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A long time ago, some authors used “curve” to denote an isometric
copy of a graph of a function R→ R. (Continuity is not required.)

If such a curve is a measurable subset of R2, then it is null.

However, Sierpiński showed (1933) that, assuming CH, the plane is
a countable union of graphs of functions and their converses:

• Let / order R with type ω1.

• Let fx map ω onto {y : y E x}.

• Let gn(x) = fx(n).

•
⋃
n<ω(gn ∪ g−1

n ) =
⋃
n<ω

⋃
x∈R{(x, gn(x)), (gn(x), x)} = R2

Thus, CH implies that the plane is a countable union of curves.
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Sierpiński asked (1951) if CH is needed to cover the plane by count-

ably many curves.

Roy O. Davies answered “no” (1963) with an ingenious ZFC cov-

ering. (Never underestimate the axiom of choice!)

To cover the plane by countable many curves, it is enough to parti-

tion the plane into countably many partial curves.

Fix an ω-sequence pairwise non-parallel lines (Ln : n < ω). (For us,

identical lines are considered parallel.)

Davies constructed a partition
⊔
n<ω Cn = R2 such that |L ∩ Cn| ≤ 1

for all n and all lines L||Ln.

(Davies remarked that an argument of Sierpiński implicitly shows

that, given a covering of R2 by countably many curves, there is a

covering of R2 by countably many pairwise isometric curves.)
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To a set theorist, the tastiest ingredient of Davies’ proof is his

following implicit lemma.

Lemma (Davies’ Lemma). Let L be a countable first order lan-

guage. Let A be an uncountable L-structure. Then there is a

transfinite sequence M = (Mα)α<η such that

• every Mα is a countable substructure of A,

•
⋃

ran(M) = A, and

• M has the Davies property: for all α ≤ η,

M<α =
⋃
β<αMβ is a finite union of substructures of A.
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Davies’ partition of the plane applies his lemma to a partial Skolem-

ization of (P,L ,∈;Ln : n < ω) where P is the set R2 of points in

the plane and L is the set of lines in the plane.

We will simply let A be a complete Skolemization of (P,L ,∈;Ln :

n < ω). Therefore, all substructures are elementary substructures.

Let M = (Mα)α<η be as in Davies’ Lemma.

Suppose that α < η and we have constructed a partition
⊔
n<ω Cn =

P ∩M<α such that |L ∩ Cn| ≤ 1 for all n and all lines L||Ln.

It suffices to show that we can extend C to a partition
⊔
n<ω C

′′′
n =

P ∩M<α+1 such that |L ∩ C′′′n | ≤ 1 for all n and all lines L||Ln.
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Let ν ≤ ω and let p = (pk)k<ν biject from ν to P ∩Mα \M<α.

Suppose that k < ν and we have extended C to a partition
⊔
n<ω C

′
n =

P ∩M<α ∪ {pj : j < k} such that |L ∩ C′n| ≤ 1 for all n and all lines

L||Ln.

It suffices to show that that we can extend C′ to a partition
⊔
n<ω C

′′
n =

P ∩M<α ∪ {pj : j < k + 1} such that |L ∩ C′′n| ≤ 1 for all n and all

lines L||Ln.

Let d < ω and N = (Ni)i<d be such that M<α =
⋃

ran(N) and each

Ni is a substructure of A.
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For each n < ω, let Kn be the line through pk that is parallel to Ln.

It suffices to show that there exists n < ω such that Kn is disjoint

from M<α ∪ {pj : j < k}.

For each j < k, there is at most one n < ω such that pj ∈ Kn.

For each i < d, there is at most one n < ω such that Kn intersects

P ∩ Ni. Why? If m < n < ω, x ∈ Km ∩ Ni, and y ∈ Kn ∩ Ni, then

Km,Kn ∈ Ni; then pk ∈ Ni because Km ∩Kn = {pk}. But p 6∈ Ni.

Thus, Kn is disjoint from M<α ∪ {pj : j < k} for almost all n. �
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Davies’ Lemma apparently was not used in print again until 2002 by

Jackson and Mauldin, and then by Milovich starting in 2008.

Jackson and Mauldin constructed (in ZFC) a Steinhaus set, that is,

a subset of R2 that intersects every isometric copy of Z2 at exactly

one point.

Without Davies’ Lemma, Jackson and Mauldin’s proof would have

needed CH.

We do not know if higher-dimensional analogs of Steinhaus sets

exist.
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How did Davies prove his lemma? Recall:

Lemma (Davies’ Lemma). Let L be a countable first order lan-

guage. Let A be an uncountable L-structure. Then there is a

transfinite sequence M = (Mα)α<η such that

• every Mα is a countable substructures of A,

•
⋃

ran(M) = A, and

• M has the Davies property: for all α ≤ η,

M<α =
⋃
β<αMβ is a finite union of substructures of A.
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Proof: The Davies tree. Recursively construct as follows a sequence
(Bt : t ∈ T ) with T a subtree of Ord<ω.

