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Abbrevations
e One can use a single vector symbol, such as ﬁ, to denote (P, @, R).
e Likewise, di is often used to represent (dz,dy,dz). If one wishes to emphasize the magnitude and direction of d7, then
one factors it as T ds where T is the unit tangent vector and ds is the arc length differential \/dx? + dy? + dz2.
e The vector (dy A dz,dz A dz,dx A dy) may be factored as 7 do where 7 the outward unit normal vector and do is the
surface area differential \/(dy A dz)% + (dz A dz)2 + (dz A dy)?.

e The vector <% - %—5, %—5‘ - %, %—f - %> is often abbreviated as as V x (P,Q, R) or curl (P,Q, R).

e Thus, Stokes” Theorem can be succincty written as [ F.-Tds= I (6 X ﬁ) -iido.
e To be even more succinct, write w for P dx+Q dy+ R dz and dw for dPAdz+dQANdy+dRAdz, producing faz w= ffz dw.
Assumptions

e Y is assumed to be an oriented surface and 0% to be the positively oriented boundary of X.

The unit outward normal vector 7 and is assumed to be continuous on .

The unit tangent vector T and is assumed to be continuous on Y.

(P,Q, R) and its first partial derivatives are assumed to be continuous in an open region containing ¥ and 9X.
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