MATH 4335 FINAL EXAM

Name:

Testing conditions:

- notes, books, and calculators are allowed;
- inter-student communication, telecommunication, and internet access are not allowed.

Exercise	Point Possible	Score
1	34	
2	33	
3	33	
Total	100	

1. [34 points] Assuming that $a<b$ and f is convex on $[a, b]$, prove that $I=\int_{a}^{b} f(x) d x$ exists and that $I \leq \frac{1}{2}(f(a)+f(b))$.
2. [33 points] Prove that the cube root function $f(x)=\sqrt[3]{x}$ is uniformly continuous on $(-\infty, \infty)$. Hint: Separately prove f that is uniformly continuous on each of $(-\infty,-1],[-1,1]$, and $[1, \infty)$.
3. [33 points] Suppose that $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ are powers series such that $\sqrt[n]{\left|a_{n}\right|} \rightarrow$ $1 / 2$ and $\sqrt[n]{\left|b_{n}\right|} \rightarrow 1 / 3$. Prove that the "product" series $\sum_{n=0}^{\infty} c_{n} x^{n}$ has radius of convergence $\geq 6 / 5$ (where $c_{n}=a_{n} b_{0}+a_{n-1} b_{1}+a_{n-2} b_{2}+\cdots+a_{0} b_{n}$).

You may assume that $\sqrt[n]{|x+y|} \leq \sqrt[n]{|x|}+\sqrt[n]{|y|}$ for all $x, y \in \mathbb{R}$ and $n>0$, and that $\sqrt[n]{n} \rightarrow 1$. Suggested proof outline:
(1) Show that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded.
(2) Expresing c_{n} as $p_{n}+q_{n}$ where

$$
\begin{aligned}
p_{n} & =a_{n} b_{0}+a_{n-1} b_{1}+a_{n-2} b_{2}+\cdots+a_{m} b_{n-m} ; \\
q_{n} & =a_{m-1} b_{n-(m-1)}+a_{m-2} b_{n-(m-2)}+a_{m-1} b_{n-(m-3)}+\cdots+a_{0} b_{n}
\end{aligned}
$$

where m is $n / 2$ rounded down, show that $\limsup \sqrt[n]{p_{n}} \leq 1 / 2$ and $\lim \sup \sqrt[n]{q_{n}} \leq 1 / 3$
(3) Deduce that $\sum_{k=0}^{\infty} c_{k} x^{k}$ has radius of convergence $\geq(1 / 2+1 / 3)^{-1}$.
(Extra credit: By choosing m differently, show that $\sum_{n=0}^{\infty} c_{n} x^{n}$ has radius of convergence ≥ 2.)