• B() = A.

• If Bt is countable, declare t to be a leaf of T .

• If |Bt| = κ > ℵ0, declare t_(α) ∈ T for all α < κ and choose
an increasing sequence (Bt_(α))α<κ of substructures of Bt with
union Bt such that |Bt_(α)| < |Bt| for all α.

T is well-founded. Therefore, the set L of leaves of T is well ordered
by its lexicographic order <lex.

Moreover,
⋃
t∈LBt = A.

Finally, if t ∈ L, then
⋃
s<lext

Bs =
⋃
i<dom(t)

⋃
α<tiB(t�i)_(α).
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Note that if |A| = ℵn < ℵω, then the Davies tree has height n + 1.

Therefore:

Lemma. Let L be a countable first order language. Let A be an

uncountable L-structure of size ℵn < ℵω. Then there is a transfinite

sequence M = (Mα)α<η such that

• every Mα is a countable substructure of A,

•
⋃

ran(M) = A, and

• for all α ≤ η, M<α is a union at most n substructures of A.
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For each cardinal κ, let H(κ) denote the set of all sets x with tran-

sitive closure
⋃
n<ω

⋃n x of cardinality less than κ.

For each regular uncountable cardinal θ, (H(θ),∈) is a model of ZFC

except possibly for the power set axiom.

We will always implicitly choose θ large enough to include all the

sets and power sets we need for the problem at hand.

The notation N ≺ H(θ) means that N is an elementary {∈}-substructure

of H(θ).
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A long ω1-approximation sequence is a transfinite sequence M =

(Mα)α<η of countable elementary substructures of (H(θ),∈) that is

retrospective:

for each α < η, the sequence (Mβ)β<α is an element of Mα.

Warning: If α is uncountable, then (Mβ)β<α, {Mβ : β < α}, and

M<α =
⋃
β<αMβ are not subsets of Mα.
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If M is a long ω1-approximation sequence, A ∈ M0, and 0 < α <

dom(M), then M0 and α are definable from (Mβ)β<α, and hence

elements of Mα.

Recall that if X ∈ N ≺ H(θ) and |X| ≤ ℵ0, then X ⊂ N .

Therefore, M0 ⊂Mα for all α ∈ dom(M).

Also, Mβ ⊂Mα for all β ≤ α ∈ ω1 ∩ dom(M).

More generally, for all α, β ∈ dom(M), we have

Mβ (Mα ⇔Mβ ∈Mα ⇔ β ∈ α ∩Mα.
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Recall that if A is a first order structure for a countable language L

and A ∈ N ≺ H(θ), then A ∩N ≺L A.

Therefore, assuming A ∈ M0, we have A ∩ Mα ≺L A for all α ∈
dom(M).

Moreover, if every M<α is a finite union of elementary substructures

of H(θ) (and we will show that it is), then every A ∩M<α is a finite

union of L-elementary substructures of A.

Choose a surjection f : |A| → A in M0. Assuming |A| ≤ dom(M), we

have f(α) ∈Mα for all α < |A|. Therefore,
⋃
α<|A|(A ∩Mα) = A.
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Long ω1-approximation sequences are canonical sequences of count-

able structures that are sufficiently rich to encode Davies trees of

which they are leaves.

A Davies tree is built top-down, starting from a large structure. Long

ω1-approximation sequences are more flexibly built up from count-

able structures, which simplifies the construction of large structures

“from scratch.”

Long ω1-approximation sequences provide a uniformly definable ver-

sion of the Davies property and additional coherence properties.
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The cardinal normal form of an ordinal α is the polynomial

ωβ0
· γ0 + ωβ1

· γ1 + · · ·+ ωβm−1
· γm−1 + γm

that equals α and satisfies

• β0 > · · · > βm−1 ≥ 1,

• 1 ≤ γi < ω+
βi

for all i < m, and

• γm < ω1.

An example cardinal normal form:

ωω+1 · 4 + ωω + ω7 ·
(
ω
ω
ω7
3

7 + ω6 · ω
)

+ ω1 · ω1 + (ωω + ω · 2 + 3)
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The mapping sending each ordinal α to the code
(
β, γ

)
for its unique

cardinal normal form is uniformly definable without parameters ac-

cording to the following computation.

• For every ζ ≥ ω1, let bζc be the greatest |ζ| · δ ≤ ζ.

• For every ζ < ω1, let bζc = ζ.

• For every ordinal ζ, let ∂ζ be the unique ε such that bζc+ ε = ζ.

• For every ordinal ζ, let α0 = α and αi+1 = ∂αi for each i < ω.

