Higher-arity properties of inverse limit systems

David Milovich

Texas A&M International University

2016 Spring Topology and Dynamics Conference Baylor University

These slides are online: http://dkmj.org/academic

Basic terminology and scope

```
compactum = compact Hausdorff space
```

Boolean space = compactum with a clopen base

dyadic = continuous image of a power of 2

crowded = without isolated points

ccc = every pairwise disjoint family of open sets is countable.

- ▶ Most of our example spaces will be boolean and dyadic.
- ▶ All of our example spaces will be crowded ccc compacta.

open map = function that maps open sets onto open sets

Some notation

 $X \cong Y$ means X is homeomorphic to Y.

 π_0 and π_1 are the first and second coordinate projections:

$$\pi_0(x,y) = x$$
 and $\pi_1(x,y) = y$

 $h = f \times g$ means h is the diagonal product of f and g:

$$h(x) = (f(x), g(x))$$

 $Z = f \boxtimes g$ means Z is the fiber product of f and g:

$$Z = \{(x, y) : f(x) = g(y)\}$$

- ▶ 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from n to 2^{κ} .
- ▶ $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

$$f \sim g$$
 iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

- ▶ Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.
- ▶ Is $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$?

- ▶ 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from n to 2^{κ} .
- ▶ $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

$$f \sim g$$
 iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

- ▶ Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.
- ▶ Is $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$?
- ▶ If $\kappa = \omega$, then $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa}) \cong 2^{\kappa}$ simply because 2^{ω} is up to homeomorphism the only second countable crowded Boolean space.

- ▶ 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from n to 2^{κ} .
- ▶ $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by: $f \sim g$ iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$
- ▶ Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.
- ▶ Is $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$?
- ▶ If $\kappa = \omega$, then $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa}) \cong 2^{\kappa}$ simply because 2^{ω} is up to homeomorphism the only second countable crowded Boolean space.
- (Ščepin) If $\kappa = \omega_1$ then again $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa}) \cong 2^{\kappa}$. However, the proof is a lot harder.

- ▶ 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from n to 2^{κ} .
- ▶ $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

$$f \sim g$$
 iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

- ▶ Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.
- ▶ Is $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$?
- ▶ If $\kappa = \omega$, then $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa}) \cong 2^{\kappa}$ simply because 2^{ω} is up to homeomorphism the only second countable crowded Boolean space.
- (Ščepin) If $\kappa = \omega_1$ then again $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa}) \cong 2^{\kappa}$. However, the proof is a lot harder.
- (Ščepin) If $\kappa \geq \omega_2$ then $SP^m(2^{\kappa}) \not\cong SP^n(2^{\kappa})$.

- ▶ 2^{κ} is space of all functions from κ to 2.
- $(2^{\kappa})^n$ is space of all functions from n to 2^{κ} .
- ▶ $SP^n(2^{\kappa})$ is the quotient space of $(2^{\kappa})^n$ induced by:

$$f \sim g$$
 iff $f = g \circ \tau$ for some permutation $\tau \colon n \to n$

- ▶ Given $0 < m < n < \omega \le \kappa$, we have $(2^{\kappa})^m \cong (2^{\kappa})^n$ since $|\kappa \times m| = |\kappa \times n|$.
- ▶ Is $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa})$?
- ▶ If $\kappa = \omega$, then $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa}) \cong 2^{\kappa}$ simply because 2^{ω} is up to homeomorphism the only second countable crowded Boolean space.
- (Ščepin) If $\kappa = \omega_1$ then again $SP^m(2^{\kappa}) \cong SP^n(2^{\kappa}) \cong 2^{\kappa}$. However, the proof is a lot harder.
- (Ščepin) If $\kappa \geq \omega_2$ then $SP^m(2^{\kappa}) \not\cong SP^n(2^{\kappa})$. In fact, Ščepin's proof shows that $SP^n(2^{\kappa})$ is not a retract of any homeomorphic copy of $SP^m(2^{\kappa})$.

So, why isn't, say, $SP^7(2^{\omega_2})$ a retract of $SP^6(2^{\omega_2})$?

Lemma

Given a cardinal κ , the following are equivalent:

- $\kappa \geq \omega_2$.
- ▶ There exist $M, N \prec H(\theta)$ such that $M \cap \kappa \not\subseteq N \cap \kappa \not\subseteq M \cap \kappa$.
- ► There exist countable $M, N \prec H(\theta)$ such that $M \cap \kappa \not\subseteq N \cap \kappa \not\subseteq M \cap \kappa$.

