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Basic terminology and scope

compactum = compact Hausdorff space

Boolean space = compactum with a clopen base

dyadic = continuous image of a power of 2

crowded = without isolated points

ccc = every pairwise disjoint family of open sets is countable.

I Most of our example spaces will be boolean and dyadic.

I All of our example spaces will be crowded ccc compacta.

open map = function that maps open sets onto open sets
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Some notation

X ∼= Y means X is homeomorphic to Y .

π0 and π1 are the first and second coordinate projections:

π0(x , y) = x and π1(x , y) = y

h = f × g means h is the diagonal product of f and g :

h(x) = (f (x), g(x))

Z = f � g means Z is the fiber product of f and g :

Z = {(x , y) : f (x) = g(y)}
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Prelude: symmetric powers of 2κ

I 2κ is space of all functions from κ to 2.

I (2κ)n is space of all functions from n to 2κ.

I SPn(2κ) is the quotient space of (2κ)n induced by:

f ∼ g iff f = g ◦ τ for some permutation τ : n→ n

I Given 0 < m < n < ω ≤ κ, we have (2κ)m ∼= (2κ)n since
|κ×m| = |κ× n|.

I Is SPm(2κ) ∼= SPn(2κ)?

I If κ = ω, then SPm(2κ) ∼= SPn(2κ) ∼= 2κ simply because 2ω is
up to homeomorphism the only second countable crowded
Boolean space.

I (Ščepin) If κ = ω1 then again SPm(2κ) ∼= SPn(2κ) ∼= 2κ.
However, the proof is a lot harder.

I (Ščepin) If κ ≥ ω2 then SPm(2κ) 6∼= SPn(2κ).
In fact, Ščepin’s proof shows that SPn(2κ) is not a retract of
any homeomorphic copy of SPm(2κ).
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So, why isn’t, say, SP7(2ω2) a retract of SP6(2ω2)?

Lemma
Given a cardinal κ, the following are equivalent:

I κ ≥ ω2.

I There exist M,N ≺ H(θ) such that M ∩ κ 6⊆ N ∩ κ 6⊆ M ∩ κ.

I There exist countable M,N ≺ H(θ) such that
M ∩ κ 6⊆ N ∩ κ 6⊆ M ∩ κ.

Definition
“M ≺ H(θ)” implies that M satisfies arbitrary finite lists of finitary
closure properties that I don’t want to write down. More precisely:

I M ≺ H(θ) means (M,∈�M,@�M) is a first-order elementary
submodel of a set-theoretic universe well-ordered by @.

I To avoid going beyond ZFC, choose a “universe” of the form
(H(θ),∈,@) for θ a regular cardinal large enough that H(θ)
has all the power sets we need for the argument at hand.
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An impossible fiber retract

Let SP7(2ω2)

id
++

f
// SP6(2ω2) g

// SP7(2ω2) .

Let N0,N1 ≺ H(θ) with f , g ∈ Ni and Ei = Ni ∩ ω2 6⊆ E1−i .

Let Yj = SP j(2E0∪E1) for each j ∈ {6, 7}.

Let Zj be the fiber product πE0
j ,E0∩E1

� πE1
j ,E0∩E1

where πBj ,A : SP j(2B)→ SP j(2A), f /∼ 7→ ((fi �A)i<j)/∼.

Then the diagonal product ζj = πE0∪E1
j ,E0

× πE0∪E1
j ,E1

maps Yj into Zj .

Y7

id

((//

ζ7
��

Y6
//

ζ6
��

Y7

ζ7
��

Z7

id

66// Z6
// Z7

I ζ7 has a fiber of size 7!.

I ζ6 has no fibers larger than 6!.