• For each i < ω, let ∂iα = bαic.
• Let m be least such that αm < ω1.

• For each i < m, let βi satisfy ωβi = |∂iα|.
• For each i < m, let γi satisfy ωβi · γi = ∂iα.

• Let γm = ∂mα.
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Given a cardinal normal form α =
∑
i<m ωβi · γi + γm:

We have ∂iα = ωβi · γi for each i < m and ∂mα = γm.

Let bαci =
∑
j<i ∂jα for each i ≤ m.

Let k(α) = m+ 1 if γm > 0 and k(α) = m if γm = 0.

Let Ii(α) = [bαci , bαci+1) for all i < k(α).

Fundamental Lemma. If (Mα)α<η is a long ω1-approximation se-

quence and i < k(η), then {Mα : α ∈ Ii(η)} is directed (with respect

to ⊂). Hence,
⋃
{Mα : α ∈ Ii(η)} ≺ H(θ).

The lemma applies to every initial segment of M . Therefore, M has

(the analog of) the Davies property.
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Proof. Proceed by induction on η.

• If η ≤ ω1, then Ii(η) = η and {Mα : α < η} is a chain.

• If k(η) ≥ 2, then {Mα : α ∈ Ii(η)} is directed by our induction

hypothesis.

Why? First, Ii(η) = [bηci , bηci + ∂iη) and I0(∂iη) = ∂iη < η.

Second, bαci = bηci for all α ∈ Ii(η), so each Mα can compute

a decomposition α = bηci + β from the cardinal normal of α, so(
Mbηci+β

)
β<∂iη

is retrospective.

• If η = κ ·γ where κ is a an uncountable cardinal, γ is a limit ordinal,

and γ < κ+, then Ii(η) = η and {Mα : α < η} is directed because by

our induction hypothesis {Mα : α < κ · β} is directed for all β < γ.
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• The only remaining case is that η = κ · (β + 1) where κ is a an

uncountable cardinal and 1 ≤ β < κ+.

Mκ·β can compute κ and β from κ·β and then compute η. Therefore,

Mκ·β knows that |η| = κ. Choose a surjection f : κ→ η in Mκ·β.

For each α < κ, Mκ·β+α knows the cardinal normal form κ · β + α.

Hence, f ∈Mκ·β ⊂Mκ·β+α and α ∈Mκ·β+α; hence, Mf(α) ⊂Mκ·β+α.

Thus, {Mα : κ · β ≤ α < η} is cofinal in {Mα : α < η}.

{Mα : κ · β ≤ α < η} is directed by our induction hypothesis applied

to (Mκ·β+α)α<κ. �
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The Fundamental Lemma implies that every M<α is the union of

k(α)-many elementary substructures of H(θ).

By definition, |Ik(α)−2(α)| ≥ ℵ1 and

|α| = |I0(α)| > |I1(α)| > · · · > |Ik(α)−1(α)|.

Hence, if 1 ≤ n < ω and α < ωn, then k(α) ≤ n.

Therefore, for all n ∈ [1, ω) and all α < ωn, M<α is the union at most

n elementary substructures of H(θ).

n = 1 is the trivial case where α < ω1 and M<α ≺ H(θ) because

{Mβ : β < α} is a chain.
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Given a long ω1-approximation sequence (Mα)α<η, let:

• M<α =
⋃
{Mβ : β < α} for each α ≤ η;

• N i
α =

⋃
{Mα : α ∈ Ii(η)} for each α ≤ η and i < k(α);

• P iα = N i
α ∩Mα for each α < η and i < k(α).

By the Fundamental Lemma, M<α =
⋃
i<k(α)N

i
α and N i

α ≺ H(θ).

Some easily proved coherence properties:

Starting from M � α, Mα can compute α, then Ii(α), and then N i
α.

Hence, N i
α ∈Mα and, for every n < ω, Mα knows that N i

α ≺Σn H(θ).

Hence, P iα ≺Mα.

If j < i < k(α), then bbαcicj = bαcj, so N
j
α ∈Mbαci ⊂ P

i
α ⊂ N i

α.
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Additional coherence properties of (Mα)α<η:

• Each {Mα : α ∈ Ii(η)} is a ∨-semilattice (with respect to ⊂).

• For every nonempty I ⊂ η, there exists J ⊂ min(I) + 1 such that⋃
β∈JMβ is a directed union equal to

⋂
α∈IMα.

• For every nonempty s ⊂ k(η),⋂
i∈s
{Mα : α < η and ∃β ∈ Ii(η) Mα ⊂Mβ}

is directed.

• If D ⊂ η and {Mα : α ∈ D} is directed (and nonempty), then there

exists i < k(η) such that for every α ∈ D there exists β ∈ Ii(η) such

that Mα ⊂Mβ.
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Suppose A is an uncountable first order structure for a countable
language L, (Mα)|A| is a long ω1-approximation sequence, and A ∈
M0. We can recover a Davies tree from M as follows.