Definition

" $M \prec H(\theta)$ " implies that M satisfies arbitrary finite lists of finitary closure properties that I don't want to write down. More precisely:

- ▶ $M \prec H(\theta)$ means $(M, \in \uparrow M, \sqsubseteq \uparrow M)$ is a first-order elementary submodel of a set-theoretic universe well-ordered by \sqsubseteq .
- ▶ To avoid going beyond ZFC, choose a "universe" of the form $(H(\theta), \in, \sqsubset)$ for θ a regular cardinal large enough that $H(\theta)$ has all the power sets we need for the argument at hand.

An impossible fiber retract

Let
$$SP^7(2^{\omega_2}) \xrightarrow{f} SP^6(2^{\omega_2}) \xrightarrow{g} SP^7(2^{\omega_2})$$
.

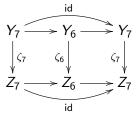
Let $N_0, N_1 \prec H(\theta)$ with $f, g \in N_i$ and $E_i = N_i \cap \omega_2 \not\subseteq E_{1-i}$.

Let
$$Y_j = SP^j(2^{E_0 \cup E_1})$$
 for each $j \in \{6, 7\}$.

Let Z_j be the fiber product $\pi_{j,E_0\cap E_1}^{E_0}\boxtimes \pi_{j,E_0\cap E_1}^{E_1}$

where
$$\pi^B_{i,A} \colon SP^j(2^B) \to SP^j(2^A), \ f/\sim \mapsto ((f_i \upharpoonright A)_{i < j})/\sim.$$

Then the diagonal product $\zeta_j = \pi_{j,E_0}^{E_0 \cup E_1} \times \pi_{j,E_1}^{E_0 \cup E_1}$ maps Y_j into Z_j .



- \triangleright ζ_7 has a fiber of size 7!.
- \triangleright ζ_6 has no fibers larger than 6!.
- Contradiction!

Why are there fibers of size 7!?

Let $a \in (2^{E_0 \cap E_1})^7$ and $a_i = a_j$ for all i < j < 7.

Let $b \in (2^{E_0 \setminus E_1})^7$ and $b_i \neq b_i$ for all i < j < 7.

Let $c \in (2^{E_1 \setminus E_0})^7$ and $c_i \neq c_j$ for all i < j < 7.

Then, for all permutations $\rho, \sigma \colon 7 \to 7$:

$$\zeta_{7}((a_{i} \cup b_{\rho(i)} \cup c_{\sigma(i)})_{i<7})/\sim) = \zeta_{7}((a_{i} \cup b_{i} \cup c_{\tau(i)})_{i<7})/\sim)
= ((a_{i} \cup b_{i})_{i<7}/\sim, (a_{i} \cup c_{\tau(i)})_{i<7}/\sim)
= ((a_{i} \cup b_{i})_{i<7}/\sim, (a_{i} \cup c_{i})_{i<7}/\sim)$$

where
$$\tau = \sigma \circ \rho^{-1}$$
.
$$SP^{7}(2^{E_{0}}) \longleftarrow Z_{7}$$

$$\pi^{E_{0}}_{7,E_{0} \cap E_{1}} \bigvee SP^{7}(2^{E_{0}}) \longleftarrow SP^{7}(2^{E_{1}})$$

$$SP^{7}(2^{E_{0} \cap E_{1}}) \longleftarrow SP^{7}(2^{E_{1}})$$

What new symmetries break at ω_3 ?

"Symmetry breaking" at ω_2 is not just for symmetric powers. For example, 2^{ω_1} is homeomorphic to its Vietoris hyperspace $\exp(2^{\omega_1})$ (Ščepin) but $\exp(2^{\omega_2})$ is not a continuous image of 2^{ω_2} (Shapiro).

Are there analogous phenomena at ω_3 ?

Bell's non-supercompact dyadic compactum of weight ω_3 is loosely analogous. However, we don't know if ω_3 is least possible.

At least our lemma about ω_2 has a clear analog:

Lemma

Let $0 < d < \omega$ and let κ be a cardinal. The following are equivalent.

