MATH 4335 TEST 1

Name:

Exercise	Point Possible	Score
1	20	
2	40	
3	40	
Total	100	

1. [20 points] Consider these two sequences:

$$
\begin{aligned}
& a_{1}, a_{2}, a_{3}, \ldots=\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \ldots \\
& b_{1}, b_{2}, b_{3}, \ldots=\frac{1}{3}, \frac{2}{3}, \frac{2}{5}, \frac{3}{5}, \frac{3}{7}, \frac{4}{7}, \frac{4}{9}, \frac{5}{9}, \frac{5}{11}, \frac{6}{11}, \ldots
\end{aligned}
$$

(a) (5pts) Which of these sequences are bounded?
(b) (5pts) Which of these sequences are monotone?
(c) (10pts) Which of these sequences converge?

Proofs are optional for this question.
2. [40 points] Recursively define a sequence $\left\{x_{n}\right\}$ by $x_{1}=1, x_{2}=6$, and

$$
x_{n+2}=\left(9 x_{n+1}-4 x_{n}\right) / 5 .
$$

Prove that this sequence is Cauchy.
3. [40 points] Prove that if $L>0, p_{n} \geq 0$ for all n, and $p_{n} \rightarrow L$, then $\sqrt{p_{n}} \rightarrow \sqrt{L}$. Hint: $\sqrt{x}-\sqrt{y}=\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}+\sqrt{y}}$.