Let S denote the set of all α ≤ |A| whose cardinal normal forms∑
i<m ωβi · γi + γm are such that γk(α) is a successor ordinal.

Let Cα = A ∩Nk(α)−1
α for all α ∈ S. (So Cβ+1 = Mβ for all β < |A|.)

For each α ∈ S ∩ |A|, let

α′ =

bαck(α)−1 + |∂k(α)−2α| : k(α) ≥ 2;

|A| : k(α) = 1.

Let T = {Cα : α ∈ S} and order T by declaring Cα′ to be the parent
of Cα for all α ∈ S ∩ |A|.

T is a tree with root A; nodes are leaves iff they are countable;
the children of each non-leaf node Cα are well-ordered by ⊂, have
cardinality less than |Cα|, and have union Cα.
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Given a regular uncountable cardinal λ, define a long λ-approximation

sequence to be a retrospective sequence (Mα)α<η of elementary sub-

structures of H(θ) such that |Mα| < λ and λ ∩Mα ∈ λ for all α.

Requiring λ ∩Mα ∈ λ is equivalent to requiring that if X ∈ Mα and

|X| < λ, then X ⊂Mα.

To prove the Fundamental Lemma for long λ-approximation se-

quences, simply replace ω1 with λ in the proof of the lemma and

in the definition of cardinal normal form.
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Let P be a poset. For p ∈ P , let p↑= {q : q ≥ p}.

Definition (Peregudov). Define the Noetherian type Nt(P ) of P to

be the least infinite cardinal κ for which |p↑| < κ for all p ∈ P .

Define the Noetherian type Nt(X) of a topological space X to be

the least Nt(B) where B is a base of X and B is ordered with respect

to ⊂.

(Recall that a topological base is a family B of open sets such that

for every p ∈ U with U open, some B ∈ B satisfies p ∈ B ⊂ U .)
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As a topological cardinal function, Nt is somewhat unusual. A few

examples:

• If B is a base of X, then Nt(X |B|) = ℵ0. Hence, there are compact

spaces X, Y such that Nt(X × Y ) < max{Nt(X),Nt(Y )}.

• There are Tychonoff spaces X, Y such that

Nt(X × Y ) < min{Nt(X),Nt(Y )}.

We do not know if there is a compact example of this. However,

GCH implies that Nt(Xn) = Nt(X) for all compact homogeneous X.

• The countably supported box product topology on 2ℵω has Noethe-

rian type in [ℵ1,ℵ4], with ℵ1 and ℵ2 consistent, and the consistency

of ℵ3 and ℵ4 unknown.
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A compact space is dyadic if it is a continuous image of some 2κ.

If X is the quotient of 2ω ⊕ 2ω1 induced by identifying (0)n<ω and

(0)α<ω1, then X is dyadic and Nt(X) = ℵ2.

More generally, Nt(X) > κ if κ is a regular cardinal, X is a space,

p ∈ X, some local π-base at p is smaller than κ, and no local base

at p is smaller than κ.

Recall that a local base (local π-base) at p is a coinitial family U of

open neighborhoods of p. That is, p ∈ U (U 6= ∅) and U is open for

all U ∈ U, and if p ∈ O and O is open, then U ⊂ O for some U ∈ U.
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A space H is homogeneous if for all p, q ∈ H there exists a homeo-

morphism f : H → H such that f(p) = q.

Theorem (Milovich, 2008). Nt(X) = ℵ0 for all homogeneous dyadic

compact X.

Corollary. Nt(G) = ℵ0 for all compact groups G.

Proof. All topological groups are homogeneous. By the Ivanovskĭı–

Kuz′minov Theorem (1959), compact groups are also dyadic.
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The weight w(X) of a space X is the least infinite cardinal κ such

that X has a base not larger than κ.

The π-character πχ(p,X) of a point p in a space X is the least

infinite cardinal κ such that p has a local π-base not larger than κ.

Theorem (Gerlits, 1976; Efimov, 1977). If X is compact and dyadic,

then supp∈X πχ(p,X) = w(X).

Corollary. If X is compact, homogeneous, and dyadic, then, for all

p ∈ X, πχ(p,X) = w(X).

Theorem (Milovich–Spadaro, 2014). If X is compact, κ is a regular

uncountable cardinal, w(X) ≥ κ, and πχ(p,X) < κ on a dense set of

p ∈ X, then Nt(X) > κ.
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Every metric space has Noetherian type ℵ0. Why? Take B =⋃
n<ωRn where each Rn is a locally finite open cover refining the

balls of diameter 2−n.

