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Theorem 1. Let g(x) be a real function continuous on a nonempty open interval (a, b) (and possibly

continuous elsewhere); let c0, c1, c2, . . . be a sequence of constants. Suppose that lim
k→∞

∣∣∣ ck+1g(x)
k+1

ckg(x)k

∣∣∣
exists and is < 1 for all x in (a, b), except where g(x) = 0.

If f(x) and g(x) are continuous from the left at b and f(x) =
∞∑
k=0

ck(g(x))k for all x in (a, b),

then f(b) =
∞∑
k=0

ck(g(b))k.

Likewise, if f(x) and g(x) are continuous from the right at a and f(x) =
∞∑
k=0

ck(g(x))k for all x

in (a, b), then f(a) =
∞∑
k=0

ck(g(a))k.

Proof. By symmetry, we only need to prove the first half of the theorem; the second half follows
the first half applied to p(x) = g(a+ b− x) in place of g(x).

Let S(x) =
∞∑
k=0

ck(g(x))k. If g(x) = 0 on all of (a, b), then f(x) = c0 on all of (a, b), and, by

continuity, g(b) = 0 and f(b) = c0, so f(b) = c0 = S(b). Therefore, we may assume g(x) 6= 0 for

some x in (a, b). Hence, at such an x, 1 > lim
k→∞

∣∣∣ ck+1g(x)
k+1

ckg(x)k

∣∣∣ = |g(x)| lim
k→∞

∣∣∣ ck+1

ck

∣∣∣; let L = lim
k→∞

∣∣∣ ck+1

ck

∣∣∣.
Choose q in (a, b). If L = 0, then the ratio-test limit for S(x) will be 0, or g(x) = 0, for all

x in [q, b], so S(x) will be continuous on [q, b], so S(b) = limx→b− S(x) = limx→b− f(x) = f(b).
Therefore, we may assume L > 0. Similarly, if |g(b)| < 1/L, then the ratio-test limit for S(x) will
be < 1, or g(x) = 0, for all x in [q, b], so again S(b) = f(b). Therefore, we may assume g(b) ≥ 1/L.

If |g(b)| > 1/L, then, by the Intermediate Value Theorem, if we choose r in (1/L, |g(b)|), then
|g(y)| = r for some y in (q, b), for |g| is continuous on [q, b] and |g(q)| < 1/L < r < |g(b)|. However,
in this case g(y) 6= 0 and L|g(y)| > 1, in contradiction with the ratio-test limit for S(x) being < 1
for all x in (a, b) where g(x) 6= 0. Therefore, |g(b)| = 1/L.

With the easier cases dispensed with, our strategy will now be to prove that S(b) is infinitely
close to S(x) for some x in (a, b) that is infinitely close to b. Since S(x) = f(x) and f is continuous
from the left at b, x ≈ b will imply that S(b) ≈ f(x) ≈ f(b). Since S(b) and f(b) are both reals, they
can only be infinitely close if they are equal, which is exactly what we wish to prove. Therefore,
we just need to find x such that b ≈ x < b and S(x) ≈ S(b).

Set dk = ck(g(b))k and h(x) = g(x)/g(b), so that S(x) =
∞∑
k=0

dk(h(x))k, h(b) = 1, and S(b) =

∞∑
k=0

dk. Since h(b) = 1 and h(x) = g(x)/g(b) is continuous on (a, b], if J is an infinite positive

hyperinteger, then h(b− 1/J) ≈ h(b) = 1, so h(b− 1/J) > 0. Fixing such a J , let I be the greatest
hyperinteger less than J for which there is h(b − z) ≤ 0 for some positive z < 1/I; if no such
hyperinteger exists, set I = 1. Since h(b− z) ≈ h(b) = 1 for all positive z ≈ 0, I cannot be infinite,
so I is finite and, setting t = b− 1/I, h(x) > 0 for all x in (t, b]. We will use this fact later.

1



Set sk = d0 + d1 + · · ·+ dk−1 + dk, so that sk − sk−1 = dk and S(b) = limn→∞ sn. Therefore,

n∑
k=0

dkh
k = d0 + d1h+ d2h

2 + d3h
3 + · · ·+ dn−1h

n−1 + dnh
n

= s0 + (s1 − s0)h+ (s2 − s1)h2 + (s3 − s2)h3 + · · ·+ (sn−1 − sn−2)hn−1 + (sn − sn−1)hn

= s0(1− h) + s1(h− h2) + s2(h
2 − h3) + · · ·+ sn−1(h

n−1 − hn) + snh
n

= (1− h)(s0 + s1h+ s2h
2 + · · ·+ sn−1h

n−1) + snh
n

= (1− h)

n−1∑
k=0

skh
k + snh

n

For all x in (a, b), |h(x)| =
∣∣∣g(x)g(b)

∣∣∣ = |g(x)L| < 1, so limn→∞ h
n(x) = 0, so

S(x) = lim
n→∞

n∑
k=0

dkh
k(x) = lim

n→∞

(
(1− h(x))

n−1∑
k=0

skh
k(x) + snh

n(x)

)

= (1− h(x))

∞∑
k=0

skh
k(x) + S(b) · 0

Therefore, again using the fact that |h(x)| < 1,

S(x)− S(b) = (1− h(x))

∞∑
k=0

skh
k(x)− S(b)

