MATH 2415 Final

Name:

1. Let S be the flat triangular surface with vertices $A=(0,0,1), B=(1,0,3), C=(0,2,0)$ and orientation $\mathbf{N}=\langle 4,-1,2\rangle / \sqrt{21}$. If the curl of \mathbf{F} is $\langle 0,3,1\rangle$, then is the circulation of \mathbf{F} along the boundary loop ∂S positive, negative, or zero?
2. Find the flux of $\mathbf{F}=\langle 2 x y, 5 y z, 8 z x\rangle$ through the boundary surface of the solid cube

$$
\{(x, y, z) \mid 2 \leq x \leq 3 \text { and } 1 \leq y \leq 2 \text { and } 0 \leq z \leq 1\} .
$$

3. Assuming the Earth to be a sphere of radius of $R=6370$ (kilometers), find the area of the part of the Earth's surface with latitudes between 0 (the equator) and $27.5 \pi / 180$ radians North (Laredo's latitude). (Warning: ϕ (or φ) is colatitude, not latitude.)
4. For the curve $\mathbf{r}=\left\langle 7 / t, 5 / t^{2}, 3 t\right\rangle$, find the radius of curvature at $t=-1$.
5. Find the distance from $(3,4,5)$ to the line given by $\mathbf{r}=\langle 6 t-1,4-2 t, 1-t\rangle$.
6. The function $f(x, y)=x^{4}-x y+y^{2}$ has three critical points. One of them is a saddle point and the other two are locations of a local minimum.
(i) Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y}$.
(ii) Prove that $(0,0)$ is a saddle point.
(iii) Extra credit: Find the other two critical points.