A topological base B is called efficient if

• it has Noetherian type ℵ0,

• U ( V ⇒ U ⊂ V for all U, V ∈ B, and

• for all infinite S ⊂ B, the set {T ∈ B : ∃S ∈ S S ( T} is infinite.

Lemma. Every base of a compact metric space K contains an effi-

cient base of K.
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Proof. Given a base B of K, we will choose a sequence (An)n<ω of
finite open subcovers of B such that A =

⋃
n<ωAn will be an efficient

base.

Given n < ω and (Am)m<n, choose, for each p ∈ K, an neighborhood
Np of p in B sufficently small that

1. diam(Np) ≤ 2−n,

2. Np ⊂
⋂
{A : p ∈ A ∈

⋃
m<nAm},

3. Np ∩A = ∅ or Np = A for all singleton A ∈
⋃
m<nAm, and

4. diam(Np) < diam(A) for all non-singleton A ∈
⋃
m<nAm.

Choose An to be a minimal (finite) subcover of {Np : p ∈ K}.
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Since maxA∈An diam(A) ≤ 2−n, A will be a base.

Since also each An is finite, Nt(A) = ℵ0.

Since diam(A) < diam(B) for all m > n, A ∈ Am, and B ∈ An \ [K]1,

if Ai 3 U ) V ∈ Aj, then i ≤ j.

Since also each An is a minimal cover,

if Ai 3 U ) V ∈ Aj, then i < j.

Since also Ai 3 U ) V ∈ Aj and i < j imply U ⊃ V ,

U ) V ⇒ U ⊃ V for all U, V ∈ A.
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Finally, given a finite F ⊂ A and a non-repeating sequence (Un)n<ω
of elements of A, it suffices to find some Un with a strict superset

in A \ F.

Since (Un)n<ω is non-repeating and each An is finite, we may pass

to a subsequence (Vn)n<ω of (Un)n<ω that diam(Vn)→ 0.

We may then pass to a subsequence (Wn)n<ω such that (Wn)n<ω
converges to a singleton {p} (in the (compact) Vietoris hyperspace).

Since (Wn)n<ω is non-repeating, p is not an isolated point.

Hence, p has a neighborhoods Y, Z ∈ A \ F such that Y ( Z.

For m sufficiently large, Wm ⊂ Y ( Z.
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Let X be a compact space of uncountable weight κ. Without loss

of generality, X is a subspace of [0,1]κ.

Let A be a base of X of size κ and consisting only of nonempty

open Fσ sets.

(To find such a base, take any base Z of size κ and, for each finite

subcover of Z, choose a refining finite cover by open Fσ sets; take

A to be the union these refinements.)

Given a function f and a set I, let f � I denote the restriction of f to

dom(f) ∩ I. Given a set E of functions, let E � I denote {f � I : f ∈
E}. Given a set J of sets of functions, let J � I = {E � I : E ∈ J}.

We say that E ⊂ X is supported on a set I if, for all p, q ∈ X, if

p � I = q � I, then p ∈ E ⇔ q ∈ E.

By compactness of X, every open Fσ set has a countable support.
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Assume that there is a continuous surjection h : 2λ → X.

Let (Mα)α<κ be a long ω1-approximation sequence with A, h ∈M0.

Letting Aα = A ∩Mα, each U ∈ Aα is supported on Mα.

Why? Each U ∈ A ∩Mα is supported on some countable C. Mα

knows this; hence, we may choose C ∈Mα; hence, C ⊂Mα.

For each α < κ, Aα �Mα is a base of X �Mα.

Why? Given p ∈ X, if R is an open product of rational intervals such

that p ∈ R and R∩X is supported on Mα, then R∩X is supported on

a finite F ⊂Mα and there is a closed product Q of rational intervals

such that p ∈ Q ⊂ R and Q∩X is suppported on F . Mα knows about

a finite cover of Q ∩ X by elements of A with union contained in

R ∩ X. Hence, p ∈ A ⊂ R ∩ X and A ∈ A ∩Mα for some A in this

cover. Hence, p �Mα ∈ A �Mα ⊂ (R∩X) �Mα and A �Mα is open in

X �Mα because A is supported on Mα.
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We may choose Yα ⊂ Aα �Mα to be an efficient base of X �Mα.

(Why? Every compact space with countable weight is metrizable.)

Because each A ∈ Aα is supported on Mα, there is a unique Wα ⊂ Aα
such that Yα =Wα �Mα.

Given E a subset of a poset P , let ↑E =
⋃
{p↑: p ∈ E}.

Let Vα =Wα\ ↑W<α where W<α =
⋃
β<αWβ.

Let Uα = {U ∈ Vα : ∃V ∈ Vα U ⊂ V }.

Assume that minp∈X πχ(p,X) = κ.

We claim that U = U<κ is a base of X with Noetherian type ℵ0.
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First, we show that U is a base.

