
As a special case of linearity of infinite series, if
∑∞

m=0 am and
∑∞

m=0 bm
are convergent, then

∑∞
m=0(am + bm) converges to (

∑∞
m=0 am) + (

∑∞
m=0 bm).

Using induction, it is easy to prove that, for any integer k ≥ 0, if
∑∞

m=0 am,n

converges for each integer n from 0 to k, then
∑∞

m=0

(∑k
n=0 am,n

)
converges

to
∑k

n=0 (
∑∞

m=0 am,n). The following theorem is a generalization to k =∞.

Lemma. If
∑

an is absolutely convergent, then |
∑

an| ≤
∑
|an|.

Proof. First,
∑

an converges since it is absolutely convergent. Second, by the
triangle inequality, every partial sum

∑
n≤N an satisfies∣∣∣∣∣∣

∑
n≤N

an

∣∣∣∣∣∣ ≤
∑
n≤N

|an| ≤
∑
|an|.

Hence, by the Limit Location Theorem, |
∑

an| ≤
∑
|an|.

Theorem. Suppose that xm,n ∈ R for all m,n ≥ 0, that
∑∞

m=0 |xm,n| converges
for all n ≥ 0, and that

∑∞
n=0 (

∑∞
m=0 |xm,n|) converges. Then

∑∞
n=0 |xm,n|

converges for all m ≥ 0, all the series in the equation

∞∑
m=0

( ∞∑
n=0

xm,n

)
=

∞∑
n=0

( ∞∑
m=0

xm,n

)

converge, and that equation is true.

Proof. We first show, for each m, that
∑∞

n=0 |xm,n| converges. Since each term

|xm,n| is nonnegative, it is enough to show that the partial sums
∑N

n=0 |xm,n|
has an upper bound. The sum

∑∞
n=0 (

∑∞
i=0 |xi,n|), which is finite by hypothesis,

is such a bound:

N∑
n=0

|xm,n| ≤
N∑

n=0

( ∞∑
i=0

|xi,n|

)
≤
∞∑

n=0

( ∞∑
i=0

|xi,n|

)
.

Since each
∑∞

n=0 xm,n is, therefore, absolutely convergent, it is convergent.
Likewise, since each

∑∞
m=0 xm,n is, by hypothesis, absolutely convergent, it

is convergent. Let am =
∑∞

n=0 xm,n for each m and let bn =
∑∞

m=0 xm,n

and cn =
∑∞

m=0 |xm,n| for each n. By the lemma, |bn| ≤ cn for each n. By

hypothesis, C =
∑∞

n=0 cn is convergent; hence, every partial sum
∑N

n=0 |bn| is
bounded above by C; hence,

∑∞
n=0 bn is absolutely convergent and, therefore,

convergent. Let B =
∑∞

n=0 bn.
It remains to show that

∑∞
m=0 am converges to B. Given ε > 0, we will find

K such that
∑H

m=0 am≈ε B for all H ≥ K. It is sufficient to find K large enough

that
∑K

m=0

∑K
n=0 |xm,n| ≈

ε
C because, informally speaking, if the magnitudes

of every term xm,n outside the upper left K ×K square of the infinite matrix
{xm,n} add up to less than ε, then the difference between a sum of the top K
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or more rows and a sum of the left K or more columns should be smaller than
ε.

Towards a formal version of the above idea, for each H ≥ 0, let AH =∑H
m=0 am, BH =

∑H
n=0 bn, CH =

∑H
n=0 cn, DH =

∑H
n=0

(∑H
m=0 xm,n

)
, and

EH =
∑H

n=0

(∑H
m=0 |xm,n|

)
. Observe that, since each |xm,n| is nonnegative,

we have E0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · . Since CN → C, we may choose N large
enough that CN ≥ C − ε/2. For each n from 0 to N , since cn =

∑∞
m=0 |xm,n|,

we may choose kn large enough that
∑kn

m=0 |xm,n| ≥ cn − ε/(2n+2). Let K =
max{N, k0, k1, k2, . . . , kN}. Then, since 1

4 + 1
8 + · · ·+ 1

2N
< 1

2 ,

EK ≥
N∑

n=0

(
kn∑

m=0

|xm,n|

)
≥

N∑
n=0

(
cn −

ε

2n+2

)
> CN −

ε

2
≥ C − ε.

Now, suppose H ≥ K. We then have EH ≥ EK > C − ε. Moreover,

|B −AH | =

∣∣∣∣∣
(
BH +

∞∑
n=H+1

bn

)
−

(
DH +

H∑
m=0

( ∞∑
n=H+1

xm,n

))∣∣∣∣∣
=

∣∣∣∣∣(BH −DH) +

( ∞∑
n=H+1

bn

)
−

∞∑
n=H+1

(
H∑

m=0

xm,n

)∣∣∣∣∣
=

∣∣∣∣∣
H∑

n=0

( ∞∑
m=H+1

xm,n

)
+

∞∑
n=H+1

(
bn −

H∑
m=0

xm,n

)∣∣∣∣∣
=

∣∣∣∣∣
H∑

n=0

( ∞∑
m=H+1

xm,n

)
+

∞∑
n=H+1

( ∞∑
m=H+1

xm,n

)∣∣∣∣∣
≤

∣∣∣∣∣
H∑

n=0

( ∞∑
m=H+1

xm,n

)∣∣∣∣∣+

∣∣∣∣∣
∞∑

n=H+1

( ∞∑
m=H+1

xm,n

)∣∣∣∣∣
≤

H∑
n=0

∣∣∣∣∣
∞∑

m=H+1

xm,n

∣∣∣∣∣+

∞∑
n=H+1

∣∣∣∣∣
∞∑

m=H+1

xm,n

∣∣∣∣∣
≤

H∑
n=0

( ∞∑
m=H+1

|xm,n|

)
+

∞∑
n=H+1

( ∞∑
m=H+1

|xm,n|

)

≤
H∑

n=0

( ∞∑
m=H+1

|xm,n|

)
+

∞∑
n=H+1

cn

= (CH − EH) + (C − CH)

= C − EH

< ε.
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