MATH 2415 TEST 2

Name:		

Exercise	Point Possible	Score
1	15	
2	15	
3	15	
4	25	
5	30	
Total	100	

1. [15 points] Circle the best answer.

If velocity is always perpendicular to acceleration, then...

- (a) distance from the origin is constant.
- (b) speed is constant.
- (c) curvature is constant.
- (d) torsion is constant.

2. [15 points] Circle the best answer.

If the unit binormal vector of a curve is constant, then...

- (a) the curve is a plane curve.
- (b) the curvature is always 0.
- (c) the torsion is always 0.
- (d) both a and b are true.
- (e) both b and c are true.
- (f) both c and a are true.

3. [15 points] Circle the best answer.

If acceleration $\vec{a}(t)$ is always a scalar multiple of position $\vec{r}(t)$, then...

- (a) $\vec{r}(t) \times \vec{v}(t)$ is constant.
- (b) $\vec{r}(t) \cdot \vec{v}(t)$ is constant.
- (c) $\vec{v}(t) \times \vec{a}(t)$ is constant.
- (d) $\vec{v}(t) \cdot \vec{a}(t)$ is constant.

4. [25 points] Suppose that you are driving, your speed is currently 15 m/s, your speed is increasing at a rate of 2m/s^2 , and the radius of curvature of the road is currently 70m. Calculate the magnitude of your current acceleration vector. Give a numerical answer accurate up to an error of 0.1m/s^2 .

5. [30 points] Find the curvature $\kappa(t)$ of $\vec{r}(t) = \langle t, 3\cos t, 3\sin t \rangle$; show your work.