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A long time ago, some authors used ‘“curve’” to denote an isometric
copy of a graph of a function R — R. (Continuity is not required.)

If such a curve is a measurable subset of R2, then it is null.

However, Sierpinski showed (1933) that, assuming CH, the plane is
a countable union of graphs of functions and their converses:

e Let < order R with type wj.
e Let fr map w onto {y:y Jx}.
o Let gn(x) = fz(n).

¢ Un<w(gnUgn ™) = Un<w Urer{(z, gn(@)), (gn(z),2)} = R?

Thus, CH implies that the plane is a countable union of curves.
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Sierpinski asked (1951) if CH is needed to cover the plane by count-
ably many curves.

Roy O. Davies answered “no” (1963) with an ingenious ZFC cov-
ering. (Never underestimate the axiom of choice!)

To cover the plane by countable many curves, it is enough to parti-
tion the plane into countably many partial curves.

Fix an w-sequence pairwise non-parallel lines (L, : n < w). (For us,
identical lines are considered parallel.)

Davies constructed a partition |,,., Cn = R? such that [LNCp| < 1
for all n and all lines L||L.

(Davies remarked that an argument of Sierpinski implicitly shows
that, given a covering of R2 by countably many curves, there is a
covering of R2 by countably many pairwise isometric curves.)



To a set theorist, the tastiest ingredient of Davies’ proof is his
following implicit lemma.

Lemma (Davies’ Lemma). Let L be a countable first order lan-
guage. Let 2 be an uncountable L-structure. Then there is a
transfinite sequence M = (Ma)a<n SUCh that

e every My IS a countable substructure of A,
e Uran("M) = A, and

e M has the Davies property: for all o < n,

Mca = Ug<caMg is a finite union of substructures of .



Davies' partition of the plane applies his lemma to a partial Skolem-
ization of (£, Z,€: L, i n < w) where & is the set R? of points in
the plane and £ is the set of lines in the plane.

We will simply let 21 be a complete Skolemization of (£, %, ¢€; Ly :
n < w). Therefore, all substructures are elementary substructures.

Let M = (Ma)a<n be as in Davies’ Lemma.

Suppose that a < n and we have constructed a partition |,.,, Cn
P N M<o such that |[LNCp| <1 for all n and all lines L||Ly,.

It suffices to show that we can extend C to a partition |, C/
P NM_ 41 such that |LNC}'| <1 for all n and all lines L||Ly.



Let v <w and let p = (pg)r<, biject from v to & NMa \ M<a.

Suppose that k£ < v and we have extended C to a partition | J,,.,, C;, =
P N McaU{p; : j < k} such that [LNCy| < 1 for all n and all lines
L||Lp.

It suffices to show that that we can extend C’ to a partition Lnew Ch =
P N McaU{p; : j < k+ 1} such that [LNCy| < 1 for all n and all
lines L||Ly,.

Let d < w and M = (M;);q be such that M, = Yran(M) and each
M, is a substructure of 2.



For each n < w, let Ky be the line through p;. that is parallel to L.

It suffices to show that there exists n < w such that K, is disjoint
from Mo U{p;:Jj < k}.

For each j < k, there is at most one n < w such that p; € K.
For each 7 < d, there is at most one n < w such that K, intersects
PNN;. Why? If m<n<w, z€ Kp,nMN;, and y € K, NN, then

Km, Kn € M;; then p, € N; because Ky N Ky = {pr}. But p € MN;.

Thus, Ky is disjoint from M« U {p; : j < k} for almost all n. [



Davies’ Lemma apparently was not used in print again until 2002 by
Jackson and Mauldin, and then by Milovich starting in 2008.

Jackson and Mauldin constructed (in ZFC) a Steinhaus set, that is,
a subset of R? that intersects every isometric copy of Z2 at exactly
one point.

Without Davies’ Lemma, Jackson and Mauldin's proof would have
needed CH.