Given p ∈ A ∈ A, we need to find U ∈ U such that p ∈ U ⊂ A. Choose

α < κ such that A ∈ Mα. Then A is supported on Mα just as each

U ∈ Uα is, so it suffices to show that Uα �Mα is a base of X �Mα.

Uα is a downward-closed subset of Wα. Therefore, Uα � Mα is a

downard-closed subset of the base Wα � Mα. Hence, it suffices to

show that Uα �Mα covers X �Mα.

Because A<α is too small to contain a local π-base, Mα knows about

a finite cover of X by elements of A\ ↑A<α. We have p ∈ T ∈ Mα

for some T in this cover.

T �Mα is open, so we may choose R,S ∈ Wα �Mα such that

p �Mα ∈ R ⊂ S ⊂ T �Mα.

R meets all the requireements for being in Uα �Mα.
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It remains to show that Nt(U) = ℵ0.

For this, we must actually use the continuous surjection h : 2λ → X.

Let B denote the clopen algebra Clop(2λ).

Since Wα �Mα is an efficient base, for each α and W ∈ Wα, there is

an Eα,W ∈ B ∩Mα such that

h−1[W ] ⊂ Eα,W ⊂
⋂
{h−1[Z] : W ⊂ Z ∈ Wα}

because only there are only finitely many Z as above.

Letting Eα = {Eα,W : W ∈ Wα}, we have Nt(Eα) = ℵ0.

Why? If Eα,R ( Eα,Sm 6= Eα,Sn for all m < n < ω, then, for all m < ω

and Sm ⊂ T ∈ Wα, we have R ⊂ T . By the definition of efficient

base, there are infinitely many T as above, in contradiction with

Nt(Wα) = ℵ0.
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Let Dα = {Eα,U : U ∈ Uα}. We have Nt(Dα) = ℵ0 because Dα ⊂ Eα.

Let C = B∩↑{h−1[U ] : U ∈ U}.

Let Cα = C ∩Mα. Note that Dα ⊂ Cα.

Letting D = D<κ, we claim that Nt(D) = ℵ0.

To prove this, it suffices to show that, for all α < κ and H ∈ C<α,

1. Cα ⊂↑Dα,

2. H ↑∩D<α is finite, and

3. H ↑∩Dα = ∅.

To be continued...
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Outline of a proof of Nt(X) = ℵ0 where h : 2λ → [0,1]κ is continuous,

X = h[2λ], and πχ(p,X) = w(X) = κ for all p ∈ X:

1. A is a base of X of size κ consisting of Fσ sets.

2. (Mα)α<κ is a long ω1-approximation sequence with h,A ∈M0.

3. Wα �Mα ⊂ Aα �Mα is an efficient base of X �Mα.

4. Vα =Wα\ ↑W<α.

5. Uα = {U ∈ Vα : ∃V ∈ Vα U ⊂ V }.
6. U = U<κ is a base of X.

7. h−1[U ] ⊂ Eα,U clopen ⊂
⋂
{h−1[W ] : U ⊂W ∈ Wα}.

8. Nt(Dα) = ℵ0 where Dα = {Eα,U : U ∈ Uα}.

9. Nt(D) = ℵ0 where D = D<κ.

10. Nt(U) = ℵ0.
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Let B = Clop(2λ).

Let C = B∩↑{h−1[U ] : U ∈ U}.

Let Cα = C ∩Mα. Note that Dα ⊂ Cα.

To prove Nt(D) = ℵ0, it suffices to show that,

for all α < κ and H ∈ C<α,

1. Cα ⊂↑Dα,

2. H ↑∩D<α is finite, and

3. H ↑∩Dα = ∅.
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For all α < κ and H ∈ C<α,

(1) Cα ⊂↑Dα,

(2) H ↑∩D<α is finite, and

(3) H ↑∩Dα = ∅:

To prove Cα ⊂↑Dα, suppose that K ∈ Cα.

Then Mα knows that h−1[A] ⊂ K for some A ∈ A.

So, choosing A as above in Aα, we then find U ⊂ W ⊂ A where

U ∈ Uα and W ∈ Wα, using the fact that Wα � Mα is a base and Uα
is a downward-closed subset of Wα.

We then have Dα 3 Eα,U ⊂ h−1[W ] ⊂ h−1[A] ⊂ K.
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For all α < κ and H ∈ C<α,

(1) Cα ⊂↑Dα,

(2) H ↑∩D<α is finite, and

(3) H ↑∩Dα = ∅:

To prove H ↑ ∩Dα = ∅, we suppose H ⊂ Eα,U ∈ Dα and deduce a

contradiction.

By definition of Uα, we have U ⊂ V for some V ∈ Vα.