- $\sim \kappa \geq \omega_d$.
- ▶ There exist $N_0, \ldots, N_{d-1} \prec H(\theta)$ such that $\kappa \cap \bigcap_{j \neq i} N_j \not\subseteq N_i$ for all i < d.
- ► There exist countable $N_0, ..., N_{d-1} \prec H(\theta)$ such that $\kappa \cap \bigcap_{i \neq i} N_i \not\subseteq N_i$ for all i < d.

Quotients induced by elementary submodels

Suppose that X is $T_{3.5}$, I is a set, and $X \in N_i \prec H(\theta)$ for all $i \in I$. (By " $X \in N_i$ " we actually mean "the topology of X is an element of N_i .")

Definition

 $p \not\sim q$ if $f(p) \neq f(q)$ for some $f \in C(X, \mathbb{R}) \cap \bigcup_{i \in I} N_i$. Let $X/\bigcup_{i \in I} N_i$ be the quotient space induced by \sim . Let $\mathcal{Q}_{\bigcup_{i \in I} N_i}$ be the associated quotient map.

Lemma

If X is a compactum, or even just T_4 , then the following are equivalent:

- p ≠ q
- ▶ p and q have disjoint closed neighborhoods $U, V \in N_i$ for some i.
- ▶ p and q have disjoint closed G_δ neighborhoods $U \in N_i$ and $V \in N_j$ for some i, j.

Open quotient maps

When is the quotient map Q_S an open map?

Example

Given $X = \omega_1 + 1$ and a countable $N \prec H(\theta)$, we have:

▶ There is a natural homeomorphism $h: X/N \cong \delta + 1$ where $\delta = \omega_1 \cap N$:

$$h(\mathcal{Q}_N(\alpha)) = \begin{cases} \alpha & \text{if } \alpha < \delta \\ \delta & \text{if } \alpha \ge \delta \end{cases}$$

- ▶ $h \circ Q_N$ sends the isolated point $\delta + 1$ to the limit point δ .
- ► Therefore, $h \circ Q_N$ maps an open singleton onto a non-open singleton.
- ▶ Therefore, $h \circ Q_N$ is not an open map.
- ▶ Therefore, Q_N is not an open map.

Open generation

Theorem (Ščepin, essentially)

Given a compactum X, the following are equivalent.

- 1. $Q_N: X \to X/N$ is open for all $N \prec H(\theta)$ with $X \in N$.
- 2. $Q_N: X \to X/N$ is open for all countable $N \prec H(\theta)$ with $X \in N$.
- 3. X has a distance function $\rho(x, C)$ between points and regular closed sets that satisfies certain axioms...
- 4. X has a "capacity," a precursor to ρ as above consisting of maps $\varepsilon_B \colon B \to [0,1]$ where B ranges over a base of X and...

Ščepin stated his results in terms of special kinds of inverse limits instead of elementary submodels.

Definition

Say that a compactum X is openly generated (OG) if it satisfies the above conditions.

Retracts of 2^{κ}

Definition

Say that a space is Dugundji if it is \cong a retract of a power of 2.

Theorem (Ščepin)

- ► All Dugundji spaces are OG.
- ▶ All OG Boolean spaces of weight $\leq \omega_1$ are Dugundji.
- 2^{ω_1} is the only Dugundji space with all points of character ω_1 .

Corollary

```
2^{\omega_1} \cong SP^n(2^{\omega_1}) \cong \exp(2^{\omega_1}).
```

d-ary open generation

Lemma

Given a compactum X and $d < \omega$, the following are equivalent.

- ▶ $Q_{\bigcup_{i < d-1} N_i}$ is open for all $N_0, \ldots, N_{d-1} \prec H(\theta)$ with $X \in N_i$.
- ▶ $Q_{\bigcup_{i < d-1} N_i}$ is open for all countable $N_0, \ldots, N_{d-1} \prec H(\theta)$ with $X \in N_i$.

Definition

Say that a compactum X is d-arily openly generated (OG_d) if it satisfies the above conditions.

Remarks:

- ▶ All compacta are OG₁.
- ▶ OG₂ is the same as OG.
- ▶ If n > m, then OG_n implies OG_m .