We do not know if higher-dimensional analogs of Steinhaus sets
exist.
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How did Davies prove his lemma? Recall:

Lemma (Davies'’ Lemma). Let L be a countable first order lan-
guage. Let 2 be an uncountable L-structure. Then there is a

transfinite sequence M = (Mqa)a<n SUCh that
o every My IS a countable substructures of A,
e Uran(M) =2, and

e M has the Davies property: for all a < n,

Mo = Ug<a Mg is a finite union of substructures of 2.



Proof: The Davies tree. Recursively construct as follows a sequence
(%B; : t € T) with T a subtree of Ord<¥.

o If B; is countable, declare t to be a leaf of T.

o If 'By|] = k > N, declare t(a) € T for all a < k and choose

an increasing sequence (B;~(,))a<x Of substructures of B; with
union B¢ such that [B,~ | < |B¢| for all a.

T is well-founded. Therefore, the set L of leaves of T' is well ordered
by its lexicographic order <qx.

Moreover, Uicr, By = 2L
Finally, if t € L, then U8<Iext B = Uz’<dom(t) Uoz<ti %(thj)/\(a)' L]
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Note that if || = ¥, < N, then the Davies tree has height n + 1.
T herefore:

Lemma. Let £ be a countable first order language. Let 2 be an
uncountable L-structure of size X,, < X,. Then there is a transfinite
sequence M = (Ma)a<n SUCh that

e every My IS a countable substructure of A,

e Uran("M) =2, and

o for all a <n, M<n is a union at most n substructures of .
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For each cardinal k, let H(x) denote the set of all sets x with tran-
sitive closure U, <, U"  of cardinality less than .

For each regular uncountable cardinal 9, (H(0), €) is a model of ZFC
except possibly for the power set axiom.

We will always implicitly choose 6 large enough to include all the
sets and power sets we need for the problem at hand.

The notation N < H(#) means that N is an elementary {€}-substructure
of H(H).
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A long wi-approximation sequence is a transfinite sequence M =
(Ma)a<n Of countable elementary substructures of (H(0),€) that is
retrospective:

for each a <, the sequence (Mpg)g<, is an element of M.

Warning: If « is uncountable, then (Mg)g<n, {Mg : 8 < a}, and
M<o = Ug<q Mg are not subsets of M.
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If M is a long wi-approximation sequence, A € Mp, and 0 < a <
dom(M), then Mg and «a are definable from (Mg)s~,, and hence
elements of M.

Recall that if X € N < H(0) and | X| < Ng, then X C N.
Therefore, Mg C M, for all « € dom(M).
Also, Mg C My for all 8 < a € w; Ndom(M).

More generally, for all o, 3 € dom(M), we have

Mg C Mo & Mg € Mo & B € an M.
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Recall that if 2 is a first order structure for a countable language £
and e N < H(6), then 2NN <p 2.

T herefore, assuming 2 € Mg, we have AN M, <g A for all a €
dom(M).

Moreover, if every M is a finite union of elementary substructures
of H(6#) (and we will show that it is), then every AN M« is a finite
union of £-elementary substructures of 2.

Choose a surjection f: || — A in Mgy. Assuming || < dom(M), we
have f(a) € My for all a < |2A|. Therefore, Ua<|9[|(9lﬁ My) = 4.
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Long wi-approximation sequences are canonical sequences of count-
able structures that are sufficiently rich to encode Davies trees of
which they are leaves.

A Davies tree is built top-down, starting from a large structure. Long
wi-approximation sequences are more flexibly built up from count-
able structures, which simplifies the construction of large structures
“from scratch.”

Long wi-approximation sequences provide a uniformly definable ver-
sion of the Davies property and additional coherence properties.
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The cardinal normal form of an ordinal « is the polynomial

wgy Yo Fwg M1+ twg, cYm—1 T Tm

that equals a and satisfies

e So>->Pm-121,

° 1§%<w"; for all ¢« <m, and
® Y < Wi.

An example cardinal normal form:

ww7
W1 * 4+ ww + w7 - <w73 —|—w6-w> +wi w+ (WY Hw-24+3)
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The mapping sending each ordinal o« to the code (B, 7) for its unique
cardinal normal form is uniformly definable without parameters ac-
cording to the following computation.

