MATH 2415 TEST 6

Name:

Date: April 9, 2013.

Exercise	Point Possible	Score
1	20	
2	40	
3	40	
Total	100	

1. [20 points] True or false? The integral

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2} d z d r d \theta
$$

represents the volume enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=2$.
Explain why the statement is true, or explain why it is false.
2. [40 points] Consider the coordinate transformation T that sends (u, v) to $(x, y)=\left(k v^{3}, u / v^{2}\right)$ where k is a constant.
(a) Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
(b) Which, if any, values of k make T area-preserving?
(By "area-preserving," I mean such that $d A=d u d v$.)
3. [40 points] Laredo is at latitude $27.5^{\circ} \mathrm{N}$, which is ϕ-coordinate $\frac{\pi}{2}-\frac{27.5 \pi}{180}$ in spherical coordinates. The equator is at ϕ-coordinate $\pi / 2$. Modeling the earth as a solid sphere, what percentage of the earth's volume has ϕ-coordinate between that of Laredo and that of the equator? (You do not need to know the radius of the earth to answer this question.)

