Name:

Exercise	Point Possible	Score
1	48	
2	11	
3	11	
4	30	
Total	100	

1. [48 points] Fill in the following rectangles with "yes" or "no" as appropriate for describing the following six subsets of \mathbb{R}.

	$[4,6] \cup[7,8]$	$(1,2) \cup(3,4)$	$\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\} \cup\{1\}$	$(-\infty, 2)$	$[3, \infty)$	\mathbb{Q}
bounded?						
open?						
closed?						
compact?						
perfect?						
connected?						
countable?						

2. [11 points] Given an example of a bounded set of rationals with an irrational least upper bound.
3. [11 points] Give an example of a bounded sequence of reals that does not converge.
4. [30 points] Let $x_{1}=1$ and $x_{n+1}=\sqrt[3]{x_{n}^{2}+3}$ for all $n=1,2,3, \ldots$
(a) (10 pts) Assuming $0<x_{n}<x_{n+1}<2$ for all n, prove that $x_{1}, x_{2}, x_{3}, \ldots$ converges in \mathbb{R}.
(b) (20 pts) Prove by induction on n that $0<x_{n}<x_{n+1}<2$ for all n.
(c) (10 pts extra credit) Assuming $\lim _{n \rightarrow \infty} x_{n}=y$, prove that $y=\sqrt[3]{y^{2}+3}$.