For every ¢ > wq, let [{]| be the greatest |(|-d < (.

For every ( < wq, let || = (.

For every ordinal ¢, let 9¢ be the unique ¢ such that || +e¢ = (.
For every ordinal ¢, let ap = a and a;431 = do; for each @ < w.
For each i < w, let g;a = |oy].

Let m be least such that am < wj.

For each i <m, let 8; satisfy wg. = |9;l.

For each ¢ <m, let v; satisfy wg. - v; = 9;a.

Let v = Oma.
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Given a cardinal normal form a = >y, wg, - ¥; + Ym:

We have 0;a = wg, - y; for each ¢ <m and Ima = ym.

Let |af;, = > ;j<;0;a for each i <m.

Let T(a) =m+ 1 if v, >0 and T(a) = m if vy, = 0.

Let [;(a) = [|la];, [a];41) for all i < T(a).

Fundamental Lemma. If (Ma)a<n IS @ long wy-approximation se-
quence and i < 1(n), then {My : o € I;(n)} is directed (with respect

to C). Hence, U{My : a € I;,(n)} < H(6).

The lemma applies to every initial segment of M. Therefore, M has
(the analog of) the Davies property.
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Proof. Proceed by induction on n.
o If n <w1q, then [;(n) =n and {My : a <n} is a chain.

o If TI(n) > 2, then {M, : a € I;(n)} is directed by our induction
hypothesis.

Why? First, I;(n) = [[n];, [n]; + 9mn) and Ip(9in) = Oin < n.

Second, |af, = |n]; for all o € I;(n), so each M, can compute
a decomposition a = |n|;, + 8 from the cardinal normal of «, so

<ML”Ji+5)5<am IS retrospective.

e If n = k-+v where k is a an uncountable cardinal, v is a limit ordinal,
and v < kT, then I;(n) = n and {M, : o < n} is directed because by
our induction hypothesis {M, : a < k- B} is directed for all 5 < .
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e The only remaining case is that n = k- (8 4+ 1) where k is a an
uncountable cardinal and 1 < 8 < k.

M,.g can compute x and g from k-5 and then compute n. Therefore,
M. knows that |n| = k. Choose a surjection f: k —nin M,.g.

For each o < K, My.g4, knows the cardinal normal form k- (5 4+ a.
Hence, f € M3 C My 4o and o€ My g4,; hence, My \y C My g4

Thus, {My: k-8 < a<n}is cofinal in {My : a <n}.

{My : k-8 < a<n}is directed by our induction hypothesis applied
to (Mﬁ-ﬁ—l—oz)Oé</€' []
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The Fundamental Lemma implies that every M, is the union of
T(a)-many elementary substructures of H(0).

By definition, |I—[(a)_2(oz)| > N7 and

o = [Io(a)| > [I1(a)| > -+ > [Iq()—1(x)].
Hence, if 1 <n < w and a < wy, then T(a) < n.

Therefore, for all n € [1,w) and all o < wp, M<q is the union at most
n elementary substructures of H(0).

n = 1 is the trivial case where a < w1 and M« < H(6) because
{Mp: B < a}is a chain.
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Given a long wi-approximation sequence (Mga)a<n, let:

¢ Mco =U{Mg: B < a} for each a <n;

o N! = {My: o€ I;(n)} for each a <n and i < T(a);

e P. = N! N M, for each o < n and i < T(a).

By the Fundamental Lemma, M<q = U;<m() N& @and NZ, < H(0).
Some easily proved coherence properties:

Starting f.rom M | o, My can compute «, then I;(a), and then N..
Hence, N}, € My and, for every n < w, Mq knows that N}, <x H(0).

Hence, PL < M.