Inductively assuming C<α ⊂↑D<α, there exist β < α and Eβ,T ∈ Dβ
such that Eβ,T ⊂ H. Hence,

h−1[T ] ⊂ Eβ,T ⊂ H ⊂ Eα,U ⊂ h−1[V ].

Hence, T ⊂ V . But T ∈ Uβ ⊂ W<α and V ∈ Vα = Wα\ ↑ W<α.

Contradiction.

4



For all α < κ and H ∈ C<α,
(1) Cα ⊂↑Dα,
(2) H ↑∩D<α is finite, and
(3) H ↑∩Dα = ∅:

To prove that every H ↑ ∩D<α is finite, proceed by induction on α.
(3) makes limit steps trivial.

Suppose that K ∈ D<α+1. We will show that K ↑∩D<α+1 is finite.

If K ∈ D<α, then K ↑∩D<α+1 equals K ↑∩D<α, which is finite by our
induction hypothesis.

So, assume that K ∈ Dα. Since Nt(Dα) = ℵ0, the set K ↑ ∩Dα is
finite.

Therefore, it suffices to show that K ↑∩D<α is finite.

Recall that k(α) is finite, M<α =
⋃
i∈k(α)N

i
α, and N i

α ≺ H(θ).
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For all α < κ and H ∈ C<α,

(1) Cα ⊂↑Dα,

(2) H ↑∩D<α is finite, and

(3) H ↑∩Dα = ∅:

It suffices to show that each K ↑∩D<α ∩N i
α is finite.

By our induction hypothesis, it suffices to find H ∈ C<α such that

K ↑∩D<α ∩N i
α = H ↑∩D<α ∩N i

α.

Since B is just Clop(2λ), H = {p ∈ 2λ : p � N i
α ∈ K � N i

α} satisfies

K ⊂ H ∈ B ∩N i
α and K ↑∩B ∩N i

α = H ↑∩B ∩N i
α.

Since K ∈ C and C is upward closed in B, we have H ∈ C ∩N i
α ⊂ C<α.

Since D<α ⊂ C<α ⊂ B, we have K ↑∩D<α ∩N i
α = H ↑∩D<α ∩N i

α.
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Outline of a proof of Nt(X) = ℵ0 where h : 2λ → [0,1]κ is continuous,

X = h[2λ], and πχ(p,X) = w(X) = κ for all p ∈ X:

1. A is a base of X of size κ consisting of Fσ sets.

2. (Mα)α<κ is a long ω1-approximation sequence with h,A ∈M0.

3. Wα �Mα ⊂ Aα �Mα is an efficient base of X �Mα.

4. Vα =Wα\ ↑W<α.

5. Uα = {U ∈ Vα : ∃V ∈ Vα U ⊂ V }.
6. U = U<κ is a base of X.

7. h−1[U ] ⊂ Eα,U clopen ⊂
⋂
{h−1[W ] : U ⊂W ∈ Wα}.

8. Nt(Dα) = ℵ0 where Dα = {Eα,U : U ∈ Uα}.
9. Nt(D) = ℵ0 where D = D<κ.

10. Nt(U) = ℵ0.
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Seeking a contradiction, suppose that

T ⊂ Um 6= Un and T, Um, Un ∈ U for all m < n < ω.

Let T ∈ Uα and let Um ∈ Uβm for all m < ω.

Choose S ∈ Uα such that S ⊂ T . Then, for all m, we have

D 3 Eα,S ⊂ h−1[T ] ⊂ h−1[Um] ⊂ Eβm,Um ∈ D.

Since Nt(D) = ℵ0, we may thin out (βm)m<ω such that,

for some β < κ and U ∈ Uβ, we have ∀m Eβm,Um = Eβ,U .

Thin out (βm)m<ω again to make it constant or strictly increasing.
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In the case β0 < β1, we have U1 ⊂ V for some V ∈ Vβ1
, so

h−1[U0] ⊂ Eβ,U ⊂ h−1[V ],

in contradiction with U0 ∈ Uβ0
⊂ W<β1

and V ∈ Vβ1
=Wβ1

\ ↑W<β1
.

So, we are in the other case, β0 = βm for all m < ω.

Since Wβ0
�Mβ0

is an efficient base, each Um a finite set Fm of strict
supersets in Wβ0

, but
⋃
m<ω Fm is infinite.

Given an arbitrary i < ω, choose j > i such that Fj 6⊆ Fi.

Choose W ∈ Fj \ Fi. Since Wα �Mα is an efficient base, Uj ⊂W .

Hence, h−1[Ui] ⊂ Eβ,U ⊂ h−1[W ]; hence, Ui ⊂W . But ¬(Ui (W ).

Hence Ui = Ui = W ; hence, h−1[Ui] = Eβ,U .

