, j_{n-1} < i$, $\prod_{k \in K} f_{k,i}$ maps X_i onto $\lim (X_k : k \in \bigcup_{m < n} \{k \in \text{dom}(\vec{X}) : k \leq j_m\})$.
- ▶ Call a boolean space *n-commutative* if it is homeomorphic to the limit of an locally finite lattice diagram that is n-commutative on a cofinal subset of dom(\vec{X}).

- ▶ Call a lattice diagram (\vec{X}, \vec{f}) *n-commutative* on I if, for all $i, j_0, \ldots, j_{n-1} \in I$ with $j_0, \ldots, j_{n-1} < i$, $\prod_{k \in K} f_{k,i}$ maps X_i onto $\lim (X_k : k \in \bigcup_{m < n} \{k \in \text{dom}(\vec{X}) : k \leq j_m\})$.
- ▶ Call a boolean space *n*-commutative if it is homeomorphic to the limit of an locally finite lattice diagram that is n-commutative on a cofinal subset of dom(\vec{X}).
- ► The Stone dual of "2-commutative boolean space" has been studied under the name of "strong Freese-Nation property."
- ▶ There are 2-commutative boolean spaces of weight \aleph_2 that are known to not be AE(0), e.g., the symmetric square of 2^{ω_2} .

- ▶ Call a lattice diagram (\vec{X}, \vec{f}) *n-commutative* on I if, for all $i, j_0, \ldots, j_{n-1} \in I$ with $j_0, \ldots, j_{n-1} < i$, $\prod_{k \in K} f_{k,i}$ maps X_i onto $\lim (X_k : k \in \bigcup_{m < n} \{k \in \text{dom}(\vec{X}) : k \leq j_m\})$.
- ▶ Call a boolean space *n*-commutative if it is homeomorphic to the limit of an locally finite lattice diagram that is n-commutative on a cofinal subset of dom(\vec{X}).
- ► The Stone dual of "2-commutative boolean space" has been studied under the name of "strong Freese-Nation property."
- ▶ There are 2-commutative boolean spaces of weight \aleph_2 that are known to not be AE(0), e.g., the symmetric square of 2^{ω_2} .
- ▶ Every locally finite poset of size \aleph_{n-1} contains a cofinal suborder in which every element has at most n maximal strict lower bounds.

- ▶ Call a lattice diagram (\vec{X}, \vec{f}) *n-commutative* on I if, for all $i, j_0, \ldots, j_{n-1} \in I$ with $j_0, \ldots, j_{n-1} < i$, $\prod_{k \in K} f_{k,i}$ maps X_i onto $\lim (X_k : k \in \bigcup_{m \le n} \{k \in \text{dom}(\vec{X}) : k \le j_m\})$.
- ▶ Call a boolean space *n*-commutative if it is homeomorphic to the limit of an locally finite lattice diagram that is n-commutative on a cofinal subset of dom(\vec{X}).
- ► The Stone dual of "2-commutative boolean space" has been studied under the name of "strong Freese-Nation property."
- ▶ There are 2-commutative boolean spaces of weight \aleph_2 that are known to not be AE(0), *e.g.*, the symmetric square of 2^{ω_2} .
- ▶ Every locally finite poset of size \aleph_{n-1} contains a cofinal suborder in which every element has at most n maximal strict lower bounds.
- ▶ Hence, a boolean space of weight \aleph_{n-1} is AE(0) iff it is n-commutative.
- ▶ Hence, there are 2-commutative boolean spaces of weight \aleph_2 that are not 3-commutative.

▶ A boolean algebra A is said to have the *Freese-Nation* property, or FN, if $A \cap M \leq_{rc} A$ whenever $A \in M \prec H(\theta)$.

- ▶ A boolean algebra A is said to have the *Freese-Nation* property, or FN, if $A \cap M \leq_{rc} A$ whenever $A \in M \prec H(\theta)$.
- Heindorf and Shapiro introduced the strong Freese-Nation property, or SFN, and showed that it implied the FN, and asked if the implication was strict.

- ▶ A boolean algebra A is said to have the *Freese-Nation* property, or FN, if $A \cap M \leq_{rc} A$ whenever $A \in M \prec H(\theta)$.
- Heindorf and Shapiro introduced the strong Freese-Nation property, or SFN, and showed that it implied the FN, and asked if the implication was strict.

If A is a boolean algebra, $(M_{\alpha})_{\alpha<|A|}$ is a long ω_1 -approximation sequence, and $A\in M_0$, then, for all $\alpha<|A|$, $i<\daleth(\alpha)$, and $a\in A\cap M_{\alpha}\setminus\bigcup_{\beta<\alpha}M_{\beta}$, set $\sigma_i(a)=\min\{b\in A\cap M_{\alpha}^i:b\geq a\}$ if it exists.

- ▶ A boolean algebra A is said to have the *Freese-Nation* property, or FN, if $A \cap M \leq_{\mathsf{rc}} A$ whenever $A \in M \prec H(\theta)$.
- ▶ Heindorf and Shapiro introduced the strong Freese-Nation property, or SFN, and showed that it implied the FN, and asked if the implication was strict.

If A is a boolean algebra, $(M_{\alpha})_{\alpha<|A|}$ is a long ω_1 -approximation sequence, and $A\in M_0$, then, for all $\alpha<|A|$, $i< \exists(\alpha)$, and $a\in A\cap M_{\alpha}\setminus\bigcup_{\beta<\alpha}M_{\beta}$, set $\sigma_i(a)=\min\{b\in A\cap M_{\alpha}^i:b\geq a\}$ if it exists.

Theorem (M., 2014)

- ▶ A has the FN iff, for all M, α, i, a as above, $\sigma_i(a)$ exists.
- ▶ A has the SFN only if, for all \vec{M} as above, $(A, \land, \lor, -, \sigma_0, \sigma_1, \sigma_2, \ldots)$ is a locally finite partial algebra.
- ▶ There is a boolean algebra of size \aleph_2 that has the FN but not the SFN.