If j < i< W(a), then ||al;|; = |a];, so N4 € M|, C PiC N},
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Additional coherence properties of (Ma)a<n:
e Each {M, : a € I;(n)} is a v-semilattice (with respect to C).

e For every nonempty I C n, there exists J C min(I) 4+ 1 such that
Ugeg Mg is a directed union equal to Nyer Ma.

e For every nonempty s C 1(n),
ﬂ{Ma ra<nand 3B € I;(n) My C MB}
1E€S

IS directed.

o If D Cnand {My:«a€ D} is directed (and nonempty), then there
exists ¢ < T1(n) such that for every o € D there exists 8 € I;(n) such
that Mo C Mj.
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Suppose 2 is an uncountable first order structure for a countable
language £, (Moz)|m| IS a long wi-approximation sequence, and 2 €
Mg. We can recover a Davies tree from M as follows.

Let S denote the set of all a < || whose cardinal normal forms
2li<mWg; Vi T ym are such that -,y Is a successor ordinal.

Let Co = AN NS for all a € S. (So Cypq = My for all B < [2].)

For each aa € SN Y|, let

o — )@ -1 T 10720l (@) 2 2;
2] :(a) = 1.
Let 7 = {Co : a € S} and order T by declaring C,, to be the parent
of Co for all a € SN (.

T is a tree with root A; nodes are leaves iff they are countable;
the children of each non-leaf node C, are well-ordered by C, have
cardinality less than |Cq|, and have union Cy.
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Given a regular uncountable cardinal A, define a long A-approximation
sequence to be a retrospective sequence (Ma)a<n of elementary sub-
structures of H(6) such that |My| < XA and AN M, € X for all a.

Requiring AN M, € X\ is equivalent to requiring that if X € M, and
| X| < A, then X C M,.

To prove the Fundamental Lemma for long A-approximation se-

quences, simply replace wy with M\ in the proof of the lemma and
in the definition of cardinal normal form.
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Let P be a poset. For p e P, let pt={q : q > p}.

Definition (Peregudov). Define the Noetherian type Nt(P) of P to
be the least infinite cardinal k for which |p1| < k for all p € P.

Define the Noetherian type Nt(X) of a topological space X to be
the least Nt(B) where B is a base of X and B is ordered with respect
to C.

(Recall that a topological base is a family B of open sets such that
for every p € U with U open, some B € B satisfies pec B C U.)



As a topological cardinal function, Nt is somewhat unusual. A few
examples:

e If B is a base of X, then Nt(X!Bl) = Xy. Hence, there are compact
spaces X, Y such that Nt(X x Y) < max{Nt(X), Nt(Y)}.

e [ here are Tychonoff spaces X, Y such that
Nt(X xY) < min{Nt(X), Nt(Y)}.

We do not know if there is a compact example of this. However,
GCH implies that Nt(X") = Nt(X) for all compact homogeneous X.

e [ he countably supported box product topology on 28w has Noethe-
rian type in [Nq,N4], with Xy and R, consistent, and the consistency
of N3 and N4 unknown.
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A compact space is dyadic if it is a continuous image of some 2F.

If X is the quotient of 2% @ 2“1 induced by identifying (0)n<w and
(0)a<w;, then X is dyadic and Nt(X) = No.

More generally, Nt(X) > k if x is a regular cardinal, X is a space,
p € X, some local w-base at p is smaller than «, and no local base
at p is smaller than k.

Recall that a local base (local w-base) at p is a coinitial family U of
open neighborhoods of p. That is, pe U (U # @) and U is open for
all U e U, and if p € O and O is open, then U C O for some U € U.



A space H is homogeneous if for all p,q € H there exists a homeo-
morphism f: H — H such that f(p) = q.

Theorem (Milovich, 2008). Nt(X) = X for all homogeneous dyadic
compact X.

Corollary. Nt(G) = X for all compact groups G.

Proof. All topological groups are homogeneous. By the Ivanovskii—
Kuz'minov Theorem (1959), compact groups are also dyadic. [ ]



The weight w(X) of a space X is the least infinite cardinal s such
that X has a base not larger than x.

The w-character mx(p,X) of a point p in a space X is the least
infinite cardinal x such that p has a local m-base not larger than k.

