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I By a partial real function we mean a set of points in the plane
that passes the vertical line test:

exactly one or zero points in each vertical line.
I Given a line L, by an L-free set we mean a set of points in the

plane that passes the L test:

exactly one or zero points in each line parallel to L.
I A set is L-free for some line L iff it is a rotated partial real

function.
I By rotational invariance of area and the Fubini Theorem, if an

L-free set C has a well-defined area at all (in the sense of
Lebesgue measure), then it must have area zero.

I In particular, rotated continuous functions have area zero.
More generally, subsets of rotated measurable functions have
area zero.

I If each of sets S1,S2, S3, . . . has area zero, then so does the
union

⋃∞
n=1 Sn. (Proof: For each ε > 0, each Sn is covered by

rectangles Rn,1,Rn,2,Rn,3, . . . with total area < ε/2n.)
I Thus, given an Ln-free set Cn with well-defined area for each

n = 1, 2, 3, . . ., the union
⋃∞

n=1 Cn cannot be the whole plane.
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Roy O. Davies’ theorem (1963)

Again, given an Ln-free set Cn with well-defined area for each
n = 1, 2, 3, . . ., the union

⋃∞
n=1 Cn cannot be the whole plane. And

yet:

Theorem
Given non-parallel lines L1, L2, L3, . . ., there are Ln-free sets Cn for
n = 1, 2, 3, . . . that cover the plane, i.e., such that

⋃∞
n=1 Cn = R2.

How can this be?

I Using the Axiom of Choice, we can “construct” sets that are
too complicated to have a well-defined area. Any such
“construction” necessarily depends on an uncountable
sequence of arbitrary choices.

I Like a sequence of coin tosses, the kind of choice sequence
needed to prove Davies’ Theorem does not follow any
deterministic rule that we can write down.
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Ordinals
With ordinals, “What’s next?” always has a unique answer.
I The first ordinal after ordinal α is α + 1 = α ∪ {α}.
I The first ordinal after all the ordinals in a set S is⋃

α∈S(α + 1).

0 = ∅ = {}
1 = 0 ∪ {0} = {0}
2 = 1 ∪ {1} = {0, 1}
3 = 2 ∪ {2} = {0, 1, 2}

n + 1 = n ∪ {n} = {0, . . . , n − 1, n}

ω =
⋃
{n + 1 | n finite} = {0, 1, 2, . . .}

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , ω}
ω + 2 = ω + 1 ∪ {ω + 1} = {0, 1, 2, . . . , ω, ω + 1}

ω + ω =
⋃
{ω + n + 1 | n finite} = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .}

α = {β | β < α}
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Cardinals

I A cardinal is an ordinal α such that there is no bijection to α
from any β < α.

I 0, 1, 2, 3, . . . , n, . . . , ω are all cardinals.

I None of ω + 1, ω + 2, . . . , ω + n, . . . , ω + ω are cardinals.

I For example, there is a bijection from ω to ω + ω:

0

��

1

����

2

��

3

��

· · · 2n

��

2n + 1

��

· · ·

ω 0 ω ω + 1 · · · n ω + n · · ·

I If there is a bijection to a set A from at least one ordinal, then
define the cardinality |A| to be the first such ordinal.

I If α is an ordinal, then |α| exists and |α| ≤ α.

I If α is an cardinal, then |α| = α.

I If |A| exists, then |A| is a cardinal.
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Choices

A set A is called countable if |A| ≤ ω, i.e., if there is a bijection to
A from some ordinal α ≤ ω.

Theorem (Cantor, 1874)

The real line R is uncountable. (And, hence, so is the plane R2.)

Cantor proved his theorem without the Axiom of Choice.

Theorem (Zermelo, 1904)

Given any set A (which could be R or R2), there is a bijection F
from some ordinal to A.

By Zermelo’s theorem, every set A has a cardinality |A|.

Though many earlier proofs had used infinite sequences of choices,
Zermelo’s proof was the first to explicitly formulate the Choice as
an axiom.
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Proof outline for Zermelo’s theorem

I For every proper subset S ( A, choose a point c(S) ∈ A \ S .