Thus, Ui = h[Eβ,U ] for all i < ω. Contradiction. �
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An FN-map on a boolean algebra B is a function f : B → [B]<ℵ0

such that, for all weakly increasing pairs x ≤ y in B, there exists

z ∈ f(x) ∩ f(y) such that x ≤ z ≤ y.

B has the Freese-Nation (FN) property if it has an FN map.

A boolean subalgebra A of B is relatively complete if, for every b ∈ B,

there exists a ∈ A such that A∩ ↑ b = A∩ ↑ a. In this case we write

A ≤rc B.

(Fuchino, 1994) The following are equivalent.

(1) B has the FN.

(2) B ∩M ≤rc B for all countable M ≺ H(θ) with B ∈M .

(3) B ∩M ≤rc B for all M ≺ H(θ) with B ∈M .
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(Fuchino, 1994) The following are equivalent.

(1) B has the FN.

(2) B ∩M ≤rc B for all countable M ≺ H(θ) with B ∈M .

(3) B ∩M ≤rc B for all M ≺ H(θ) with B ∈M .

Proof of (3)⇒(1) using a long ω1-approximation sequence:

Let (Mα)α<|B| be a long ω1-approximation sequence with B ∈ M0.

For each x ∈ B, let ρ(x) = min{α : x ∈Mα}.

For each α < |B|, choose a well-ordering vα of {x ∈ B : ρ(x) = α}
with length at most ω. Set v =

⋃
α<|A|vα

For each α, i < k(α), and x with α = ρ(x), since B∩N i
α ≤rc B, there

exist πi+(x) = min(B ∩N i
α∩↑x) and πi−(x) = max(B ∩N i

α∩↓x).

ρ(πi+(x)), ρ(πi−(x)) < ρ(x) for all i < k(α). (There is no i < k(0).)

11



Recursively define f : B → [B]<ℵ0 by

f(x) = {y : y v x} ∪
⋃

i<k(ρ(x))

(
f(πi+(x)) ∪ f(πi−(x))

)
.

Suppose x ≤ y. We verify that S = [x, y] ∩ f(x) ∩ f(y) is nonempty

by induction on max{ρ(x), ρ(y)}.

If ρ(x) = ρ(y), then

x v y, in which case x ∈ S, or

y v x, in which case y ∈ S.

If ρ(x) < ρ(y), then x ∈ N i
ρ(y) for some i, in which case

[x, πi−(y)] ∩ f(x) ∩ f(πi−(y)) is a nonempty subset of S.

If ρ(y) < ρ(x), then y ∈ N i
ρ(x) for some i, in which case

[πi+(x), y] ∩ f(πi+(x)) ∩ f(y) is a nonempty subset of S. �
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All free boolean algebras (i.e., algebras isomorphic to some Clop(2λ))
and their retracts (i.e., projective boolean algebras) have the FN.

All countable boolean algebras are retracts of Clop(2ω).

All ℵ1-sized boolean algebras with the FN are retracts of Clop(2ω1).

If κ ≥ ω2, then the clopen algebra exp(Clop(2ω2)) of the Vietoris
hyperspace exp(2κ) of nonempty closed subsets of 2κ has the FN but
is not a retract of a free boolean algebra and not even a subalgebra
of a free boolean algebra.

Topologically speaking, exp(2κ) is openly generated but is not Dugundji
and not even dyadic.

Our theorem about homogeneous dyadic compacta generalizes a bit:

If X is a homogeneous continuous image of the Stone space Ult(B)
of a boolean algebra B with the FN, then Nt(X) = ℵ0.
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Two boolean subalgebras A,B ⊂ C commute if, for all pairs A 3 x ≤
y ∈ B, there exists z ∈ A ∩B such that x ≤ z ≤ y.

(Heindorf–Shapiro, 1994)

• A boolean algebra has the strong Freese-Nation property (SFN) if

it has a pairwise commuting cofinal family of finite subalgebras.

• Retracts of free boolean algebras have the SFN.

• exp(Clop(2ω2)) has SFN.

• The SFN implies the FN.

• Does the FN imply the SFN?

Theorem (Milovich, 2014). There is a boolean algebra of size ℵ2

with the FN but not the SFN.

The proof uses a long ω1-approximation sequence and uses almost

all of coherence properties mentioned in Part I.
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Lajos Soukup has recently announced a σ-closed version of long
ω1-approximation sequences:

Assume GCH and �∗∗µ for all regular uncountable µ. Then, for every
cardinal κ and set x, there exist (Mα)α<κ and (N i

α)i<ω;α<κ such that

• κ ⊂
⋃
α<κMα.

• x ∈Mα,

• |Mα| = ℵ1,

• M<α =
⋃
i<ωN

i
α,

• [Mα]ω ⊂Mα ≺ H(θ), and

• [N i
α]ω ⊂ N i

α ≺ H(θ).
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