A hierarchy theorem

Theorem (Milovich)

- 1. The Dugundji spaces are exactly the $OG_{<\omega}$ boolean spaces.
- 2. All OG_{d+1} Boolean spaces of weight $\leq \omega_d$ are Dugundji.
- 3. There is a Boolean space Y of weight ω_d that is OG_d but not OG_{d+1} .

(Our set-theoretic lemma about ω_d is relevant to proving 2 and 3.)

Corollary

 $\exp(2^{\omega_2})$ and $SP^n(2^{\omega_2})$ (for $n \geq 2$) are OG_2 but not OG_3 .

Question

For $d \ge 3$, the only known Y as above is an ad-hoc construction. Is there a "natural" space that is OG_3 but not OG_4 ?

Inverse semilattice system

An inverse limit system

$$((X_i)_{i \in P}, (f_{i,j} \colon X_j \to X_i)_{i < j})$$

 $X_{i} \underset{f_{i \wedge j, i}}{\longleftarrow} X_{k}$ $\downarrow f_{i \wedge j, i} f_{j, k} \downarrow$ $X_{i \wedge j} \underset{\leftarrow}{\longleftarrow} X_{j}$

is an inverse semilattice system if:

- P is a meet-semilattice.
- $X_i \xrightarrow{f_{i \land j,i}} X_{i \land j} \xleftarrow{f_{i \land j,j}} X_j \text{ is the colimit of } X_i \xleftarrow{f_{k,i}} X_k \xrightarrow{f_{k,j}} X_j$ for all i,j < k.

P is a meet-semilattice if every pair $\{i,j\} \subseteq P$ has a greatest lower bound $i \wedge j$.

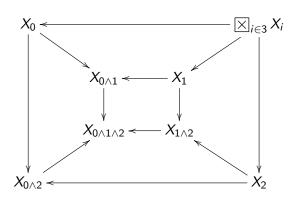
Don't worry about what "colimit" means.

Higher-arity fiber products

Given $d < \omega$, an inverse semilattice system $((X_i)_{i \in P}, \vec{f})$, and $D \in [P]^d$, define the d-ary fiber product $\boxtimes_{i \in D} X_i$:

$$\bigotimes_{i \in D} X_i = \left\{ \vec{x} \in \prod_{i \in D} X_i : \forall i, j \in D \mid f_{i \wedge j, i}(x_i) = f_{i \wedge j, i}(x_j) \right\}.$$

Diagram for D = 3:



Higher-arity properties

Lemma

In an inverse semilattice system (\vec{X}, \vec{f}) , if $i_0, \ldots, i_{n-1} < j$, then the diagonal product $\prod_{k < n} f_{i_k, j}$ maps X_j into the fiber product $\boxtimes_{k < n} X_{i_k}$.

Definition

An inverse semilattice system (\vec{X}, \vec{f}) is *n*-surjective if, for all $i_0, \ldots, i_{n-1} < j$, the diagonal product $\prod_{k < n} f_{i_k, j}$ maps X_j onto the fiber product $\bigotimes_{k < n} X_{i_k}$.

Definition

An inverse semilattice system (\vec{X}, \vec{f}) is *n*-open if, for all $i_0, \ldots, i_{n-1} < j$, the diagonal product $\prod_{k < n} f_{i_k, j}$ is an open map from X_j into the fiber product $\boxtimes_{k < n} X_{i_k}$.

Retracts of 2^{κ} revisited

Theorem (Milovich)

Given a boolean space X, following are equivalent.

- ▶ X is Dugundji.
- ▶ X is \cong the limit of a $<\omega$ -surjective and $<\omega$ -open inverse semilattice system (\vec{X}, \vec{f}) of second countable spaces \vec{X} .
- ► X is \cong the limit of a $<\omega$ -surjective inverse semilattice system (\vec{X}, \vec{f}) of finite spaces \vec{X} .

d-ary open generation revisited

Theorem (Milovich)

Given $1 \leq d < \omega$, a compactum X is OG_d iff X is \cong the limit of a d-surjective and (d-1)-open inverse semilattice system (\vec{X}, \vec{f}) of second countable compacta \vec{X} .

Corollary

A compactum is \overline{OG} iff it is \cong the limit of a 2-surjective 1-open inverse semilattice system of second countable compacta \vec{X} .

Theorem (Milovich)

However, there is an OG boolean space $not \cong$ the limit of any 2-surjective inverse semilattice system of finite spaces X.