Theorem (Gerlits, 1976; Efimov, 1977). If X is compact and dyadic,
then SUPpe X WX(p,X) = W(X)

Corollary. If X is compact, homogeneous, and dyadic, then, for all
pe X, mx(p, X) = w(X).

Theorem (Milovich—Spadaro, 2014). If X is compact, k is a regular
uncountable cardinal, w(X) > &, and mx(p, X) < k on a dense set of
p € X, then Nt(X) > k.



Every metric space has Noetherian type Ng. Why? Take B =
Un<w Rn Where each Ry, is a locally finite open cover refining the
balls of diameter 27",

A topological base B is called efficient if
e it has Noetherian type Ng,
e UCV=UCcCV forall UV € B, and

e for all infinite ¥ C B, theset {T e B:3S €. S C T} is infinite.

Lemma. Every base of a compact metric space K contains an effi-
cient base of K.



Proof. Given a base B of K, we will choose a sequence (Ap)n<w Of
finite open subcovers of B such that A = {J,,,, An Will be an efficient
base.

Given n < w and (Am)m<n, choose, for each p € K, an neighborhood
Np of p in B sufficently small that

1. diam(Np) < 277,

2. Np C({A:p€ A€ UpncnAn},

3. NpNA= @ or N, = A for all singleton A € U,;,<n Am, and

4. diam(Np) < diam(A) for all non-singleton A € U<, Am.

Choose A, to be a minimal (finite) subcover of {Np :p € K}.



Since max ¢ 4, diam(A) <27, A will be a base.

Since also each A, is finite, Nt(A) = N.

Since diam(A) < diam(B) for all m >n, A € Am, and B € A, \ [K]1,
if A4, 502V e Ay, then 1 <.

Since also each A, is a minimal cover,
if A, 25U 2V € Ay, then i <.

Since also 4; 52U 2DV eAjand i <jimply UDV,

UDV=UD>DV forall UV € A.



Finally, given a finite 7 C A and a non-repeating sequence (Up)n<w
of elements of A, it suffices to find some U, with a strict superset
in A\ F.

Since (Up)n<w is non-repeating and each A, is finite, we may pass
to a subsequence (Vi)n<w Of (Un)n<w that diam(V,) — O.

We may then pass to a subsequence (Wp)n<w such that (Wn)n<w
converges to a singleton {p} (in the (compact) Vietoris hyperspace).

Since (Wp)n<w iS Nnon-repeating, p is not an isolated point.
Hence, p has a neighborhoods Y, Z € A\ F such that Y C Z.

For m sufficiently large, W, CY C Z.

10



Let X be a compact space of uncountable weight . Without loss
of generality, X is a subspace of [0, 1]*.

Let A be a base of X of size k and consisting only of nonempty
open F, sets.

(To find such a base, take any base Z of size x and, for each finite
subcover of Z, choose a refining finite cover by open F, sets; take
A to be the union these refinements.)

Given a function f and a set I, let f | I denote the restriction of f to
dom(f) NnI. Given a set E of functions, let E | I denote {f [ : f €
E}. Given a set J of sets of functions, let J [I={F |1: FE € J}.

We say that £ C X is supported on a set I if, for all p,q € X, if
pl|lI=q]llI, thenpe F & g€ E.

By compactness of X, every open F,; set has a countable support.
11



Assume that there is a continuous surjection h: 2A & X,
Let (Ma)a<rx be a long wi-approximation sequence with A, h € M.

Letting A, = AN M, each U € A, is supported on M,.
Why? Each U € AN M, is supported on some countable C. M,
knows this; hence, we may choose C € M,; hence, C C M,.

For each a < k, Aa | My is a base of X | M.

