MATH 4335 FINAL EXAM

Name:

Testing conditions:

- notes, books, and calculators are allowed;
- inter-student communication, telecommunication, and internet access are not allowed.

Date: Dec. 9, 2013.

Exercise	Point Possible	Score
1	34	
2	33	
3	33	
Total	100	

1. [34 points] Assuming that a < b and f is convex on [a, b], prove that $I = \int_{a}^{b} f(x) dx$ exists and that $I \leq \frac{1}{2}(f(a) + f(b))$.

2. [33 points] Prove that the cube root function $f(x) = \sqrt[3]{x}$ is uniformly continuous on $(-\infty, \infty)$. Hint: Separately prove f that is uniformly continuous on each of $(-\infty, -1]$, [-1, 1], and $[1, \infty)$.

3. [33 points] Suppose that $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ are powers series such that $\sqrt[n]{|a_n|} \rightarrow 1/2$ and $\sqrt[n]{|b_n|} \rightarrow 1/3$. Prove that the "product" series $\sum_{n=0}^{\infty} c_n x^n$ has radius of convergence $\geq 6/5$ (where $c_n = a_n b_0 + a_{n-1} b_1 + a_{n-2} b_2 + \cdots + a_0 b_n$).

You may assume that $\sqrt[n]{|x+y|} \leq \sqrt[n]{|x|} + \sqrt[n]{|y|}$ for all $x, y \in \mathbb{R}$ and n > 0, and that $\sqrt[n]{n} \to 1$. Suggested proof outline:

- (1) Show that $\{a_n\}$ and $\{b_n\}$ are bounded.
- (2) Expressing c_n as $p_n + q_n$ where

 $p_n = a_n b_0 + a_{n-1} b_1 + a_{n-2} b_2 + \dots + a_m b_{n-m};$ $q_n = a_{m-1} b_{n-(m-1)} + a_{m-2} b_{n-(m-2)} + a_{m-1} b_{n-(m-3)} + \dots + a_0 b_n$

where m is n/2 rounded down, show that $\limsup \sqrt[n]{p_n} \le 1/2$ and $\limsup \sqrt[n]{q_n} \le 1/3$ (3) Deduce that $\sum_{k=0}^{\infty} c_k x^k$ has radius of convergence $\ge (1/2 + 1/3)^{-1}$.

(Extra credit: By choosing *m* differently, show that $\sum_{n=0}^{\infty} c_n x^n$ has radius of convergence ≥ 2 .)