I Call a map G from an ordinal α into A “obedient” if

G (β) = c({G (γ) | γ < β}) for all β < α.

I For any two obedient maps G and H, one of them extends the
other. Why? If β is the first ordinal where G (β) 6= H(β), then
G (β) and H(β) both equal c({G (γ) | γ < β}).
Contradiction!

I Therefore, the union of all obedient maps is a maximal
obedient map.

I The range R of the maximal obedient map F : α→ A has
range A because otherwise F (α) = c(R) would extend F to
α + 1. �
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Defining Davies’ tree

I By a tree we mean a set with an irreflexive acyclic binary
relation “is a child of” and with a unique element called the
root that is not a child of anything.

I Tree elements are called nodes.

I Each node of Davies’ tree is a finite sequence of ordinals
a = (α1, . . . , αn).

I The root node is (α1) where α1 = |R2|.
I If a = (α1, . . . , αn) is a node and αn is countable, then a has

no children.

I A childless node is called a leaf of the tree.

I If a = (α1, . . . , αn) is a node and αn is uncountable, then its
children are all the nodes of the form (α1, . . . , αn, αn+1)
where αn+1 < |αn|.

I Note that αn+1 < |αn| implies αn+1 < αn
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Well ordering the leaves

I Order the leaves of Davies’ tree lexicographically:
(β1, . . . , βm) / (α1, . . . , αn) if αk < βk at the first k where
αk 6= βk .

I The lexicographic ordering / of the leaves of Davies’ tree is a
well ordering, meaning that there is bijection h from some
ordinal δ to the set of all leaves such that α < β implies
h(α) / h(β).

I Therefore, for every set S of leaves, if there is some leaf after
every leaf in S , then there is a first leaf after every leaf in S .

I The proof that / is a well-ordering uses the fact that Davies’
tree has no infinite chain of descendants (α1), (α1, α2),
(α1, α2, α3), . . . because there is no infinite decreasing
sequence of ordinals α1 > α2 > α3 > · · ·

I The construction of h is like the proof of Zermelo’s theorem,
except that the Axiom of Choice is not used. (h is unique!)
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Proof outline of well ordering of leaves

I A set S of leaves is an initial segment if b / a ∈ S implies
b ∈ S .

I Let H be the set of all order isomorphisms from ordinals to
initial segments of the set of leaves.

I For any two f , g ∈ H, one extends the other. Why? Because
if α were the first ordinal where f (α) 6= g(α), then f (α) and
g(α) would both be the /-least leaf after the leaves
f (β) = g(β) for β < α. Contradiction!

I Therefore, the union h =
⋃
H is a maximal element of H.

I If the range of h did not include all leaves, then we could
choose α1, then α2, then α3, and so on, with each αk chosen
least possible such that (α1, . . . , αk) has a descendant not in
the range of h.

I Eventually we would obtain a leaf a = (α1, . . . , αn)
lexicographically least among leaves not in the range of h.

I But then h(δ) = a would extend h to δ + 1. Contradiction! �
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Closures

I Given a set A and a binary function g , define the g-closure of
A to be

⋃
n<ω An where A0 = A and An+1 = An ∪ g [A2

n].

I For example, if A = {5,−3} and g = +, then the g -closure of
A is Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

I If B is the g -closure of A, then g [B2] ⊂ B.

I Given a set A and a countable set Γ of binary functions, define
Γ-closure of A to be

⋃
n<ω An where A0 = A and

An+1 = An ∪
⋃

g∈Γ gm[A2
n].

I If B is the Γ-closure of A, then B is Γ-closed, by which we
mean that g [B2] ⊂ B for all g ∈ Γ.

I If A is countable, then the Γ-closure of A is countable.

I If A is uncountable, then the Γ-closure of A has the same
cardinality as A.
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Labeling Davies’ tree

I Let (Ln)n<ω be a sequence of non-parallel lines.

I For each pair of distinct lines (Lm, Ln) and each pair of points
(p, q), let gm,n(p, q) be the unique point on both the line
through p parallel to Lm and the line through q parallel to Ln.