Why? Given p € X, if R is an open product of rational intervals such
that p € R and RN X is supported on My, then RN.X is supported on
a finite F' C M, and there is a closed product ) of rational intervals
such thatpe Q C R and QN X is suppported on F'. M, knows about
a finite cover of @ N X by elements of A with union contained in
RNX. Hence, pe AC RNX and A e AN M, for some A in this
cover. Hence, p | Mqp € A| My C (RNX) | My and A | M, is open in
X | M, because A is supported on M,.
12



We may choose YV, C Aa | My to be an efficient base of X | M,.
(Why? Every compact space with countable weight is metrizable.)

Because each A € A, is supported on M,, there is a unique W, C Agn
such that Yo = Wa | Ma.

Given E a subset of a poset P, let t1E =U{pT: p € E}.
Let Vo = Wa\ T W<a Where Wea = Ugeq Ws.

Let Uy ={U €V, :IV €Vy U C V.

Assume that min,c x mx(p, X) = k.

We claim that U = U<, is a base of X with Noetherian type Ng.
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First, we show that U/ is a base.

Givenpe Ae A, we need to find U € Y such that p e U C A. Choose
o < k such that A € M,. Then A is supported on M, just as each
U € Uy, is, so it suffices to show that U, | My is a base of X | M.

Uy is a downward-closed subset of W,. Therefore, Uy | My iS a
downard-closed subset of the base W, | M,. Hence, it suffices to
show that Uy | My covers X | M.

Because A~ is too small to contain a local m-base, M, knows about
a finite cover of X by elements of A\ 1 A<n. We have p € T € M,
for some T in this cover.

T | My is open, so we may choose R, S € W, | M, such that

plMae€RCSCT | M,.

R meets all the requireements for being in Uy | M.
14



It remains to show that Nt(U/) = Ng.

For this, we must actually use the continuous surjection h: oA 4 X,
Let B denote the clopen algebra Clop(2?).

Since W, | My is an efficient base, for each a and W € W,, there is

an E,w € BN Mg such that

W W] C Eqw C( R HZ] i W C Z € Wa}

because only there are only finitely many Z as above.
Letting Ea = {Eqw : W € Wa}, we have Nt(£q) = Np.

Why? If E, r C Eu. 8, 7 Ea,s, fOr all m <n <w, then, for all m < w
and S;,, C T € W,, we have R C T. By the definition of efficient
base, there are infinitely many T as above, in contradiction with
Nt(Wa) = Ng.
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Let Do = {E,py : U € Ua}. We have Nt(Dqy) = Rg because Dy C &a.
Let C = BNnt{h~1[U] : U € U}.

Let Co = C N My. Note that Dy C Ca.

Letting D = D, we claim that Nt(D) = Ng.

To prove this, it suffices to show that, for all a < Kk and H € C«q,
1. Ca C1Daq,

2. HTND<y is finite, and

3. HtNDy = .

To be continued...
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Outline of a proof of Nt(X) = Xg where h: 2* — [0, 1]* is continuous,
X = h[2], and 7x(p, X) = w(X) =« for all p € X:

. A is a base of X of size k consisting of F, sets.

(My)a<k IS @ lONg wi-approximation sequence with h, A € Mj.
Wa | Mo C Ao | My is an efficient base of X | M,.

Va — Wa\ TW<04-

U ={U€Vy:AV EVy UCV}.

. U =U<x IS a base of X.

h~L[U] C E,y clopen CN{h7L[W] : U C W € Wa}.

Nt(Dqo) = Rg wWhere Do = {E, y : U € Ua}.

© N O UAWN e

9. Nt(D) = Xg where D = D.
10. Nt(U) = Ng.



Let B = Clop(2?}).
Let C = BN1T{h~1[U] : U € U}.

To prove Nt(D) = Ng, it suffices to show that,
for all a < k and H € C«q,

1. Ca C1Dq,

2. HTND< is finite, and



For all « < k and H € C<q,
(1) Co CTDy,

(2) HTND<, is finite, and
(3) H1NDy = &

To prove Co C1Dq, suppose that K € Caq,.
Then M, knows that h~1[A] ¢ K for some A € A.

So, choosing A as above in A,, we then find U C W C A where
U e U, and W € W,, using the fact that W, | My is a base and U,
is a downward-closed subset of W,.