= (1− h(x))

( ∞∑
k=0

skh
k(x)− S(b)

1− h(x)

)

= (1− h(x))

( ∞∑
k=0

skh
k(x)− S(b)

∞∑
k=0

hk(x)

)

= (1− h(x))
∞∑
k=0

(sk − S(b))hk(x)

= (1− h(x))

M−1∑
k=0

(sk − S(b))hk(x) + (1− h(x))

∞∑
k=M

(sk − S(b))hk(x)

for all positive M .
Choose M to be infinitely large. Let N be the greatest hyperinteger (if it exists) for which

|sk − S(b)| < 1
N for all k ≥ M . Since lim

n→∞
sn = S(b), sk ≈ S(b) for all infinite k, so sk ≈ S(b) for
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all k ≥M , so N exists and must be infinite. Therefore, for all x in (t, b) (where 0 < h(x) < 1),∣∣∣∣∣(1− h(x))

∞∑
k=M

(sk − S(b))hk(x)

∣∣∣∣∣ <
∣∣∣∣1− h(x)

N

∣∣∣∣ ∞∑
k=M

|hk(x)|

=
1− h(x)

N
(hM (x) + hM+1(x) + hM+2(x) + · · · )

=
(1− h(x))hM (x)

N
(1 + h(x) + h2(x) + · · · )

=
(1− h(x))hM (x)

N

1

1− h(x)

=
hM (x)

N
.

Since |h(x)| < 1, |hM (x)| < 1, so

∣∣∣∣(1− h(x))
∞∑

k=M

(sk − S(b))hk(x)

∣∣∣∣ < 1
N . Therefore,

(1− h(x))
∞∑

k=M

(sk − S(b))hk(x) ≈ 0.

Hence, S(x)− S(b) ≈ (1− h(x))
M−1∑
k=0

(sk − S(b))hk(x) + 0.

Let P be the maximum value appearing in the (hyper)list |s0−S(b)|, |s1−S(b)|, . . . , |sM−1−S(b)|.
|si − S(b)| is finite for all finite i, and si ≈ S(b) for all infinite i, so |si − S(b)| is finite for all i.
Therefore, P is finite, so we can use P to establish a useful upper bound on |S(x)− S(b)|:

|S(x)− S(b)| ≈

∣∣∣∣∣(1− h(x))
M−1∑
k=0

(sk − S(b))hk(x)

∣∣∣∣∣
≤ (1− h(x))P

M−1∑
k=0

hk(x)

= (1− h(x))P
1− hM (x)

1− h(x)

= P (1− hM (x)).

Our goal is to show that S(x) ≈ S(b) for some x with b ≈ x < b, so if we can show that hM (x) ≈ 1
for some such x, then we will have |S(x)−S(b)| ≈ P (1−hM (x)) ≈ 0, which will imply S(x) ≈ S(b).
When b ≈ x < b, h(x) ≈ h(b) = 1, so hm(x) ≈ 1 for all real m. Therefore, for every positive real
δ and real m, there is a hyperreal x such that b − δ < x < b and |1 − hm(x)| < δ. By Transfer,
for every positve real δ and real m, there is a real x such that b− δ < x < b and |1− hm(x)| < δ.
By Transfer again, for every positive hyperreal δ and hyperreal m, there is a hyperreal x such that
b − δ < x < b and |1 − hm(x)| < δ. In particular, if we choose δ to be positive infinitesimal, then
there is a hyperreal x such that b − δ < x < b and |1 − hM (x)| < δ. Thus, there is a hyperreal x
such that b ≈ x < b and hM (x) ≈ 1, so the proof is complete. �

Remark. The above proof can be extended to show that lim
b→1−

S(x) = S(b), even if f is not continuous

from the left at b. To do this, we just need to show that S(x) ≈ S(b) for all x satisfying b ≈ x < b.
The above proof showed that if M is a positive infinite hyperinteger, then hM (x) ≈ 1 implies
S(x) ≈ S(b) for all x satisfying t < x < b. Therefore, it is enough to show that for all x satisfying
b ≈ x < b, we can find an infinite positive hyperinteger M such that hM (x) ≈ 1.
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By the definition of derivative, if 0 ≈ ε 6= 0, then ln(1+ε)
ε ≈ ln′(1) = 1

1 = 1. So, given any x
satisfying b ≈ x < b, we have 1 ≈ h(x) < 1, so 0 ≈ h(x)− 1 < 0, so we can set ε = h(x)− 1 to get
ln(1+(h(x)−1))

h(x)−1 ≈ 1, which implies −1 ≈ 1
1−h(x) ln(h(x)), which in turn implies

e−1 ≈ e(ln(h(x)))(1/(1−h(x))) =
(

eln(h(x))
)1/(1−h(x))

= h(x)1/(1−h(x)).

Since 1 ≈ h(x) < 1 implies 0 ≈ 1−h(x) > 0, 1/
√

1− h(x) is positive infinite; let M be the greatest

hyperinteger ≤ 1/
√

1− h(x). Therefore, since 0 < h(x) < 1, we have

1 > h(x)M ≥ h(x)1/
√

1−h(x) = h(x)
√

1−h(x)/(1−h(x)) =
(
h(x)1/(1−h(x))

)√1−h(x)
≈ (e−1)0 = 1,

so indeed hM (x) ≈ 1.
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