I Let Γ be the set of all these gm,n. This Γ is countable.

I We will use Choice to construct a “labelling” function D such
that for each node a of Davies’ tree, D(a) is Γ-closed subset
of the plane.
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Labeling Davies’ tree

Starting from the root, we will recursively choose a Γ-closed subset
D(a) of the plane for each node a = (α1, . . . , αn) of Davies’ tree
then |D(a)| = |αn|.
I Label the root (α1) with D(α1) = R2; note that
|α1| = ||R2|| = |R2| = |D(α1)|.

I Given a node a = (α1, . . . , αn) with αn uncountable and with
label D(a) such that |αn| = |D(a)|, label the children of a:

I Choose a bijection f from |αn| to D(a).

I For each child b = (α1, . . . , αn, αn+1) where αn+1 < |αn|, let
D(b) be the Γ-closure of {f (β) | β < αn+1}.

I If αn+1 is uncountable, then |D(b)| = |αn+1| because
{f (β) | β < αn+1} is an uncountable set of cardinality
|αn+1| and its Γ-closure has the same cardinality.
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Essential properties of Davies’ tree labels

I If a has children, then its label D(a) is the union of all labels
of children of a.

I Hence, R2 = D(α1) is the union of all labels of leaves.

I Each leaf has a countable label.

I Each node’s label is Γ-closed.

I Sibling nodes’ labels increase: if b = (α1, . . . , αn, β),
c = (α1, . . . , αn, γ), and β < γ, then D(b) ⊂ D(c).

I Hence, any union of the form
⋃
β<γ D(α1, . . . , αn, β) is

Γ-closed.

Fundamental Lemma. For each leaf a = (α1, . . . , αn), the union⋃
b/a D(b) of all labels of lexicographically earlier leaves b / a is

the union of a finite list of Γ-closed sets:⋃
β<αk

D(α1, . . . , αk−1, β) for k = 2, 3, 4, . . . , n.

13 / 17



Partitioning the plane into Ln-free sets

I We will construct a map C : R2 → ω such that each C−1{n}
is Ln-free.

I Construct C one leaf label at a time.

I Given a (possibly empty) proper initial segment S of the
leaves and a map C :

⋃
b∈S D(b)→ ω such that each C−1{n}

is Ln-free, we will extend the domain of C to contain D(a)
where a is the first leaf after S .

I By the Fundamental Lemma, the domain of C is the union of
a finite list A0, . . . ,Ar−1 of Γ-closed sets.

I Since D(a) is countable, we may choose a bijection p from
some λ ≤ ω to the set of “new points” D(a) \ dom(C ).

I Extend the domain of C to these new points one at a time. . .
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Partitioning a new leaf label

I Again, the set of “old points” already in the domain of C is a
finite union of Γ-closed sets A0, . . . ,Ar−1.

I Again, λ ≤ ω and the “new points” are p(k) for k < λ.

I Given k < λ and C (p(j)) for j < k, define C (p(k)) as follows.

I Given any pair of distinct lines (Lm, Ln), any of the sets As ,
and any pair of old points u, v ∈ As , the line through u
parallel to Lm and the line through v parallel to Ln do not
intersect at the new point p(k) because As is Γ-closed.

I Therefore, for each s < r , at most one “bad” m < ω is such
that the line through p(k) parallel to Lm intersects As .

I Also, for each j < k , at most one “bad” m < ω is such that
the line through p(j) and p(k) is parallel to Lm.

I Let C (p(k)) be the least n < ω not in the finite set of bad
m’s above. This keeps C−1{n} Ln-free. �
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Davies trees in the 21st century

I Davies’ 1963 proof used a kind of labeled tree not seen in
print again until in Jackson and Mauldin’s 2002 proof that
there is a set S ⊂ R that intersects every isometric copy of Z2

at exactly one point.

I I learned about Davies’ technique from Arnold Miller in a
2005 graduate course.

I In 2006, I used it to prove a theorem that became part of a
2008 publication about set-theoretic topology after modifying
Davies’ technique into something simpler for experts in set
theory to use.

I I have since applied this modified technique in other
publications concerning Boolean algebras.
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