I Contradiction!
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Why are there fibers of size 7!?
Let a ∈ (2E0∩E1)7 and ai = aj for all i < j < 7.
Let b ∈ (2E0\E1)7 and bi 6= bj for all i < j < 7.
Let c ∈ (2E1\E0)7 and ci 6= cj for all i < j < 7.
Then, for all permutations ρ, σ : 7→ 7:

ζ7((ai ∪ bρ(i) ∪ cσ(i))i<7)/∼) = ζ7((ai ∪ bi ∪ cτ(i))i<7)/∼)

= ((ai ∪ bi )i<7/∼, (ai ∪ cτ(i))i<7/∼)

= ((ai ∪ bi )i<7/∼, (ai ∪ ci )i<7/∼)

where τ = σ ◦ ρ−1. Y7π
E0∪E1
7,E0

yy

ζ7

zz

π
E0∪E1
7,E1

{{

SP7(2E0)

π
E0
7,E0∩E1 ��

Z7
oo

��
SP7(2E0∩E1) SP7(2E1)

π
E1
7,E0∩E1

oo
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What new symmetries break at ω3?
“Symmetry breaking” at ω2 is not just for symmetric powers. For
example, 2ω1 is homeomorphic to its Vietoris hyperspace exp(2ω1)
(Ščepin) but exp(2ω2) is not a continuous image of 2ω2 (Shapiro).

Are there analogous phenomena at ω3?
Bell’s non-supercompact dyadic compactum of weight ω3 is loosely
analogous. However, we don’t know if ω3 is least possible.
At least our lemma about ω2 has a clear analog:

Lemma
Let 0 < d < ω and let κ be a cardinal. The following are
equivalent.

I κ ≥ ωd .

I There exist N0, . . . ,Nd−1 ≺ H(θ) such that κ ∩
⋂

j 6=i Nj 6⊆ Ni

for all i < d.

I There exist countable N0, . . . ,Nd−1 ≺ H(θ) such that
κ ∩

⋂
j 6=i Nj 6⊆ Ni for all i < d.
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Quotients induced by elementary submodels
Suppose that X is T3.5, I is a set, and X ∈ Ni ≺ H(θ) for all i ∈ I .
(By “X ∈ Ni” we actually mean “the topology of X is an element
of Ni .”)

Definition
p 6∼ q if f (p) 6= f (q) for some f ∈ C (X ,R) ∩

⋃
i∈I Ni .

Let X/
⋃

i∈I Ni be the quotient space induced by ∼.
Let Q⋃

i∈I Ni
be the associated quotient map.

Lemma
If X is a compactum, or even just T4, then the following are
equivalent:

I p 6∼ q

I p and q have disjoint closed neighborhoods U,V ∈ Ni for
some i.

I p and q have disjoint closed Gδ neighborhoods U ∈ Ni and
V ∈ Nj for some i, j .
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Open quotient maps

When is the quotient map QS an open map?

Example

Given X = ω1 + 1 and a countable N ≺ H(θ), we have:

I There is a natural homeomorphism h : X/N ∼= δ + 1 where
δ = ω1 ∩ N:

h(QN(α)) =

{
α if α < δ

δ if α ≥ δ

I h ◦ QN sends the isolated point δ + 1 to the limit point δ.

I Therefore, h ◦ QN maps an open singleton onto a non-open
singleton.

I Therefore, h ◦ QN is not an open map.

I Therefore, QN is not an open map.
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Open generation

Theorem (Ščepin, essentially)

Given a compactum X, the following are equivalent.

1. QN : X → X/N is open for all N ≺ H(θ) with X ∈ N.

2. QN : X → X/N is open for all countable N ≺ H(θ) with
X ∈ N.

3. X has a distance function ρ(x ,C ) between points and regular
closed sets that satisfies certain axioms. . .

4. X has a “capacity,” a precursor to ρ as above consisting of
maps εB : B → [0, 1] where B ranges over a base of X and. . .

Ščepin stated his results in terms of special kinds of inverse limits
instead of elementary submodels.

Definition
Say that a compactum X is openly generated (OG) if it satisfies
the above conditions.
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Retracts of 2κ

Definition
Say that a space is Dugundji if it is ∼= a retract of a power of 2.

Theorem (Ščepin)

I All Dugundji spaces are OG.

I All OG Boolean spaces of weight ≤ ω1 are Dugundji.

I 2ω1 is the only Dugundji space with all points of character ω1.

Corollary

2ω1 ∼= SPn(2ω1) ∼= exp(2ω1).
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d-ary open generation

Lemma
Given a compactum X and d < ω, the following are equivalent.

