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Abbrevations

• One can use a single vector symbol, such as ~F , to denote 〈P,Q,R〉.
• Likewise, d~r is often used to represent 〈dx, dy, dz〉. If one wishes to emphasize the magnitude and direction of d~r, then

one factors it as ~T ds where ~T is the unit tangent vector and ds is the arc length differential
√
dx2 + dy2 + dz2.

• The vector 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 may be factored as ~n dσ where ~n the outward unit normal vector and dσ is the

surface area differential
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is often abbreviated as as ~∇× 〈P,Q,R〉 or curl 〈P,Q,R〉.

• Thus, Stokes’ Theorem can be succincty written as
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• To be even more succinct, write ω for P dx+Qdy+Rdz and dω for dP∧dx+dQ∧dy+dR∧dz, producing
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Assumptions

• Σ is assumed to be an oriented surface and ∂Σ to be the positively oriented boundary of Σ.
• The unit outward normal vector ~n and is assumed to be continuous on Σ.
• The unit tangent vector ~T and is assumed to be continuous on ∂Σ.
• 〈P,Q,R〉 and its first partial derivatives are assumed to be continuous in an open region containing Σ and ∂Σ.
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