MATH 2415 FINAL EXAMINATION

Name:

Exercise	Point Possible	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

1. [25 points] Compute the flux of the field $\left\langle x y^{2} z, y x^{2} z, x+y\right\rangle$ through the boundary of the cylindrical region $\left\{(x, y, z): x^{2}+y^{2} \leq 5\right.$ and $\left.2 \leq z \leq 4\right\}$.
2. [25 points] The ellipsoid surface $E=\left\{(x, y, z):(x / 5)^{2}+(y / 6)^{2}+(z / 7)^{2}=1\right\}$ can be parametrized using "stretched" spherical coordinates:

$$
\begin{aligned}
& x=5 \sin \phi \cos \theta \\
& y=6 \sin \phi \sin \theta \\
& z=7 \cos \phi \\
& 0 \leq \phi \leq \pi \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

Find a formula for the surface area differential $d \sigma$ of E. The only variables in your formula should be $\phi, \theta, d \phi$, and $d \theta$.
3. [25 points] Use the fact that curl $\langle b z, c x, a y\rangle=\langle a, b, c\rangle$ (assuming $\langle a, b, c\rangle$ is constant) to compute the flux of the constant vector field $\langle 1,3,5\rangle$ through the upper hemisphere $H=\{(x, y, z)$: $x^{2}+y^{2}+z^{2}=1$ and $\left.z \geq 0\right\}$.
4. [25 points] Compute the three angles of the triangle with vertices $(0,0,1),(1,2,3)$, and $(-4,1,2)$.