I Q⋃
i<d−1 Ni

is open for all N0, . . . ,Nd−1 ≺ H(θ) with X ∈ Ni .

I Q⋃
i<d−1 Ni

is open for all countable N0, . . . ,Nd−1 ≺ H(θ)
with X ∈ Ni .

Definition
Say that a compactum X is d-arily openly generated (OGd) if it
satisfies the above conditions.

Remarks:

I All compacta are OG1.

I OG2 is the same as OG.

I If n > m, then OGn implies OGm.
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A hierarchy theorem

Theorem (Milovich)

1. The Dugundji spaces are exactly the OG<ω boolean spaces.

2. All OGd+1 Boolean spaces of weight ≤ ωd are Dugundji.

3. There is a Boolean space Y of weight ωd that is OGd but not
OGd+1.

(Our set-theoretic lemma about ωd is relevant to proving 2 and 3.)

Corollary

exp(2ω2) and SPn(2ω2) (for n ≥ 2) are OG2 but not OG3.

Question
For d ≥ 3, the only known Y as above is an ad-hoc construction.
Is there a “natural” space that is OG3 but not OG4?
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Inverse semilattice system

An inverse limit system

((Xi )i∈P , (fi ,j : Xj → Xi )i<j)

is an inverse semilattice system if:

Xi

fi∧j,i
��

Xkfi,k
oo

fj,k
��

Xi∧j Xj
fi∧j,joo

I P is a meet-semilattice.

I Xi
fi∧j,i // Xi∧j Xj

fi∧j,joo is the colimit of Xi Xk
fk,ioo

fk,j // Xj

for all i , j < k.

P is a meet-semilattice if every pair {i , j} ⊆ P has a greatest lower
bound i ∧ j .

Don’t worry about what “colimit” means.
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Higher-arity fiber products

Given d < ω, an inverse semilattice system ((Xi )i∈P , ~f ), and
D ∈ [P]d , define the d-ary fiber product

Ò

i∈D Xi :

ò

i∈D
Xi =

{
~x ∈

∏
i∈D

Xi : ∀i , j ∈ D fi∧j ,i (xi ) = fi∧j ,i (xj)

}
.

Diagram for D = 3: X0

��

$$

Ò

i∈3 Xi
oo

zz

��

X0∧1

��

X1
oo

��
X0∧1∧2 X1∧2oo

X0∧2

::

X2
oo

ee
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Higher-arity properties

Lemma
In an inverse semilattice system (~X , ~f ), if i0, . . . , in−1 < j , then the
diagonal product

∏
k<n fik ,j maps Xj into the fiber product

Ò

k<n Xik .

Definition
An inverse semilattice system (~X , ~f ) is n-surjective if, for all
i0, . . . , in−1 < j , the diagonal product

∏
k<n fik ,j maps Xj onto the

fiber product
Ò

k<n Xik .

Definition
An inverse semilattice system (~X , ~f ) is n-open if, for all
i0, . . . , in−1 < j , the diagonal product

∏
k<n fik ,j is an open map

from Xj into the fiber product
Ò

k<n Xik .
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Retracts of 2κ revisited

Theorem (Milovich)

Given a boolean space X , following are equivalent.

I X is Dugundji.

I X is ∼= the limit of a <ω-surjective and <ω-open inverse
semilattice system (~X , ~f ) of second countable spaces ~X.

I X is ∼= the limit of a <ω-surjective inverse semilattice system
(~X , ~f ) of finite spaces ~X.
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d-ary open generation revisited

Theorem (Milovich)

Given 1 ≤ d < ω, a compactum X is OGd iff X is ∼= the limit of a
d-surjective and (d − 1)-open inverse semilattice system (~X , ~f ) of
second countable compacta ~X.

Corollary

A compactum is OG iff it is ∼= the limit of a 2-surjective 1-open
inverse semilattice system of second countable compacta ~X.

Theorem (Milovich)

However, there is an OG boolean space not ∼= the limit of any
2-surjective inverse semilattice system of finite spaces X .
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