We then have Dy 3 E,y C h™1[W] C h71[A] C K.



For all « < k and H € C<q,

(2) HTND<, is finite, and

To prove H1TNDy = &, we suppose H C Ea,U € D, and deduce a
contradiction.

By definition of U,, we have U C V for some V € V.

Inductively assuming C<a CTD<a, there exist § < o and Egr € Dg
such that EB,T C H. Hence,

W iTlCEgr CHC E,py Ch VI

Hence, T'C V. But T € Ug C W<q and V € Vo = Wa\ T Wa.
Contradiction.



For all o« < k and H € C«q,
(1) Ca C1Da,

(2) HtND<«q is finite, and
(3) H1NDy = o

To prove that every HTND<y is finite, proceed by induction on «.
(3) makes limit steps trivial.

Suppose that K € D,41. We will show that K1TND_,4 1 is finite.

If K € Dq, then K1TND 441 €quals KTND«q, Which is finite by our
induction hypothesis.

So, assume that K € D,. Since Nt(Dy) = X, the set K +1NDy, is
finite.

T herefore, it suffices to show that K1TND<, is finite.

Recall that TT(a) is finite, M<a = U;em(a) N&: and N, < H(6).



For all « < k and H € C<q,

(2) HTND<q is finite, and
It suffices to show that each K1ND<q, N N. is finite.

By our induction hypothesis, it suffices to find H € C<, such that
K1ND<oq NN}, = H1ND<q N NL.

Since B is just Clop(2}), H ={p e 2*:p | N, € K | N.} satisfies
K CHEBNN,, and KtNBNN), = HTNBN N,

Since K € C and C is upward closed in B, we have H € CNN! C C<q.

Since D<q C C<q C B, we have K1+ND<q N N), = HTND<o N NL.



Outline of a proof of Nt(X) = Xg where h: 2* — [0, 1]* is continuous,
X = h[2], and 7x(p, X) = w(X) =« for all p € X:

. A is a base of X of size k consisting of F, sets.

(My)a<k IS @ lONg wi-approximation sequence with h, A € Mj.
. Wa | Mo C Aa | My is an efficient base of X | M,.

. Va — Wa\ TW<04-

U ={U€Vy:AV EVy UCV}.

. U =U<x IS a base of X.

h~L[U] C E,y clopen CN{h7L[W] : U C W € Wa}.

Nt(Dy) = Xg where Dy = {Ea’U U € Uy}

Nt(D) = Rg where D = D.

© 0 ~NO U HWNHR

10. NtU) = Ng.



Seeking a contradiction, suppose that
T CUn#Uyp and T, U, Uy, €U for all m < n < w.
Let T' € Uy and let Uy, € Ug,, TOr all m < w.

Choose S € U, such that S C T. Then, for all m, we have

D> E,sCh T Ch HUn] C Eg, y,, €D.

Since Nt(D) = XNg, we may thin out (8m)m<w such that,
for some g <k and U € Ug, we have Vm Eg 1 = Eg(.

Thin out (Bm)m<w again to make it constant or strictly increasing.



In the case o < 81, we have Uy C V for some V € Vg,, SO

h~1[Uo] C Egy C b1V,
in contradiction with Ug € Ug, C Wcg, and V € Vg, = Wg \ T W g, .

So, we are in the other case, fg = Bm for all m < w.

Since Wy, [ Mg, is an efficient base, each Uy, a finite set Fy, of strict
supersets in Wg,, but Uy, <, Fm is infinite.

Given an arbitrary ¢ < w, choose j >4 such that F; € F,.

Choose W € F; \ F;. Since Wu | My, is an efficient base, U; C W.
Hence, h~1[U;] C Egy C A1 [W]; hence, U; C W. But —(U; € W).
Hence U; = U; = W; hence, h™1[U;] = Eg .

Thus, U; = h[Eg ] for all i <w. Contradiction. O



An FN-map on a boolean algebra B is a function f: B — [B]<Xo
such that, for all weakly increasing pairs < y in B, there exists
z € f(z)N f(y) such that z < z < y.

B has the Freese-Nation (FN) property if it has an FN map.

A boolean subalgebra A of B is relatively complete if, for every b € B,
there exists a € A such that AN1Tb = AN7Ta. In this case we write
A <yc B.

(Fuchino, 1994) The following are equivalent.

(1) B has the FN.

(2) BN M <(c B for all countable M < H(08) with B € M.
(3) BN M <(c B for all M < H(8) with B € M.
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(Fuchino, 1994) The following are equivalent.

(1) B has the FN.

(2) BN M <(c B for all countable M < H(08) with B € M.
(3) BN M <yc B for all M < H(#) with B € M.

Proof of (3)=(1) using a long wi-approximation sequence:

Let (Ma)a<|B| be a long wi-approximation sequence with B € Mj.
For each =z € B, let p(x) = min{a : x € Mu}.

For each a < |B|, choose a well-ordering C,, of {x € B : p(x) = a}
with length at most w. Set L = Uy« Lo

For each «, i < T1(a), and z with a = p(z), since BN N!, <(c B, there
exist 7’ (x) = min(B N N NTx) and 7 (z) = max(B N NiN}x).

p(ﬂfi_(a:)),p(ﬂ‘i_(x)) < p(z) for all 1 < T(a). (There is no ¢ < 1(0).)
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Recursively define f: B — [B]<No by

f@={y:yCatu U (fE@)UFE(2)).
i<T(p(z))

Suppose xz < y. We verify that S = [z,y] N f(x) N f(y) is nonempty
by induction on max{p(x), p(y)}.

If p(z) = p(y), then
x C y, in which case z € S, or

y C x, in which case y € S.

If p(x) < p(y), then z € Ng(y) for some i, in which case
[z, 7% ()] N f(z) N f(7% (y)) is a nonempty subset of S.

If p(y) < p(z), then y € Ng(x) for some 4, in which case
(7" (x),y] N f(x% (2)) N f(y) is a nonempty subset of S. [
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All free boolean algebras (i.e., algebras isomorphic to some Clop(2}))
and their retracts (i.e., projective boolean algebras) have the FN.

All countable boolean algebras are retracts of Clop(2¥).

All Rq-sized boolean algebras with the FN are retracts of Clop(2%¥1).
If K > wo, then the clopen algebra exp(Clop(2“2)) of the Vietoris
hyperspace exp(2%) of nonempty closed subsets of 2% has the FN but
IS not a retract of a free boolean algebra and not even a subalgebra

of a free boolean algebra.

Topologically speaking, exp(2%) is openly generated but is not Dugundji
and not even dyadic.

Our theorem about homogeneous dyadic compacta generalizes a bit:

If X is a homogeneous continuous image of the Stone space UIt(B)
of a boolean algebra B with the FN, then Nt(X) = Ng.
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Two boolean subalgebras A, B C C commute if, for all pairs A> z <
y € B, there exists z € AN B such that z <z <y.

(Heindorf—=Shapiro, 1994)

e A boolean algebra has the strong Freese-Nation property (SFEN) if
it has a pairwise commuting cofinal family of finite subalgebras.

e Retracts of free boolean algebras have the SFN.

e exp(Clop(2¥2)) has SFN.

e The SFN implies the FN.

e Does the FN imply the SFN?

Theorem (Milovich, 2014). There is a boolean algebra of size N,
with the FN but not the SFN.

The proof uses a long wi-approximation sequence and uses almost
all of coherence properties mentioned in Part I.
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Lajos Soukup has recently announced a o-closed version of long
wi-approximation sequences:

Assume GCH and UJ;* for all regular uncountable p. Then, for every
cardinal k and set z, there exist (Ma)a<x and (N})i<w:a<x SUCh that

o Kk C Ungcr Ma.

e r c M,,

o |Mq| =Ry,

o Mco = Uz’<w Né,

o [My]¥ C My < H(0), and

o [N)]¥ C NL < H(6).
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